EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用

张宇,李韶华,任剑莹

downloadPDF
张宇, 李韶华, 任剑莹. 参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用. 力学学报, 待出版 doi: 10.6052/0459-1879-23-376
引用本文: 张宇, 李韶华, 任剑莹. 参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用. 力学学报, 待出版doi:10.6052/0459-1879-23-376
Zhang Yu, Li Shaohua, Ren Jianying. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge coupled vibration. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-376
Citation: Zhang Yu, Li Shaohua, Ren Jianying. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge coupled vibration.Chinese Journal of Theoretical and Applied Mechanics, in pressdoi:10.6052/0459-1879-23-376

参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用

doi:10.6052/0459-1879-23-376
基金项目:国家自然科学基金项目(U22A20246, 11902206), 河北省自然科学基金(A2021210009, A2022210007), 河北省省级科技计划(225676162GH)资助
详细信息
    通讯作者:

    李韶华, 教授, 主要研究方向为车路、车桥耦合动力学, 汽车动力学与控制. E-mail:lishaohua@stdu.edu.cn

  • 中图分类号:U441.3, O241.4

PARAMETER FREEZING PRECISE EXPONENTIAL INTEGRATOR AND ITS APPLICATION IN NONLINEAR VEHICLE-BRIDGE COUPLED VIBRATION

  • 摘要:描述车桥耦合作用的基本问题是一个时变系统问题, 且很多工况下需考虑非线性特性, 使得该问题难以得到解析解, 甚至数值解也可能很复杂. 针对于该问题的求解, 本文提出了一种参数冻结精细指数积分法, 将其应用于车桥耦合动力学模型的数值分析中. 该方法结合了精细积分和指数积分特点, 并将时变系数矩阵在每一积分步参数冻结, 用于获得系统振动响应的数值解. 考虑汽车轮胎与桥面的力和位移耦合关系、桥面沥青铺装层、桥梁材料粘弹性和几何非线性特性, 建立了车桥耦合动力学模型, 并应用参数冻结精细指数积分法对该模型进行了求解. 通过与近似解析解、辛Runge-Kutta算法以及经典的Newmark-β数值积分法计算结果进行对比, 验证了所提出方法计算结果的有效性和准确性. 在此基础上, 制作了缩尺车桥耦合系统模型, 测试了跨中挠度响应, 进一步验证了理论建模和所提算法的有效性和实用性. 通过数值计算分析了所提算法的数值特性, 结果表明: 本文提出的参数冻结精细指数积分法不仅可以处理时变、非线性问题, 且具有良好的数值计算精度和长时间数值稳定性; 由于精细积分的特点, 参数冻结精细指数积分法的计算时间步长可以取的较大, 可有效提高计算效率. 因此, 本文所提出的参数冻结精细指数积分法预期可成为求解车桥耦合动力学问题的一种新的高效算法.

  • 图 1车−桥面铺装层-桥耦合模型

    Figure 1.Vehicle-pavement-bridge coupled model

    图 2实验测试模型示意图

    Figure 2.Schematic diagram of experimental test model

    图 3实验测试现场图

    Figure 3.Diagram of experimental test site

    图 4数值计算和实验测试的跨中挠度结果

    Figure 4.The numerical and test results of mid-span deflection

    图 5近似解析解、时间步长为$ \tau = {10^{ - 2}}{\text{ s}} $的FPEI4-4格式和时间步长为$ \tau = {10^{ - 4}}{\text{ s}} $的SRK2-4格式计算跨中挠度结果

    Figure 5.The results of mid-span deflection calculated by analytical approximate solution, FPEI4-4 scheme with $ \tau = {10^{ - 2}}{\text{ s}} $ and SRK2-4 scheme with $ \tau = {10^{ - 4}}{\text{ s}} $

    图 6时间步长为$ \tau = {10^{ - 4}}{\text{ s}} $和$ \tau = {10^{ - 5}}{\text{ s}} $时SRK2-4格式计算跨中挠度结果之差

    Figure 6.The difference between the results of mid-span deflection calculated by SRK2-4 scheme under time step $ \tau = {10^{ - 4}}{\text{ s}} $and $ \tau = {10^{ - 5}}{\text{ s}} $

    图 7FPEI4-4格式和Newmark-β算法求解跨中挠度计算误差

    Figure 7.The numerical errors of mid-span deflection calculated by FPEI4-4 scheme and Newmark-β algorithm

