EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无拉力弹性地基上矩形板屈曲/后屈曲问题的辛求解方法

熊斯浚,郑新然,梁立,周超,赵岩,李锐

downloadPDF
熊斯浚, 郑新然, 梁立, 周超, 赵岩, 李锐. 无拉力弹性地基上矩形板屈曲/后屈曲问题的辛求解方法. 力学学报, 2024, 56(1): 121-132 doi: 10.6052/0459-1879-23-384
引用本文: 熊斯浚, 郑新然, 梁立, 周超, 赵岩, 李锐. 无拉力弹性地基上矩形板屈曲/后屈曲问题的辛求解方法. 力学学报, 2024, 56(1): 121-132doi:10.6052/0459-1879-23-384
Xiong Sijun, Zheng Xinran, Liang Li, Zhou Chao, Zhao Yan, Li Rui. The symplectic method for the buckling/post-buckling problems of rectangular plates on a tensionless elastic foundation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 121-132 doi: 10.6052/0459-1879-23-384
Citation: Xiong Sijun, Zheng Xinran, Liang Li, Zhou Chao, Zhao Yan, Li Rui. The symplectic method for the buckling/post-buckling problems of rectangular plates on a tensionless elastic foundation.Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 121-132doi:10.6052/0459-1879-23-384

无拉力弹性地基上矩形板屈曲/后屈曲问题的辛求解方法

doi:10.6052/0459-1879-23-384
基金项目:国家自然科学基金资助项目(12022209, 12372067和11972103)
详细信息
    通讯作者:

    李锐, 教授, 主要研究方向为板壳力学. E-mail:ruili@dlut.edu.cn

  • 中图分类号:O302

THE SYMPLECTIC METHOD FOR THE BUCKLING/POST-BUCKLING PROBLEMS OF RECTANGULAR PLATES ON A TENSIONLESS ELASTIC FOUNDATION

  • 摘要:无拉力弹性地基上矩形薄板的屈曲/后屈曲问题是板壳力学中一类重要课题, 在工程中有着大量应用. 因涉及接触非线性, 目前主要采用数值方法对该类问题进行求解, 发展具有重要基准价值的解析方法是当前面临的一项挑战. 针对上述问题, 本文将板划分为若干包含强制边界条件的板, 形成子问题, 在辛空间下利用分离变量与辛本征展开对子问题进行解析求解, 通过子问题边界处的连续条件确定板与地基的接触状态; 通过迭代求解上述过程, 获得子问题划分的收敛结果, 并得到最终屈曲载荷及模态. 结果表明, 无拉力弹性地基与Winkler地基上板的屈曲行为存在显著差异, 且无拉力弹性地基的刚度对板的屈曲载荷与屈曲模态均有重要影响. 在此基础上, 结合Koiter摄动法与辛方法, 对无拉力弹性地基上矩形板的后屈曲问题进行求解, 获得板的后屈曲平衡路径. 所得到的屈曲与后屈曲分析结果均与有限元计算结果吻合良好, 确认了本文结果的正确性. 由于本文方法数学推导严格, 求解效率高, 因此不仅为研究无拉力弹性地基上矩形薄板的屈曲/后屈曲行为提供了一种有价值的理论工具, 更有望拓展至更多复杂板壳力学问题的求解.

  • 图 1无拉力弹性地基板示意图

    Figure 1.Schematic diagram of a plate on a tensionless elastic foundation

    图 2无拉力弹性地基板屈曲问题求解流程图

    Figure 2.Solution flowchart for the buckling of a rectangular plate on a tensionless elastic foundation

    图 3子问题划分示意图

    Figure 3.Schematic diagram of the division of subproblems

    图 4屈曲模态迭代的收敛性验证(kw= 2000,a/b= 2)

    Figure 4.Iterative convergence verification of buckling mode shapes (kw= 2000,a/b= 2)

    图 5无拉力弹性地基上矩形板的临界屈曲模态(kw= 2000,a/b= 2)

    Figure 5.Critical buckling mode shape of a rectangular plate on a tensionless elastic foundation (kw= 2000,a/b= 2)

    图 6不同长宽比矩形板的临界屈曲模态

    Figure 6.Critical buckling mode shape of rectangular plate with different aspect ratio

    图 7无拉力弹性地基的力−位移曲线示意图

    Figure 7.Schematic diagram of the force–displacement relation of a tensionless elastic foundation

    图 8无缺陷和含缺陷简支板的后屈曲平衡路径 (续)

