EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部凸起在V形钝前缘模型中的降热特性研究

李帅,姜振华,张珊,尹同,阎超

downloadPDF
李帅, 姜振华, 张珊, 尹同, 阎超. 局部凸起在V形钝前缘模型中的降热特性研究. 力学学报, 2024, 56(2): 138-150 doi: 10.6052/0459-1879-23-409
引用本文: 李帅, 姜振华, 张珊, 尹同, 阎超. 局部凸起在V形钝前缘模型中的降热特性研究. 力学学报, 2024, 56(2): 138-150doi:10.6052/0459-1879-23-409
Li Shuai, Jiang Zhenhua, Zhang Shan, Yin Tong, Yan Chao. Investigation on the heat flux reduction characteristics of the local bulges in the V-shaped blunt leading edge. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 138-150 doi: 10.6052/0459-1879-23-409
Citation: Li Shuai, Jiang Zhenhua, Zhang Shan, Yin Tong, Yan Chao. Investigation on the heat flux reduction characteristics of the local bulges in the V-shaped blunt leading edge.Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 138-150doi:10.6052/0459-1879-23-409

局部凸起在V形钝前缘模型中的降热特性研究

doi:10.6052/0459-1879-23-409
基金项目:国家自然科学基金(92252201, 11721202)和中央高校基本科研业务费专项资金(YWF-23-SDHK-L-016)资助项目
详细信息
    通讯作者:

    阎超, 教授, 主要研究方向为空气动力学、计算流体力学. E-mail:yanchao@buaa.edu.cn

  • 中图分类号:V211.3

INVESTIGATION ON THE HEAT FLUX REDUCTION CHARACTERISTICS OF THE LOCAL BULGES IN THE V-SHAPED BLUNT LEADING EDGE

  • 摘要:三维内转式进气道的唇口结构通常存在复杂的激波干扰及严酷的气动热载荷, 严重威胁高超声速飞行器的性能与安全. 在6.0马赫的高超声速流动中, 以V形钝前缘模型为研究对象, 设计了局部凸起的被动流动控制降热方案. 采用数值模拟手段, 首先研究了局部凸起方案的降热能力以及降热原理, 然后初步优化了局部凸起的位置、高度以及宽度等关键设计参数, 最后分析了优化后的局部凸起方案的攻角、侧滑角及马赫数的适用性. 研究结果表明: 上游凸起边缘形成的斜激波与主马赫反射结构形成的透射激波发生干扰, 能够减弱其冲击壁面的强度, 实现降热的目的; 驻点凸起通过改变超声速射流的对撞角度, 能够降低其对撞的强度, 实现降热的目的. 原始方案的降热能力约为37.75%, 在对局部凸起的关键设计参数进行初步优化后, 优化方案的降热能力将提升至44.60%. 设计工况下的优化方案具有良好的攻角适用性, 而高度可变的优化方案可以较好地适用于有侧滑角及高马赫数的流动. 在研究范围内, 高度可变的优化局部凸起方案的降热能力均高于20%.

  • 图 1V形钝前缘的几何模型

    Figure 1.Geometric model of V-shaped blunt leading edge

    图 2计算网格及其无关性验证

    Figure 2.Computational grid and its independence verification

    图 3Ma= 6.0时, V形钝前缘模型的流动特性分析

    Figure 3.Analysis of flow field characteristics of V-shaped blunt leading edge atMa= 6.0

    图 4局部凸起方案的几何模型及参数示意图

    Figure 4.Schematics of geometric models and parameters of the local bulge schemes

    图 5两个局部凸起方案的对称面数值纹影及壁面热流分布

    Figure 5.Numerical schlieren in the symmetry plane and the surface heat flux distribution of the two local bulge schemes

    图 6波系干扰区域的对称面流线及压力分布对比

    Figure 6.Comparison of the streamline and pressure distribution in the shock interaction region

    图 7倒圆区域各周向角站位的壁面截线上的热流最大值的分布

    Figure 7.Distribution of the maximum surface heat flux values at each circumferential angle slice along the crotch