    图 8FPEI4-4格式与Newmark-β算法得到的桥梁跨中挠度结果

    Figure 8.The results of mid-span deflection calculated by FPEI4-4 scheme and Newmark-β algorithm

    图 9Newmark-β算法的计算结果

    Figure 9.The calculation results of Newmark-β algorithm

    图 10FPEI4-4格式的计算结果

    Figure 10.The calculation results of FPEI4-4 scheme

    图 11$ \tau = {10^{ - 2}}{\text{ s}} $, 不同车速时FPEI4-4格式求解跨中挠度计算误差

    Figure 11.The numerical errors of mid-span deflection calculated by FPEI4-4 scheme under different vehicle speeds with time step $ \tau = {10^{ - 2}}{\text{ s}} $

    图 12$ \tau = {10^{ - 2}}{\text{ s}} $, FPEI4-4格式选取不同时变矩阵冻结方式的计算结果

    Figure 12.The numerical results calculated by FPEI4-4 scheme under different parameter freezing forms with time step $ \tau = {10^{ - 2}}{\text{ s}} $

    图 13$ \tau = {10^{ - 2}}{\text{s}} $, FPEI4-4格式不同时变矩阵冻结方式求解跨中挠度的计算误差

    Figure 13.The numerical errors of mid-span deflection calculated by FPEI4-4 scheme under different parameter freezing forms with time step $ \tau = {10^{ - 2}}{\text{s}} $

    表 1汽车参数

    Table 1.Vehicle parameters

    Symbol Value
    m2/kg 18000
    m1/kg 2000
    k2/N/m 9000000
    c2/Ns/m 80000
    k1/N/m 36000000
    c1/Ns/m 700
    下载: 导出CSV

    表 2桥面沥青铺装层和桥体参数

    Table 2.Pavement and bridge parameters

    Symbol Value
    L/m 40
    b/m 8
    h1/m 0.1
    h2/m 2
    E1/GPa 8
    E2/GPa 34.5
    $ {\rho _1} $/kg/m3 2000
    $ {\rho _2} $/kg/m3 2500
    $ {\eta _1} $ 0.1
    $ {\eta _2} $ 0.01
    下载: 导出CSV

    表 3Newmark-β算法和FPEI4-4格式计算跨中挠度对比

    Table 3.Comparison of mid-span deflection calculated by Newmark-β algorithm and FPEI4-4 scheme

    Time step/s Computation time/s Maximum error/m
    Newmark-β algorithm $ {10^{ - 4}} $ 0.869262 $ - 2.222306 \times {10^{ - 7}} $
    $ {10^{ - 3}} $ 0.078846 $ 2.269753 \times {10^{ - 6}} $
    $ {10^{ - 2}} $
    FPEI4-4 scheme $ {10^{ - 4}} $ 2.849518 $ 4.373681 \times {10^{ - 13}} $
    $ {10^{ - 3}} $ 0.319489 $ 4.373730 \times {10^{ - 11}} $
    $ {10^{ - 2}} $ 0.031098 $ 4.409290 \times {10^{ - 9}} $
    $ {10^{ - 1}} $ 0.003465 $ - 1.741726 \times {10^{ - 6}} $
    下载: 导出CSV

    表 4不同冰冻近似方式的对比

    Table 4.Comparison of different parameter freezing forms

    Time step/s Form Maximum error/m

    $ {10^{ - 2}} $
    LC1 $ 4.409290 \times {10^{ - 9}} $
    LC2 $ 8.127175 \times {10^{ - 8}} $
    LC3 $ 8.418344 \times {10^{ - 8}} $

    $ {10^{ - 3}} $
    LC1 $ 4.373730 \times {10^{ - 11}} $
    LC2 $ 8.131892 \times {10^{ - 9}} $
    LC3 $ 8.139901 \times {10^{ - 9}} $
    下载: 导出CSV
  • [1] Zhu XQ, Law SS. Recent developments in inverse problems of vehicle-bridge interaction dynamics.Journal of Civil Structural Health Monitoring, 2016, 6(1): 107-128doi:10.1007/s13349-016-0155-x
    [2] Yang YB, Yang JP. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles.International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025doi:10.1142/S0219455418500256
    [3] 李小珍, 辛莉峰, 王铭等. 车−桥耦合振动2019年度研究进展. 土木与环境工程学报(中英文), 2020, 42(5): 126-138 (Li Xiaozhen, Xin Lifeng, Wang Ming et al. State-of-the-art review of vehicle-bridge interactions in 2019.Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138(in Chinese)