    Figure 8.The post-buckling equilibrium paths of perfect and imperfect simply supported plates (continued)

    表 1不同长宽比及弹性地基刚度下矩形板的临界屈曲载荷$ - {{{N_{{\text{cr}}}}{b^2}} \mathord{\left/ {\vphantom {{{N_{{\text{cr}}}}{b^2}} D}} \right. } D}$

    Table 1.Critical buckling load factors, $ - {{{N_{{\text{cr}}}}{b^2}} \mathord{\left/ {\vphantom {{{N_{{\text{cr}}}}{b^2}} D}} \right. } D}$, of rectangular plates with different aspect ratios and elastic foundation stiffnesses

    ${k_w}$ Method a/b =1.5 a/b =2 a/b =2.5 a/b =3
    1 FEM 44.228 39.502 44.046 44.105
    present 44.258 39.529 44.075 44.027
    10 FEM 43.038 39.923 42.683 42.265
    present 43.067 39.949 42.711 42.292
    100 FEM 43.687 42.172 42.119 41.436
    present 43.716 42.199 42.146 41.462
    200 FEM 43.038 42.998 40.998 39.770
    present 43.068 43.026 41.023 39.794
    2000 FEM 42.835 44.134 40.804 39.488
    present 42.865 44.163 40.829 39.512
    下载: 导出CSV
  • [1] Winkler E. Theory of Elasticity and Strength. Prague: Dominicus, 1867
    [2] Zhang LW, Lei ZX, Liew KM. An element-free IMLS-Ritz framework for buckling analysis of FG–CNT reinforced composite thick plates resting on Winkler foundations.Engineering Analysis with Boundary Elements, 2015, 58: 7-17doi:10.1016/j.enganabound.2015.03.004
    [3] Kiani Y, Eslami MR. Instability of heated circular FGM plates on a partial Winkler-type foundation.Acta Mechanica, 2013, 224(5): 1045-1060doi:10.1007/s00707-012-0800-3
    [4] Kiani Y, Bagherizadeh E, Eslami M. Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, 2012, 226(1): 32-41doi:10.1177/0954406211413657
    [5] Parida S, Mohanty SC. Free vibration and buckling analysis of functionally graded plates resting on elastic foundation using higher order theory.International Journal of Structural Stability Dynamics, 2018, 18(4): 1850049doi:10.1142/S0219455418500499
    [6] Sobhy M. An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment.International Journal of Mechanical Sciences, 2016, 110: 62-77doi:10.1016/j.ijmecsci.2016.03.003
    [7] Lopatin AV, Morozov EV. Buckling of compressed rectangular orthotropic plate resting on elastic foundation with nonlinear change of transverse displacement over the thickness.Composite Structures, 2021, 261(6): 113535
    [8] Keshtegar B, Motezaker M, Kolahchi R, et al. Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping.Thin-Walled Structures, 2020, 154: 106820doi:10.1016/j.tws.2020.106820
    [9] He G, Li X, Zhong S, et al. Weak-form differential quadrature element analysis of plate on a tensionless and frictional foundation using a higher-order kinematics.Applied Mathematical Modelling, 2023, 117: 87-117doi:10.1016/j.apm.2022.12.026
    [10] Zaitoun MW, Chikh A, Tounsi A, et al. Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment.Thin-Walled Structures, 2022, 170: 108549doi:10.1016/j.tws.2021.108549
    [11] Eltayeb E, Ma X, Zhuge Y, et al. Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads.Engineering Structures, 2020, 211: 1-21
    [12] Dong J, Zhuge Y, Mills JE, et al. Local buckling of profiled skin sheets resting on tensionless elastic foundations under uniaxial compression.Thin-Walled Structures, 2016, 103: 81-89doi:10.1016/j.tws.2016.02.009
    [13] Dong J, Ma X, Yan Z, et al. Local buckling of thin plate on tensionless elastic foundations under interactive uniaxial compression and shear.Theoretical Applied Mechanics Letters, 2018, 8: 75-82doi:10.1016/j.taml.2018.02.003
    [14] Dong J, Ma X, Yan Z, et al. Unilateral contact buckling behaviour of orthotropic plates subjected to combined in-plane shear and bending.International Journal of Solids Structures, 2018, 150: 135-153doi:10.1016/j.ijsolstr.2018.06.011
    [15] Li D, Smith S, Ma X. End condition effect on initial buckling performance of thin plates resting on tensionless elastic or rigid foundations.International Journal of Mechanical Sciences, 2016, 105: 83-89doi:10.1016/j.ijmecsci.2015.11.001
    [16] Shen HS, Li QS. Postbuckling of shear deformable laminated plates resting on a tensionless elastic foundation subjected to mechanical or thermal loading.International Journal of Solids Structures, 2004, 41(16-17): 4769-4785doi:10.1016/j.ijsolstr.2004.02.015
    [17] Zhong J, Fu Y, Chen Y, et al. Analysis of nonlinear dynamic responses for functionally graded beams resting on tensionless elastic foundation under thermal shock.Composite Structures, 2016, 142: 272-277doi:10.1016/j.compstruct.2016.01.096
    [18] Wang Y, Qiao P, Lu L. Buckling analysis of steel jacking pipes embedded in elastic tensionless foundation based on spline finite strip method.Thin-Walled Structures, 2018, 130: 449-457doi:10.1016/j.tws.2018.06.010
    [19] Thom DV, Zenkour AM, Doan DH. Buckling of cracked FG plate resting on elastic foundation considering the effect of delamination phenomenon.Composite Structures, 2021: 114278
    [20] Chaabani H, Mesmoudi S, Boutahar L, et al. Buckling of porous FG sandwich plates subjected to various non-uniform compressions and resting on Winkler–Pasternak elastic foundation using a finite element model based on the high-order shear deformation theory.Acta Mechanica, 2022, 233(12): 5359-5376doi:10.1007/s00707-022-03388-z
    [21] Yang Y, Luo Q, Li JA, et al. Symmetric and asymmetric thermo-induced buckling and postbuckling of rotating GPLRC annular plates rested on elastic foundation.Engineering Structures, 2022, 15: 259
    [22] Kumar V, Singh S, Saran V, et al. Effect of elastic foundation and porosity on buckling response of linearly varying functionally graded material plate.Structures, 2023, 22: 1186-1203
    [23] Liang K, Abdalla M, Gürdal Z. A Koiter-Newton approach for nonlinear structural analysis.International Journal for Numerical Methods in Engineering, 2013, 96(12): 763-786doi:10.1002/nme.4581
    [24] Liang K, Abdalla MM, Sun Q. A modified Newton-type Koiter-Newton method for tracing the geometrically nonlinear response of structures.International Journal for Numerical Methods in Engineering, 2018, 113(10): 1541-1560doi:10.1002/nme.5709
    [25] 李政, 梁珂. 压剪联合载荷作用下复合材料壁板屈曲及后屈曲性能计算与优化方法研究. 宇航总体技术, 2021, 5(6): 20-26 (Li Zheng, Liang Ke. A novel method for calculation and optimization of buckling and post-buckling performance of composite panels under combined compression and shear loads.Astronautical Systems Engineering Technology, 2021, 5(6): 20-26 (in Chinese)

