EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面润湿性对球体斜射入水过程的影响研究

刘思华,李利剑,朱晋,王占莹,张敏弟

downloadPDF
刘思华, 李利剑, 朱晋, 王占莹, 张敏弟. 表面润湿性对球体斜射入水过程的影响研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-461
引用本文: 刘思华, 李利剑, 朱晋, 王占莹, 张敏弟. 表面润湿性对球体斜射入水过程的影响研究. 力学学报, 待出版doi:10.6052/0459-1879-23-461
Liu Sihua, Li Lijian, Zhu Jin, Wang Zhanying, Zhang Mindi. Influence of surface wettability on the process of oblique water entry of sphere. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-461
Citation: Liu Sihua, Li Lijian, Zhu Jin, Wang Zhanying, Zhang Mindi. Influence of surface wettability on the process of oblique water entry of sphere.Chinese Journal of Theoretical and Applied Mechanics, in pressdoi:10.6052/0459-1879-23-461

表面润湿性对球体斜射入水过程的影响研究

doi:10.6052/0459-1879-23-461
基金项目:国家自然科学基金项目(51979003)资助
详细信息
    通讯作者:

    张敏弟, 副教授, 主要研究方向为空化和空蚀机理研究、水下航行体减阻和微通道内部流动. E-mail:zhangmindi@bit.edu.cn

  • 中图分类号:O352

INFLUENCE OF SURFACE WETTABILITY ON THE PROCESS OF OBLIQUE WATER ENTRY OF SPHERE

  • 摘要:针对球体表面润湿性对倾斜入水空泡演化过程及球体动力特性的影响开展研究, 以便能够进一步理解润湿性对入水过程的影响并且能够为多种情况下的入水现象提供理论依据. 基于球体入水过程空泡形态观察、采集与测量实验平台, 分析了亲水性和疏水性球体入水过程中入水喷溅和空泡的演变规律, 并深入讨论了不同速度下球体表面润湿性对球体入水过程中动力特性的影响. 研究表明: 不同表面润湿性球体在入水过程中的喷溅及入水空泡演化与动力特性存在明显区别. 在相同入水速度下, 亲水性球体的三相接触点远高于疏水性球体, 而喷溅的高度却低于疏水性球体, 但该差异随入水速度的增加反而减小. 随着入水速度的增大, 亲水性球体依次经历了无空泡、浅闭合和面闭合三种闭合方式, 而疏水性球体先后只出现了深闭合和面闭合两种. 但是. 随着入水速度的增加, 球体表面润湿性对空泡演化过程的影响逐渐减弱, 当速度增加到11.25 m/s时, 二者不存在区别. 同时发现, 在入水过程中, 在相同速度下生成入水空泡较无入水空泡其总流动阻力系数降低49.94%; 亲水性球体生成空泡体积更小, 空泡带来的附加质量力也更小, 减阻效果更好.

  • 图 1物体表面接触角与临界毛细数的关系图

    Figure 1.Diagram of the relationship between the contact angle of a surface and the critical capillary number

    图 2球体入水观测平台示意图

    Figure 2.Diagram of the observation platform for the sphere entering the water

    图 3表面润湿性对应静态接触角θ

    Figure 3.Surface wettability corresponds to static contact angleθ

    图 4不同表面润湿性球体入水喷溅演化过程

    Figure 4.Water splashing evolution of spheres with different surface wettability

    图 5三相接触点及关键参数示意图

    Figure 5.Schematic diagram of three phase contact points and key parameters

    图 6不同表面润湿性球体入水过程三相接触点变化曲线

    Figure 6.Change curve of three phase contact point during water entry of different surface wettability spheres

    图 7水冠最大直径和高度示意图

    Figure 7.Diagram of maximum diameter and height of water crown

    图 8不同润湿性球体水冠高度随时间变化曲线

    Figure 8.Curve of water crown height with different surface wettability with time

    图 9不同润湿性球体水冠直径随时间变化曲线

    Figure 9.Curve of water crown diameter with different surface wettability with time