    图 8方案I的降热原理分析

    Figure 8.Analysis of the heat flux reduction principle of Scheme I

    图 9改变局部凸起位置对LB方案降热能力的影响

    Figure 9.Effect of changing the position of local bulges on the heat flux reduction ability of LB scheme

    图 10改变局部凸起高度对LB方案降热能力的影响

    Figure 10.Effect of changing the height of local bulges on the heat flux reduction ability of LB scheme

    图 11最优局部凸起高度的LB方案的流场结构

    Figure 11.Flow field structures of LB scheme with the optimal height of local bulges

    图 12改变局部凸起宽度对LB方案降热能力的影响

    Figure 12.Effect of changing the width of local bulges on the heat flux reduction ability of LB scheme

    图 135°攻角时, LB(48-0.16-0.16)方案的降热能力

    Figure 13.Heat flux reduction ability of the LB(48-0.16-0.16) scheme at attack angle of 5°

    图 145°侧滑角时, 原始模型及不同LB方案的流场结构

    Figure 14.Flow field structures of the original model and different LB schemes at sideslip angle of 5°

    图 155°侧滑角时, 不同LB方案的降热能力

    Figure 15.Heat flux reduction ability of different LB schemes at sideslip angle of 5°

    图 1610.0马赫数时, 原始模型及不同LB方案的流场结构

    Figure 16.Flow field structures of the original model and different LB schemes at Mach number of 10.0

    图 1710.0马赫时, 不同LB方案的降热能力

    Figure 17.Heat flux reduction ability of different LB schemes at Mach number of 10.0

    图 18理想气体假设下, 原始模型及LB(48-0.20-0.09)方案的流场结构

    Figure 18.Flow field structures of the original model and LB(48-0.20-0.09) schemes under ideal gas assumption

    表 1V形钝前缘的几何参数

    Table 1.Geometric parameters of V-shaped blunt leading edge

    Name Symbol Value
    straight branch length L/mm 60
    half-span angle β/(°) 24
    regular curvature radius R/mm 6.5
    leading edge bluntness radius r/mm 2
    circumferential angle of crotch Φ/(°) 66
    下载: 导出CSV

    表 2网格无关性验证的网格设置

    Table 2.Grid settings for grid independence verification

    Case ξ×ζ×ψ Total cell number Surface cell
    thickness/mm
    Rec
    coarse grid 171 × 489 × 101 ~ 8.3 × 106 1.22 × 10−3 6.83
    fine grid 221 × 545 × 110 ~ 1.3 × 107 9.16 × 10−4 5.13
    dense grid 250 × 581 × 125 ~ 1.8 × 107 9.16 × 10−4 5.13
    下载: 导出CSV

    表 3局部凸起方案的几何参数

    Table 3.Geometric parameters of the local bulge schemes

    Geometric parameters Scheme I Scheme II
    h1/mm 0.15 0.15
    θ1/(°) 10.00 10.00
    h2/mm 0.15 0.15
    η/(°) 50.00
    θ2/(°) 10.00
    l/mm 3.00
    w/mm 1.484
    下载: 导出CSV
  • [1] John B, Kulkarni VN, Natarajan G. Shock wave boundary layer interactions in hypersonic flows.International Journal of Heat and Mass Transfer, 2014, 70: 81-90doi:10.1016/j.ijheatmasstransfer.2013.10.072
    [2] 阎超. 航空CFD四十年的成就与困境. 航空学报, 2022, 43(10): 526490 (Yan Chao. Achievements and predicaments of CFD in aeronautics in past forty years.Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese)

    Yan Chao. Achievements and predicaments of CFD in aeronautics in past forty years.Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese)
    [3] 宋威, 艾邦成. 多体空气动力学研究进展. 力学学报, 2022, 54(6): 1461-1484 (Song Wei, Ai Bangcheng. Research progress on multibody aerodynamics.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 (in Chinese)doi:10.6052/0459-1879-22-096

    Song Wei, Ai Bangcheng. Research Progress on multibody aerodynamics.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 (in Chinese)doi:10.6052/0459-1879-22-096
    [4] 张子健, 刘云峰, 姜宗林. 振动激发对高超声速气动力/热影响. 力学学报, 2017, 49(3): 616-626 (Zhang Zijian, Liu Yunfeng, Jiang Zonglin. Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese)doi:10.6052/0459-1879-16-307