    (Li Zheng, Liang Ke. A novel method for calculation and optimization of buckling and post-buckling performance of composite panels under combined compression and shear loads.Astronautical Systems Engineering Technology. 2021, 5(6): 20-26 (in Chinese)
    [26] Shen HS. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells.Composites Part B:Engineering, 2012, 43(3): 1030-1038doi:10.1016/j.compositesb.2011.10.004
    [27] Shen HS, Xiang Y, Lin F. Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations.Thin-Walled Structures, 2017, 118: 229-237doi:10.1016/j.tws.2017.05.006
    [28] Khorasani M, Soleimani-Javid Z, Arshid E, et al. Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect.Composite Structures, 2021, 258: 113430doi:10.1016/j.compstruct.2020.113430
    [29] Yaghoobi H, Taheri F. Characterization of the vibration, stability and static responses of graphene-reinforced sandwich plates under mechanical and thermal loadings using the refined shear deformation plate theory.Journal of Sandwich Structures Materials, 2022, 24(1): 35-65doi:10.1177/1099636221993865
    [30] Ruocco E, Reddy JN. Buckling analysis of elastic–plastic nanoplates resting on a Winkler–Pasternak foundation based on nonlocal third-order plate theory.International Journal of Non-Linear Mechanics, 2020, 121: 103453doi:10.1016/j.ijnonlinmec.2020.103453
    [31] Yuan Y, Xing Y. An extended separation-of-variable method for eigenbuckling of orthotropic rectangular thin plates.Composite Structures, 2021, 259: 113239doi:10.1016/j.compstruct.2020.113239
    [32] Wang Z, Xing Y, Sun Q, et al. Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates.Composite Structures, 2019, 210: 822-830doi:10.1016/j.compstruct.2018.11.094
    [33] 徐腾飞, 邢誉峰. 弹性地基上矩形薄板自由振动的精确解. 工程力学, 2014, 2014,31(5): 43-48 (Xu Tengfei, Xing Yufeng. Exact solutions for free vibrations of rectangular thin plates on the winkler foundation.Engineering Mechanics, 2014, 2014,31(5): 43-48 (in Chinese)