    Li Xiaozhen, Xin Lifeng, Wang Ming et al. State-of-the-art review of vehicle-bridge interactions in 2019.Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138(in Chinese)
    [4] 周勇军, 薛宇欣, 李冉冉等. 桥梁冲击系数理论研究和应用进展. 中国公路学报, 2021, 35(4): 31-50 (ZHOU Yongjun, XUE Yuxin, LI Ranran et al. State-of-the-art of Theory and Applications of Bridge Dynamic Load Allowance.China Journal of Highway and Transport, 2021, 35(4): 31-50(in Chinese)

    ZHOU Yongjun, XUE Yuxin, LI Ranran et al . State-of-the-art of Theory and Applications of Bridge Dynamic Load Allowance. China Journal of Highway and Transport, 2021 , 35 ( 4 ): 31 - 50 (in Chinese)
    [5] 杨永斌, 王志鲁, 史康等. 基于车辆响应的桥梁间接测量与检测研究综述. 中国公路学报, 2021, 34(4): 1-12 (YANG Yeongbin, WANG Zhilu, SHI Kang et al. Research Progress on Bridge Indirect Measurement and Monitoring from Moving Vehicle Response.China Journal of Highway and Transport, 2021, 34(4): 1-12(in Chinese)

    YANG Yeongbin, WANG Zhilu, SHI Kang et al . Research Progress on Bridge Indirect Measurement and Monitoring from Moving Vehicle Response. China Journal of Highway and Transport, 2021 , 34 ( 4 ): 1 - 12 (in Chinese)
    [6] Han WS, Liu XD, Guo XL, et al. Research status and prospect of wind-vehicle-bridge coupling vibration system.Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 319-338doi:10.1016/j.jtte.2021.05.002
    [7] Fryba L. Vibration of solids and structures under moving loads. London:Thomas Telford, 1999
    [8] Yang YB, Yau JD, Hsu LC. Vibration of simple beams due to trains moving at high speeds.Engineering Structures, 1997, 19(11): 936-944doi:10.1016/S0141-0296(97)00001-1
    [9] 夏禾, 张楠, 郭薇薇等. 车桥耦合振动工程. 北京: 科学出版社, 2014 (XIA He, ZHANG Nan, GUO Weiwei et al. Coupling vibrations of train-bridge system. Beijing:China Science Publishing and Media Ltd., 2014(in Chinese)

    XIA He, ZHANG Nan, GUO Weiwei et al. Coupling vibrations of train-bridge system. Beijing:China Science Publishing and Media Ltd., 2014(in Chinese)
    [10] 张宇, 王嘉伟, 李韶华等. 基于智能驾驶电动汽车的多车−桥梁耦合系统动力学特性研究. 力学学报, 2022, 54(9): 1-13 (ZHANG Yu, WANG Jiawei, LI Shaohua et al. Dynamic characteristics of multi-vehicle-bridge coupling system based on intelligent driving electric vehicle.China Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-13(in Chinese))

    ZHANG Yu, WANG Jiawei, LI Shaohua et al . Dynamic characteristics of multi-vehicle-bridge coupling system based on intelligent driving electric vehicle. China Journal of Theoretical and Applied Mechanics, 2022 , 54 ( 9 ): 1 - 13 (in Chinese))
    [11] Ren JY, Chen YH, Sun ZQ, et al. A vehicle-bridge interaction vibration model considering bridge deck pavement.Journal of Low Frequency Noise, Vibration and Active Control, 2022,DOI:10.1177/14613484221122736
    [12] Camara A, Kavrakov I, Nguyen K, et al. Complete framework of wind-vehicle-bridge interaction with random road surfaces.Journal of Sound and Vibration, 2019, 458: 197-217doi:10.1016/j.jsv.2019.06.020
    [13] 殷新锋, 晏万里, 仁厚乾等. 车载作用下公路桥梁耦合振动精细化建模及验证分析. 湖南大学学报, 2021, 48(9): 129-137 (YIN Xinfeng, YAN Wanli, REN Houqian et al. Fine modeling of coupled vibration of highway bridge under vehicle loading and verification analysis.Journal of Hunan University, 2021, 48(9): 129-137(in Chinese)