    Zhang Zijian, Liu Yunfeng, Jiang Zonglin. Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese)doi:10.6052/0459-1879-16-307
    [5] 岳连捷, 张旭, 张启帆等. 高马赫数超燃冲压发动机技术研究进展. 力学学报, 2022, 54(2): 263-288 (Yue Lianjie, Zhang Xu, Zhang Qifan, et al. Research progress on high-Mach-number scramjet engine technologies.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese)

    Yue Lianjie, Zhang Xu, Zhang Qifan, et al. Research progress on high-Mach-number scramjet engine technologies.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese)
    [6] You YC. An overview of the advantages and concerns of hypersonic inward turning inlets. AIAA Paper 2011-2269, 2011
    [7] Gaitonde DV. Progress in shock wave/boundary layer interactions.Progress in Aerospace Sciences, 2015, 72: 80-99doi:10.1016/j.paerosci.2014.09.002
    [8] Xiao FS, Li ZF, Zhang ZY, et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge.AIAA Journal, 2018, 56(1): 356-367doi:10.2514/1.J055915
    [9] Wang DX, Li ZF, Zhang ZY, et al. Unsteady shock interactions on V-shaped blunt leading edges.Physics of Fluids, 2018, 30(11): 116104doi:10.1063/1.5051012
    [10] Zhang ZY, Li ZF, Huang R, et al. Experimental investigation of shock oscillations on V-shaped blunt leading edges.Physics of Fluids, 2019, 31(2): 026110doi:10.1063/1.5084184
    [11] Li ZF, Zhang ZY, Wang J, et al. Pressure–heat flux correlations for shock interactions on V-shaped blunt leading edges.AIAA Journal, 2019, 57(10): 4588-4592doi:10.2514/1.J058538
    [12] Zhang ZY, Li ZF, Yang JM. Transitions of shock interactions on V-shaped blunt leading edges.Journal of Fluid Mechanics, 2021, 912(A12): 1-24
    [13] 张恩来, 李祝飞, 李一鸣等. 斜激波入射V形钝前缘溢流口激波干扰研究. 实验流体力学, 2018, 32(3): 50-57 (Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge.Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57 (in Chinese)doi:10.11729/syltlx20180002

    Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge.Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57 (in Chinese)doi:10.11729/syltlx20180002
    [14] 蒙泽威, 范晓樯, 陶渊等. 三维内收缩式进气道V形溢流口热流计算与分析. 推进技术, 2018, 39(8): 1737-1743 (Meng Zewei, Fan Xiaoqiang, Tao Yuan, et al. Investigation of aerothermal heating on V-shaped leading edge of inward turning inlet.Journal of Propulsion Technology, 2018, 39(8): 1737-1743 (in Chinese)doi:10.13675/j.cnki.tjjs.2018.08.007

    Meng Zewei, Fan Xiaoqiang, Tao Yuan, et al. Investigation of aerothermal heating on V-shaped leading edge of inward turning inlet.Journal of Propulsion Technology, 2018, 39(8): 63-69 (in Chinese)doi:10.13675/j.cnki.tjjs.2018.08.007
    [15] 王军, 李祝飞, 张志雨等. 几何参数对V字形钝前缘气动热特性影响. 力学学报, 2021, 53(12): 3274-3283 (Wang Jun, Li Zhufei, Zhang Zhiyu, et al. Effects of geometry parameters on aerothermal heating loads of V-shaped blunt leading edges.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3274-3283 (in Chinese)doi:10.6052/0459-1879-21-448

    Wang Jun, Li Zhufei, Zhang Zhiyu, et al. Effects of geometry parameters on aerothermal heating loads of V-shaped blunt leading edges.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3274-3283 (in Chinese)doi:10.6052/0459-1879-21-448
    [16] 周炳康, 李祝飞, 李一鸣等. 高马赫数V字形钝化前缘平板表面压力特性. 推进技术, 2022, 43(7): 210205 (Zhou Bingkang, Li Zhufei, Li Yiming, et al. Surface pressure characteristics on V-shaped plates with blunt leading edges at high Mach number.Journal of Propulsion Technology, 2022, 43(7): 210205 (in Chinese)doi:10.13675/j.cnki.tjjs.210205