    图 10不同表面润湿性球体入水空泡演化过程(v= 4 m/sRe= 19801)

    Figure 10.Evolution of water-entering cavitation of spheres with different surface wettability (v= 4 m/sRe= 19801)

    图 11不同表面润湿性球体入水空泡演化过程(v= 5.6 m/sRe= 27722)

    Figure 11.Evolution of water-entering cavitation of spheres with different surface wettability (v= 5.6 m/sRe= 27722)

    图 12不同表面润湿性球体入水空泡演化过程(v= 11.25 m/sRe= 55693)

    Figure 12.Evolution of water-entering cavitation of spheres with different surface wettability (v= 11.25 m/sRe= 55693)

    图 13空泡图像处理过程及最大截面示意图

    Figure 13.Cavitation image processing process and maximum interface diagram

    图 14不同表面润湿性球体入水空泡最大截面积随时间变化曲线

    Figure 14.Curve of the maximum cross-sectional area of the water-entering cavity of the sphere with different surface wettability over time

    图 15不同表面润湿性球体速度随时间变化曲线

    Figure 15.Velocity curve of different surface wettability spheres over time

    图 16相同速度下亲疏水性球体速度差最大值随速度变化曲线

    Figure 16.The maximum velocity difference of hydrophilic sphere varies with the velocity at the same velocity

    图 17不同表面润湿性球体入水过程中加速度随时间变化曲线

    Figure 17.Curve of the acceleration velocity of different surface wettability spheres during water entry with time

    图 18球体在水下运动过程中受力分析示意图

    Figure 18.Schematic diagram of force analysis of sphere during underwater movement

    图 19不同表面润湿性球体总流体阻力系数随时间变化曲线

    Figure 19.Time variation curve of total fluid resistance coefficient of spheres with different surface wettability

  • [1] 张佳悦, 李达钦, 吴钦, 等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019, 51(3): 803-812 (Zhang Jiayue, LI Daqin, Wu Qin, et al. Study on flow field and hydrodynamic characteristics of vertical entry cavitation for vehicle recovery.Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803-812(in Chinese)

    Zhang Jiayue, LI Daqin, Wu Qin, et al . Study on flow field and hydrodynamic characteristics of vertical entry cavitation for vehicle recovery. Chinese Journal of Theoretical and Applied Mechanics, 2019 , 51 ( 3 ): 803 - 812 (in Chinese)
    [2] 李莹莹, 任美鹏, 王名春, 等. 海洋环境水下采油树腐蚀与防护研究进展. 装备环境工程, 2021, 18(7): 130-139 (Li Yingying, Ren Meipeng, Wang Mingchun, et al. Research progress on corrosion and protection of subsea tree in marine environment.Equipment Environmental Engineering, 2021, 18(7): 130-139(in Chinese)

    Li Yingying, Ren Meipeng, Wang Mingchun, et al . Research progress on corrosion and protection of subsea tree in marine environment. Equipment Environmental Engineering, 2021 , 18 ( 7 ): 130 - 139 (in Chinese)
    [3] 李文升, 冯耀荣, 张西宁, 等. 海洋油田水下集输−立管内两相流冲击力预测模型. 装备环境工程, 2020, 17(4): 34-38 (Li Wensheng, Feng Yaorong, Zhang Xining, et al. Prediction model of two-phase flow impact force in underwater gathering and pipeline-riser in offshore oil field.Equipment Environmental Engineering, 2020, 17(4): 34-38(in Chinese)