    YIN Xinfeng, YAN Wanli, REN Houqian et al . Fine modeling of coupled vibration of highway bridge under vehicle loading and verification analysis. Journal of Hunan University, 2021 , 48 ( 9 ): 129 - 137 (in Chinese)
    [14] 冯东明, 黎剑安, 吴刚等. 考虑路面不平度的车桥耦合系统快速建模与动力分析方法. 东南大学学报, 2022, 52(6): 1088-1094 (FENG Dongming, LI Jianan, WU Gang et al. Fast modeling and dynamic analysis method for vehicle-bridge interaction system considering road roughness.Journal of Southeast University, 2022, 52(6): 1088-1094(in Chinese)

    FENG Dongming, LI Jianan, WU Gang et al . Fast modeling and dynamic analysis method for vehicle-bridge interaction system considering road roughness. Journal of Southeast University, 2022 , 52 ( 6 ): 1088 - 1094 (in Chinese)
    [15] 王艳, 刘哲, 周瑞娇等. 基于车桥耦合振动分析的大跨径曲弦桁梁桥加固方案评价研究. 振动与冲击, 2022, 41(14): 199-209 (WANG Yan, LIU Zhe, ZHOU Ruijiao et al. Evaluation of the reinforcement scheme for a long-span curved truss bridge based on vehicle-bridge coupled vibration analysis.Journal of Vibration and Shock, 2022, 41(14): 199-209(in Chinese)doi:10.13465/j.cnki.jvs.2022.14.027

    WANG Yan, LIU Zhe, ZHOU Ruijiao et al . Evaluation of the reinforcement scheme for a long-span curved truss bridge based on vehicle-bridge coupled vibration analysis. Journal of Vibration and Shock, 2022 , 41 ( 14 ): 199 - 209 (in Chinese)doi:10.13465/j.cnki.jvs.2022.14.027
    [16] 崔圣爱, 张猛, 曾光等. 基于车桥耦合振动的双层六线铁路桥梁疲劳性能评估. 东南大学学报, 2023, 53(1): 67-75 (CUI Shengai, ZHANG Meng, ZENG Guang et al. Fatigue performance assessment of double-deck six-line railway bridge based on vehicle-bridge coupling vibration.Journal of Southeast University, 2023, 53(1): 67-75(in Chinese)

    CUI Shengai, ZHANG Meng, ZENG Guang et al . Fatigue performance assessment of double-deck six-line railway bridge based on vehicle-bridge coupling vibration. Journal of Southeast University, 2023 , 53 ( 1 ): 67 - 75 (in Chinese)
    [17] Gao H, Yang BB. Parametric vibration of a flexible structure excited by periodic passage of moving oscillators.Journal of Applied Mechanics, 2020, 87: 071001doi:10.1115/1.4046781
    [18] Konig P, Salcher P, Adam C. An efficient model for the dynamic vehicle-track-bridge-soil interaction system.Engineering Structures, 2022, 253: 113769doi:10.1016/j.engstruct.2021.113769
    [19] 阳洋, 许文明, 卢会城等. 基于车桥耦合理论的梁式桥阻尼比识别研究. 力学学报, 2022, 54(5): 1387-1402 (YANG Yang, XU Wenming, LU Huicheng et al. Research on damping ratio identification of beam bridge based on vehicle bridge coupling theory.China Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1387-1402(in Chinese)doi:10.6052/0459-1879-21-691

    YANG Yang, XU Wenming, LU Huicheng et al . Research on damping ratio identification of beam bridge based on vehicle bridge coupling theory. China Journal of Theoretical and Applied Mechanics, 2022 , 54 ( 5 ): 1387 - 1402 (in Chinese)doi:10.6052/0459-1879-21-691
    [20] Zhang Q, Vrouwenvelder A, Wardenier J. Numerical simulation of train-bridge interactive dynamics.Computers and Structures, 2001, 79(10): 1059-1075doi:10.1016/S0045-7949(00)00181-4
    [21] Zhu XQ, Law SS. Precise time-step integration for the dynamic response of a continuous beam under moving loads.Journal of Sound and Vibration, 2001, 240: 962-970doi:10.1006/jsvi.2000.3184
    [22] Zhai WM. Two simple fast integration methods for large-scale dynamic problems in engineering.International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214doi:10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    [23] Stoura CD, Paraskevopoulos E, Dimitrakopoulos EG, et al. A Dynamic Partitioning Method to solve the vehicle-bridge interaction problem.Computers and Structures, 2021, 251: 106547doi:10.1016/j.compstruc.2021.106547
    [24] 李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车−路面耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 (LI Shaohua, FENG Guizhen, DING Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568(in Chinese)