    Zhou Bingkang, Li Zhufei, Li Yiming, et al. Surface pressure characteristics on V-shaped plates with blunt leading edges at high Mach number.Journal of Propulsion Technology, 2022, 43(7): 210205 (in Chinese)doi:10.13675/j.cnki.tjjs.210205
    [17] 张英杰, 李祝飞, 张志雨等. 侧滑角对V字形钝化前缘激波振荡特性影响. 推进技术, 2022, 43(11): 210520 (Zhang Yingjie, Li Zhufei, Zhang Zhiyu, et al. Effects of sideslip angle on shock oscillations of V-shaped blunt leading edge.Journal of Propulsion Technology, 2022, 43(11): 210520 (in Chinese)doi:10.13675/j.cnki.tjjs.210520

    Zhang Yingjie, Li Zhufei, Zhang Zhiyu, et al. Effects of sideslip angle on shock oscillations of V-shaped blunt leading edge.Journal of Propulsion Technology, 2022, 43(11): 210520 (in Chinese)doi:10.13675/j.cnki.tjjs.210520
    [18] 王军, 张志雨, 刘愿等. V字形钝前缘激波反射迟滞现象. 南京航空航天大学学报. 2022, 54(4): 564-572

    Wang Jun, Zhang Zhiyu, Liu Yuan, et al. Shock reflection hysteresis phenomena on V-shaped blunt leading edges.Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 564-572 (in Chinese)
    [19] 李祝飞, 王军, 张志雨等. V形钝化前缘激波干扰问题. 气动研究与实验, 2020, 32(1): 63-75 (Li Zhufei, Wang Jun, Zhang Zhiyu, et al. Shock interactions generated by V-shaped blunt leading edges.Aerodynamic Research&Experiment, 2020, 32(1): 63-75 (in Chinese)

    Li Zhufei, Wang Jun, Zhang Zhiyu, et al. Shock interactions generated by V-shaped blunt leading edges.Aerodynamic Research & Experiment, 2020, 32(1): 63-75 (in Chinese)
    [20] 张道毅, 周超英. 环形及其组合体喷流的减阻防热机理. 航空学报, 2022, 43(12): 126056 (Zhang Daoyi, Zhou Chaoying. Drag reduction and heat protection mechanism of annular jet and combined jet.Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126056 (in Chinese)

    Zhang Daoyi, Zhou Chaoying. Drag reduction and heat protection mechanism of annular jet and combined jet.Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126056 (in Chinese)
    [21] Wang ZG, Sun XW, Huang W, et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey.Acta Astronautica, 2016, 129: 95-110doi:10.1016/j.actaastro.2016.09.004
    [22] Sun XW, Huang W, Ou M, et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows.Chinese Journal of Aeronautics, 2019, 32(4): 771-784doi:10.1016/j.cja.2018.12.024
    [23] Wang J, Li ZF, Zhang ZY, et al. Shock interactions on V-shaped blunt leading edges with various conic crotches.AIAA Journal, 2020, 58(3): 1407-1411doi:10.2514/1.J059067
    [24] Wang J, Li ZF, Yang JM. Shock-induced pressure/heating loads on V-shaped leading edges with nonuniform bluntness.AIAA Journal, 2021, 59(3): 1114-1118doi:10.2514/1.J059990
    [25] Zhang YJ, Wang J, Li ZF. Shock-induced heating loads on V-shaped leading edges with elliptic cross section.AIAA Journal, 2022, 60(12): 6958-6962doi:10.2514/1.J062013
    [26] Kang DK, Yan C, Liu SJ, et al. Modelling and shock control for a V-shaped blunt leading edge.Journal of Fluid Mechanics, 2023, 968(A15): 1-32
    [27] Liu SJ, Yan C, Kang DK, et al. Opposing jets for heat flux reduction and uncertainty analysis on a V-shaped blunt leading edge.Aerospace Science and Technology, 2023, 138: 108353doi:10.1016/j.ast.2023.108353
    [28] Li S, Yan C, Kang DK, et al. Investigation of flow control methods for reducing heat flux on a V-shaped blunt leading edge under real gas effects.Physics of Fluids, 2023, 35(3): 036113doi:10.1063/5.0142156
    [29] Wang XY, Yan C, Ju SJ, et al. Uncertainty analysis of laminar and turbulent aeroheating predictions for Mars entry.International Journal of Heat and Mass Transfer, 2017, 112: 533-543doi:10.1016/j.ijheatmasstransfer.2017.04.126
    [30] Zhong K, Yan C, Chen SS, et al. Numerical study on the aerothermodynamics of different heatshield configurations for Mars entry capsules.Acta Astronautica, 2019, 157: 189-198doi:10.1016/j.actaastro.2018.12.025
    [31] 王胜, 王强, 林博希等. 类X-51 A飞行器纵向机动数值虚拟飞行仿真. 北京航空航天大学学报, 2021, 47(1): 97-105 (Wang Sheng, Wang Qiang, Lin Boxi, et al. Longitudinal maneuver simulation of an X-51 A-like aircraft based on numerical virtual flight.Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105 (in Chinese)