    Li Wensheng, Feng Yaorong, Zhang Xining, et al . Prediction model of two-phase flow impact force in underwater gathering and pipeline-riser in offshore oil field. Equipment Environmental Engineering, 2020 , 17 ( 4 ): 34 - 38 (in Chinese)
    [4] Seddon CM, Moatamedi M. Review of water entry with applications to aerospace structures.International Journal of Impact Engineering, 2006, 32: 1045-1067doi:10.1016/j.ijimpeng.2004.09.002
    [5] Marston JO, Vakarelski IU, Thoroddsen ST. Cavity formation by the impact of leidenfrost spheres.Fluid Mech, 2012, 699: 465-488doi:10.1017/jfm.2012.124
    [6] Ding H, Chen BQ, Liu HR, et al. On the contact-line pinning in cavity formation during solid-liquid impact.Fluid Mech, 2015, 783: 504-525doi:10.1017/jfm.2015.574
    [7] Duclaux V, Caille F, Duez C, et al. Dynamics of Transient Cavities.Fluid Mech, 2007, 591: 1-19doi:10.1017/S0022112007007343
    [8] Abraham J, Gorman J, Reseghetti F, et al. Modeling and numerical simulation of the forces acting on a sphere during early-water entry.Ocean Eng, 2014, 76: 1-9doi:10.1016/j.oceaneng.2013.11.015
    [9] Wang Z, Huang B, Zhang M, et al. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics.Multiph Flow, 2018, 98: 79-95doi:10.1016/j.ijmultiphaseflow.2017.08.014
    [10] Wang C, Huang B, Wang G, et al. Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility.Hydrodyn, 2018, 30: 573-591doi:10.1007/s42241-018-0058-x
    [11] Worthington AM, Cole RS. Impact with a liquid surface, studied by the aid of instantaneous photography.Philosophical Transactions of The Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1897, 189: 137-148doi:10.1098/rsta.1897.0005
    [12] Worthington AM. A study of splashes. London: longmans, green, and co, 1908
    [13] May A, Woodhull J C. Drag coefficients of steel spheres entering water vertically.Journal of Applied Physics, 1948, 19: 1109-1121doi:10.1063/1.1715027
    [14] May A, Woodhull J C. The virtual mass of a sphere entering water vertically.Journal of Applied Physics, 1950, 21: 1285-1289doi:10.1063/1.1699592
    [15] May A, Hoover WR. A study of the water-entry cavity.United States Naval Ordinance Laboratory, White Oak, 1963, 1: 1-1
    [16] Yilmaz N, Nelson R. Cavity dynamics of smooth sphere and golf ball at low froude numbers, part 2: PIV analysis.Journal of visualization, 2015, 18(4): 679-686doi:10.1007/s12650-014-0262-x
    [17] Speirs NB, Langley KR, Pan Z, et al. Cavitation upon low-speed solid–liquid impact.Nat Commun12, 7250 (2021
    [18] 周波, 刘辉, 王杰, 等. 旋转球倾斜入水空泡演变和运动特性数值模拟. 华中科技大学学报(自然科学版), 2020, 48(10): 92-98 (Zhou Bo, Liu Hui, Wang Jie, et al. Numerical simulation on cavity evolution and motion Characteristics for oblique water entry of a rotation sphere.Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(10): 92-98(in Chinese)

    Zhou Bo, Liu Hui, Wang Jie, et al . Numerical simulation on cavity evolution and motion Characteristics for oblique water entry of a rotation sphere. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020 , 48 ( 10 ): 92 - 98 (in Chinese)
    [19] 王旭, 吕续舰. 双球并联入水空化及运动特性实验研究. 振动与冲击, 2020, 39(15): 221-229 (Wang Xu, Lü Xujian. Tests for cavitation and motion characteristics of double-ball parallel water entry.Journal of Vibration and Shock, 2020, 39(15): 221-229(in Chinese)

    Wang Xu, Lü Xujian . Tests for cavitation and motion characteristics of double-ball parallel water entry. Journal of Vibration and Shock, 2020 , 39 ( 15 ): 221 - 229 (in Chinese)
    [20] 李达钦, 王国玉, 张敏弟, 等. 不同密度比球体入水空泡流体动力特性研究. 宇航总体技术, 2019, 3(01): 29-38 (Li Daqin, Wang Guoyu, Zhang Mindi, et al. The investigation of cavity dynamics during water entry of the spheres with different density.Astronautical Systems Engineering Technology, 2019, 3(01): 29-38(in Chinese)

