EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重构谐波平衡法及其求解复杂非线性问题应用

代洪华 王其偲 严子朴 岳晓奎

代洪华, 王其偲, 严子朴, 岳晓奎. 重构谐波平衡法及其求解复杂非线性问题应用. 力学学报, 待出版 doi: 10.6052/0459-1879-23-369
引用本文: 代洪华, 王其偲, 严子朴, 岳晓奎. 重构谐波平衡法及其求解复杂非线性问题应用. 力学学报, 待出版 doi: 10.6052/0459-1879-23-369
Dai Honghua, Wang Qisi, Yan Zipu, Yue Xiaokui. Reconstruction harmonic balance method and its application in solving complex nonlinear dynamical systems. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-369
Citation: Dai Honghua, Wang Qisi, Yan Zipu, Yue Xiaokui. Reconstruction harmonic balance method and its application in solving complex nonlinear dynamical systems. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-369

重构谐波平衡法及其求解复杂非线性问题应用

doi: 10.6052/0459-1879-23-369
基金项目: 国家自然科学基金项目(12072270, U2013206)和科技部重点研发项目(2021YFA0717100)资助
详细信息
    通讯作者:

    代洪华, 教授, 主要研究方向为在轨服务动力学仿真与高性能计算、航天器动力学与控制. E-mail: hhdai@nwpu.edu.cn

  • 中图分类号: V412.4 + 1

RECONSTRUCTION HARMONIC BALANCE METHOD AND ITS APPLICATION IN SOLVING COMPLEX NONLINEAR DYNAMICAL SYSTEMS

  • 摘要: 谐波平衡法是求解非线性动力学系统周期解的最常用方法, 但对非线性项进行高阶近似需要庞杂的公式推导, 限制了该方法的超高精度解算. 作者团队通过对频域非线性量的时域等价重构, 提出了重构谐波平衡法(RHB法), 解决了经典谐波平衡法超高阶次计算难题. 然而, 上述两种方法均要求动力学系统为多项式型非线性, 且无法直接用来求解非线性系统的拟周期解. 针对上述问题, 本文提出一种将RHB法和复杂非线性系统等价重铸法相结合的计算方法, 首先将一般非线性问题无损重铸为多项式型非线性系统, 然后用RHB法进行高精度求解; 针对拟周期响应求解问题, 提出基于“补频”思想的RHB方法, 通过基频的优化筛选, 实现拟周期响应的快速精准捕捉. 本文选取非线性单摆、相对论谐振子、非线性耦合非对称摆等典型系统进行仿真计算, 仿真结果表明, 所提出的RHB-重铸法在解非多项式型非线性系统的稳态响应时精度保持为${10^{ - 12}}$量级, 达计算机精度, 远超现有方法水平. 补频RHB法则实现了对拟周期问题的高效解算, 拓宽了方法对真实物理响应的求解范围.

     

  • 图  1  HB法和HDHB法计算杜芬方程对比(N = 2)

    Figure  1.  Comparison of the Duffing equation computed by the HB and HDHB methods(N = 2)

    图  2  Mickens变换解与真实物理解对比

    Figure  2.  Comparison of Mickens transformation result and real physical solution

    图  3  55阶RHB-重铸法求解相对论谐振子的计算结果

    Figure  3.  The computing result of the RHB-recast method ($N = 55$) for solving relativistic harmonic oscillator

    图  4  非线性方程组求解算法对计算精度的影响(相对论谐振子)

    Figure  4.  Influence of nonlinear equation algorithm on calculation accuracy(relativistic harmonic oscillator)

    图  5  改变代数方程对计算精度影响

    Figure  5.  Influence of changed algebraic equation on calculation accuracy

    图  6  不同初速度下RHB-重铸法求解相对论谐振子

    Figure  6.  Solving relativistic harmonic oscillator by the RHB-recast method under different initial velocities

    图  7  增加时域配点对抑制混淆误差的效果(使用HB-AFT法)

    Figure  7.  The effect of increasing time domain collocation on suppressing aliasing error(the HB-AFT method)

    图  8  25阶RHB-重铸法求解非线性单摆

    Figure  8.  The computing result of the RHB-recast method ($N = 25$)for solving nonlinear pendulum