    LI Shaohua, FENG Guizhen, DING Hu . Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact. Chinese Journal of Theoretical and Applied Mechanics, 2021 , 53 ( 9 ): 2554 - 2568 (in Chinese)
    [25] Liu K, Kujath MR. Response of slowly time-varying systems to harmonic excitation.Journal of Sound and Vibration, 1994, 177: 423-432doi:10.1006/jsvi.1994.1444
    [26] Ge CQ, Tan CA, Lin Ke, et al. On the efficacy and accuracy of freezing technique for the response analysis of time-varying vehicle-bridge interaction systems.Journal of Sound and Vibration, 2021, 514: 116453doi:10.1016/j.jsv.2021.116453
    [27] Sheng GG, Wang X. The geometrically nonlinear dynamic responses of simply supported beams under moving loads.Applied Mathematical Modelling, 2017, 48: 183-195doi:10.1016/j.apm.2017.03.064
    [28] 钟万勰. 结构动力方程的精细时程积分法. 大连理工大学学报, 1994, 34(2): 131-136 (ZHONG Wanxie. On precise time-integration method for structural dynamics.Journal of Dalian University of Technology, 1994, 34(2): 131-136(in Chinese)

    ZHONG Wanxie . On precise time-integration method for structural dynamics. Journal of Dalian University of Technology, 1994 , 34 ( 2 ): 131 - 136 (in Chinese)
    [29] 高强, 谭述君, 钟万勰. 精细积分方法研究综述. 中国科学:技术科学, 2016, 46(12): 1207-1218 (GAO Qiang, TAN Shujun, ZHONG Wanxie. A survey of the precise integration method.SCIENTIA SINICA Technologica, 2016, 46(12): 1207-1218(in Chinese)doi:10.1360/N092016-00205

    GAO Qiang, TAN Shujun, ZHONG Wanxie . A survey of the precise integration method. SCIENTIA SINICA Technologica, 2016 , 46 ( 12 ): 1207 - 1218 (in Chinese)doi:10.1360/N092016-00205
    [30] Tian W, Yang ZC, Gu YS. Dynamic analysis of an aeroelastic airfoil with freeplay nonlinearity by precise integration method based on Pade approximation.Nonlinear Dynamics, 2017, 89(3): 2173-2194doi:10.1007/s11071-017-3577-z
    [31] Zhou XK, Duan ML, Granados JJ. Precise integration method for natural frequencies and mode shapes of ocean risers with elastic boundary conditions.Applied Mathematical Modelling, 2018, 61: 709-725doi:10.1016/j.apm.2018.05.017
    [32] Zhu L, Ye KQ, Huang DW, et al. An adaptively filtered precise integration method considering perturbation for stochastic dynamics problems.Acta Mechanica Solida Sinica, 2023, 36: 317-326doi:10.1007/s10338-023-00381-4
    [33] 顾元宪, 陈飚松, 张洪武. 结构动力方程的增维精细积分法. 力学学报, 2000, 32(4): 447-456 (GU Yuanxian, CHEN Biaosong, ZHANG Hongwu. Precise time-integration with dimension expanding method.China Journal of Theoretical and Applied Mechanics, 2000, 32(4): 447-456(in Chinese)

    GU Yuanxian, CHEN Biaosong, ZHANG Hongwu . Precise time-integration with dimension expanding method. China Journal of Theoretical and Applied Mechanics, 2000 , 32 ( 4 ): 447 - 456 (in Chinese)
    [34] 富明慧, 刘祚秋, 林敬华. 一种广义精细积分法. 力学学报, 2007, 39(5): 672-677 (FU Minghui, LIU Zuoqiu, LIN Jinghua. A generalized precise time step integration method.China Journal of Theoretical and Applied Mechanics, 2007, 39(5): 672-677(in Chinese)