    Li Daqin, Wang Guoyu, Zhang Mindi, et al . The investigation of cavity dynamics during water entry of the spheres with different density. Astronautical Systems Engineering Technology, 2019 , 3 ( 01 ): 29 - 38 (in Chinese)
    [21] Worthington AM. A Study of Splashes, vol 13.Longmans, Green and Company, 1908, pp: 1-129
    [22] May A. Effect of surface condition of a sphere on its water-entry cavity.Appl phys, 1951, 22: 1219-1222doi:10.1063/1.1699831
    [23] Truscott TT, Epps BP, Techet AH. Unsteady forces on spheres during free-surface water entry.Fluid mech, 2012, 704: 173-210doi:10.1017/jfm.2012.232
    [24] DoQuang M, Amberg G. The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence of wetting.Physics of Fluids, 2009, 21: 022102doi:10.1063/1.3073968
    [25] Duez C, Ybert C, Clanet C, et al. Making a splash with water repellency.Nature Physics, 2007, 3(3): 180-183doi:10.1038/nphys545
    [26] 李达钦. 球体入水空泡及其流体动力特性研究[博士论文]. 北京: 北京理工大学, 2020 (Li Daqin. Research on spherical cavitation in water and its hydrodynamic characteristics [Ph D Thesis]. Beijing: Beijing institute of technology, 2020. (in Chinese)

    Li Daqin. Research on spherical cavitation in water and its hydrodynamic characteristics [Ph D Thesis]. Beijing: Beijing institute of technology, 2020. (in Chinese)
    [27] 孙钊, 曹伟, 王聪, 等. 半疏水−半亲水球体垂直入水空泡数值仿真研究. 兵工学报, 2017, 38(05): 968-977 (Sun Zhao, Cao Wei, Wang Cong, et al. Numerical investigations on water-entry cavity of half (hydrophobic-half hydrophilic sphere.Acta Armamentarii, 2017, 38(05): 968-977(in Chinese)

    hydrophobic-half hydrophilic sphere.Acta Armamentarii, 2017, 38(05): 968-977(in Chinese)
    [28] 孙钊. 考虑表面润湿性的运动体入水过程多相流动特性研究[博士论文]. 哈尔滨: 哈尔滨工业大学, 2017 (Sun Zhao. Multiphase flow study on the water entry of projectiles in consideration of surface wettability [Ph D Thesis]. Haerbin: Harbin institute of technology, 2017(in Chinese)

    Sun Zhao. Multiphase flow study on the water entry of projectiles in consideration of surface wettability [Ph D Thesis]. Haerbin: Harbin institute of technology, 2017(in Chinese)
    [29] 周素云. 水平运动超空泡的发生及流体力学机理研究[博士论文]. 杭州: 浙江理工大学, 2013 (Zhou Suyun. Study on the generation and fluid mechanics of horizontal moving supercavity [Ph D Thesis]. Hangzhou: Zhejiang university of science and technology, 2013. (in Chinese)

    Zhou Suyun. Study on the generation and fluid mechanics of horizontal moving supercavity [Ph D Thesis]. Hangzhou: Zhejiang university of science and technology, 2013. (in Chinese)
    [30] 李利剑, 张敏弟, 王占莹, 等. 入水角度对球体高速入水空泡特性影响研究. 装备环境工程, 2022: 1-16 (Li Lijian, Zhang Mindi, Wang Zhanying, et al. Study on the influence of water entry angle on the cavitation characteristics of sphere entering water at high speed.Equipment Environment Engineering, 2022: 1-16(in Chinese)

    Li Lijian, Zhang Mindi, Wang Zhanying, et al. Study on the influence of water entry angle on the cavitation characteristics of sphere entering water at high speed.Equipment Environment Engineering, 2022: 1-16(in Chinese)
  • 加载中
图(19)
计量
  • 文章访问数:21
  • HTML全文浏览量:5
  • PDF下载量:5
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-03

目录

    /

      返回文章
      返回
        Baidu
        map