    Xu Tengfei, Xing Yufeng. Exact solutions for free vibrations of rectangular thin plates on the winkler foundation.Engineering Mechanics, 2014, 2014, 31(5): 43-48 (in Chinese)
    [34] Yao W, Zhong W, Lim CW. Symplectic Elasticity. Singapore: World Scientific, 2009
    [35] Zheng X, Xu D, Ni Z, et al. New benchmark free vibration solutions of non-Lévy-type thick rectangular plates based on third-order shear deformation theory.Composite Structures, 2021, 268: 113955doi:10.1016/j.compstruct.2021.113955
    [36] Li R, Zheng X, Wang H, et al. New analytic buckling solutions of rectangular thin plates with all edges free.International Journal of Mechanical Sciences, 2018, 144: 67-73doi:10.1016/j.ijmecsci.2018.05.041
    [37] 杨雨诗, 安东琦, 倪卓凡等. 四角点支承四边自由矩形薄板屈曲问题的新解析解. 计算力学学报, 2020, 37(5): 517-523 (Yang Yushi, An Dongqi, Ni Zhuofan, et al. A new analytic solution to the buckling problem of rectangular thin plates with four corners point-supported and four edges free.Chinese Journal of Computational Mechanics, 2020, 37(5): 517-523 (in Chinese)doi:10.7511/jslx20191029001

    Yang Yushi, An Dongqi, Ni Zhuofan, et al. A new analytic solution to the buckling problem of rectangular thin plates with four corners point-supported and four edges free.Chinese Journal of Computational Mechanics, 2020, 37(5): 517-523 (in Chinese)doi:10.7511/jslx20191029001
    [38] Xiong S, Zhou C, Zhao L, et al. Symplectic framework-based new analytic solutions for thermal buckling of temperature-dependent moderately thick functionally graded rectangular plates.International Journal of Structural Stability Dynamics, 2022, 22(14): 2250154
    [39] Zhou C, An D, Zhou J, et al. On new buckling solutions of moderately thick rectangular plates by the symplectic superposition method within the Hamiltonian-system framework.Applied Mathematical Modelling, 2021, 94: 226-241doi:10.1016/j.apm.2021.01.020
    [40] Li R, Tian Y, Zheng X, et al. New analytic bending solutions of rectangular thin plates with a corner point-supported and its adjacent corner free.European Journal of Mechanics A/Solids, 2017, 66: 103-113doi:10.1016/j.euromechsol.2017.06.009
    [41] 李锐, 田宇, 郑新然等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法. 应用数学和力学, 2018, 39(8): 875-891 (Li Rui, Tian Yu, Zheng Xinran, et al. A symplectic superposition method for bending problems of free-Edge rectangular thick plates resting on elastic foundations.Applied Mathematics and Mechanics, 2018, 39(8): 875-891 (in Chinese)

    Li Rui, Tian Yu, Zheng Xinran, et al. A symplectic superposition method for bending problems of free-Edge rectangular thick plates resting on elastic foundations.Applied Mathematics and Mechanics, 2018, 39(8): 875-891 (in Chinese)
    [42] Xiong S, Zhou C, Zheng X, et al. New analytic thermal buckling solutions of non-Lévy-type functionally graded rectangular plates by the symplectic superposition method.Acta Mechanica, 2022, 233(7): 2955-2968doi:10.1007/s00707-022-03258-8
    [43] Budiansky B. Theory of buckling and post-buckling behavior of elastic structures.Advances in Applied Mechanics, 1974, 14: 1-56
  • 加载中
图(8)/ 表(1)
计量
  • 文章访问数:109
  • HTML全文浏览量:53
  • PDF下载量:11
  • 被引次数:0
出版历程
  • 收稿日期:2023-08-08
  • 录用日期:2023-09-15
  • 网络出版日期:2023-09-16

目录

    /

      返回文章
      返回
        Baidu
        map