    FU Minghui, LIU Zuoqiu, LIN Jinghua . A generalized precise time step integration method. China Journal of Theoretical and Applied Mechanics, 2007 , 39 ( 5 ): 672 - 677 (in Chinese)
    [35] Huang YA, Deng ZC, Yao LX. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system.Journal of Sound and Vibration, 2007, 299(1-2): 229-246doi:10.1016/j.jsv.2006.07.009
    [36] Hu WP, Huai YL, Xu MB, et al. Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids.Mechanical Systems and Signal Processing, 2021, 159: 107833doi:10.1016/j.ymssp.2021.107833
    [37] Wu F, Gao Q, Zhong WX. Fast precise integration method for hyperbolic heat conduction problems.Applied Mathematics and Mechanics-English Edition, 2013, 34(7): 791-800doi:10.1007/s10483-013-1707-6
    [38] Hochbruck M, Ostermann A. Exponential integrators.Acta Numerica, 2010, 19(1): 209-286
    [39] Cox SM, Matthews PC. Exponential time differencing for stiff systems.Journal of Computational Physics, 2002, 176(2): 430-455doi:10.1006/jcph.2002.6995
    [40] Gu XL, Jiang CL, Wang YS, et al. Efficient energy-preserving exponential integrators for multi-component Hamiltonian systems.Journal of Scientific Computing, 2022, 92(1): 26doi:10.1007/s10915-022-01874-z
    [41] 邓子辰, 李庆军. 精细指数积分法在卫星编队飞行动力学中的应用. 北京大学学报, 2016, 52(4): 669-675 (DENG Zichen, LI Qingjun. Precise Exponential Integrator and Its Application in Dynamics of Spacecraft Formation Flying.Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 669-675(in Chinese)

    DENG Zichen, LI Qingjun . Precise Exponential Integrator and Its Application in Dynamics of Spacecraft Formation Flying. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016 , 52 ( 4 ): 669 - 675 (in Chinese)
    [42] Zhang JN, Yang SP, Li SH, et al. Study on crack propagation path of asphalt pavement under vehicle-road coupled vibration.Applied Mathematical Modelling, 2022, 101: 481-502doi:10.1016/j.apm.2021.09.004
    [43] 李梦琪, 张锋, 冯德成等. 车桥耦合下钢桥面沥青铺装层动力响应研究. 工程力学, 2019, 36(12): 177-187 (LI Mengqi, ZHANG Feng, FENG Decheng et al. Dynamic response of steel deck asphalt pavement considering vehicle-bridge coupling effect.Engineering Mechanics, 2019, 36(12): 177-187(in Chinese)

    LI Mengqi, ZHANG Feng, FENG Decheng et al . Dynamic response of steel deck asphalt pavement considering vehicle-bridge coupling effect. Engineering Mechanics, 2019 , 36 ( 12 ): 177 - 187 (in Chinese)
    [44] Zhong WX. On precise integration method.Journal of Computational and Applied Mathematics, 2004, 163(1): 59-78doi:10.1016/j.cam.2003.08.053
    [45] Lin K, Tan CA, Ge CQ, et al. Time-varying transmissibility analysis of vehicle-bridge interaction systems with application to bridge-friendly vehicles.International Journal of Structural Stability and Dynamics, 2022, 22(5): 2250022
    [46] 邓子辰, 曹珊珊, 李庆军等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究. 中国科学:技术科学, 2016, 46(12): 1242-1253 (DENG Zichen, CAO Shanshan, LI Qingjun et al. Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method.SCIENTIA SINICA Technologica, 2016, 46(12): 1242-1253(in Chinese)doi:10.1360/N092016-00163

    DENG Zichen, CAO Shanshan, LI Qingjun et al . Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method. SCIENTIA SINICA Technologica, 2016 , 46 ( 12 ): 1242 - 1253 (in Chinese)doi:10.1360/N092016-00163
    [47] Yau JD, Yang YB, Kuo SR. Impact response of high speed rail bridges and riding comfort of rail cars.Engineering Structures, 1999, 21(9): 836-844doi:10.1016/S0141-0296(98)00037-6
  • 加载中
图(13)/ 表(4)
计量
  • 文章访问数:24
  • HTML全文浏览量:7
  • PDF下载量:2
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-03

目录

    /

      返回文章
      返回
        Baidu
        map