    Wang Sheng, Wang Qiang, Lin Boxi, et al. Longitudinal maneuver simulation of an X-51 A-like aircraft based on numerical virtual flight.Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105 (in Chinese)
    [32] 梁德旺, 李博, 荣伟. 热完全气体的热力学特性及其N-S方程的求解. 南京航空航天大学学报, 2003, 35(4): 424-429 (Liang Dewang, Li Bo, Rong Wei. Thermodynamic characteristics of thermally perfect gas and solution of N-S equations.Journal of Nanjing University of Aeronautics&Astronautics, 2003, 35(4): 424-429 (in Chinese)doi:10.16356/j.1005-2615.2003.04.018

    Liang Dewang, Li Bo, Rong Wei. Thermodynamic characteristics of thermally perfect gas and solution of N-S equations.Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(4): 424-429 (in Chinese)doi:10.16356/j.1005-2615.2003.04.018
    [33] Jiang ZH, Yan C, Yu J, et al. Effective high-order solver with thermally perfect gas model for hypersonic heating prediction.Applied Thermal Engineering, 2016, 99: 147-159doi:10.1016/j.applthermaleng.2015.12.132
    [34] Jiang ZH, Yan C. On the use of thermally perfect gas model for heating prediction of laminar and turbulent SWBLI.Aerospace Science and Technology, 2019, 95: 105484doi:10.1016/j.ast.2019.105484
    [35] 张志雨. V字形钝前缘激波干扰及气动热/力特性研究. [博士论文]. 合肥: 中国科学技术大学, 2020: 49-71

    Zhang Zhiyu. Shock interactions and aerothermal heating/pressure behaviors on V-shaped blunt leading edges. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020: 49-71 (in Chinese)
    [36] Fay JA, Riddell FR. Theory of stagnation point heat transfer in dissociated air.Journal of the Aerospace Sciences, 1958, 25: 73-85doi:10.2514/8.7517
    [37] Zhang Y, Tan HJ, Li JF, et al. Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump.AIAA Journal, 2019, 57(2): 696-705doi:10.2514/1.J057409
    [38] Zhang Y, Tan HJ, Zhuang Y, et al. Morphing supersonic inlet with deforming air cell.Journal of Propulsion and Power, 2015, 31(2): 583-591doi:10.2514/1.B35425
    [39] Dale MP, James PD, Edward VW. Design and test of a SMA powered adaptive aircraft inlet internal wall. AIAA Paper 2002-1356, 2002
  • 加载中
图(18)/ 表(3)
计量
  • 文章访问数:118
  • HTML全文浏览量:31
  • PDF下载量:12
  • 被引次数:0
出版历程
  • 收稿日期:2023-08-28
  • 录用日期:2023-09-25
  • 网络出版日期:2023-09-26

目录

    /

      返回文章
      返回
        Baidu
        map