    图  9  非线性方程组求解算法对计算精度的影响(非线性单摆)

    Figure  9.  Influence of nonlinear equation algorithm on calculation accuracy(nonlinear pendulum)

    图  10  不同代数方程组合方案对计算精度影响

    Figure  10.  Influence of different combination schemes of nonlinear algebraic equation on calculation accuracy

    图  11  3种方法求解非线性单摆对应误差曲线对比

    Figure  11.  Comparison of corresponding error curves of three methods for solving nonlinear pendulum

    图  12  RHB-重铸法求解非线性单摆问题: 相平面图

    Figure  12.  The RHB-recast method for solving nonlinear pendulum: phase plot

    图  13  多时间尺度法与修正Chebyshev-Picard迭代法(参考解)求解轨迹对比

    Figure  13.  Comparison of the method of multiple scales and the MCPI method(reference solution) for solving trajectory diagram

    图  14  5阶RMHB法求解非线性耦合非对称摆

    Figure  14.  Solving nonlinear coupling asymmetric pendulum by the RMHB5

    表  1  RHB法与HDHB法在分岔处的解分布

    Table  1.   Statistical distribution of solution by the RHB and the HDHB method at bifurcation point

    Method Upper branch/% Lower branch/% Unstable branch/% Non-physical/%
    RHB 57.13 19.71 23.16 0
    HDHB 29.14 14.21 15.96 48.69
    下载: 导出CSV

    表  2  各阶RHB-重铸法求解相对论谐振子

    Table  2.   Solving relativistic harmonic oscillator by the RHB-recast method with different orders

    Order of methodAmplitude errorComputing time/s
    25$4.36 \times {10^{ - 7}}$0.73
    35$1.95 \times {10^{ - 9}}$0.77
    55$3.87 \times {10^{ - 12}}$1.07
    下载: 导出CSV

    表  3  3种方法计算非线性单摆结果对比

    Table  3.   Comparison of corresponding results of three methods for solving nonlinear pendulum

    Methods$M$Average errorComputing time/s
    RHB-recast761.9 × 10−120.70
    RHB-Taylor4018.9 × 10−101.82
    HB-AFT2101.5 × 10−90.69
    下载: 导出CSV

    1  常见初等超越函数的重铸

    1.   Recast form of the most common elementary transcendental functions

    Original function Differential relationship Companion variable Recast equation
    $u\left( t \right) = \exp \left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = \dot x\left( t \right) \cdot u\left( t \right)$ $\dot u\left( t \right) = \dot x\left( t \right) \cdot u\left( t \right)$
    $u\left( t \right) = {\log _a}\left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\left( {x\left( t \right) \cdot \ln a} \right)}}} \right. } {\left( {x\left( t \right) \cdot \ln a} \right)}}$ $ v\left( t \right) = {1 \mathord{\left/ {\vphantom {1 {x\left( t \right)}}} \right. } {x\left( t \right)}} $ $\left. \begin{aligned}& {\dot u\left( t \right) = {{\left( {v\left( t \right) \cdot \dot x\left( t \right)} \right)} / {\ln a}}} \\ & {x\left( t \right)v\left( t \right) - 1 = 0} \end{aligned}\right\}$
    $\left. \begin{aligned}& {u\left( t \right) = \sin \left[ {x\left( t \right)} \right]} \\ & {v\left( t \right) = \cos \left[ {x\left( t \right)} \right]} \end{aligned} \right\}$ $\left.\begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right) \cdot \cos \left[ {x\left( t \right)} \right]} \\ & {\dot v\left( t \right) = - \dot x\left( t \right) \cdot \sin \left[ {x\left( t \right)} \right]} \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right) \cdot v\left( t \right)} \\ & {\dot v\left( t \right) = - \dot x\left( t \right) \cdot u\left( t \right)} \end{aligned}\right\}$
    $u\left( t \right) = \tan \left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = \dot x\left( t \right) \cdot \left( {1 + {u^2}\left( t \right)} \right)$ $\dot u\left( t \right) = \dot x\left( t \right) + \dot x\left( t \right) \cdot {u^2}\left( t \right)$
    $u\left( t \right) = {\text{arc}}\sin \left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\sqrt {1 - {x^2}\left( t \right)} }}} \right. } {\sqrt {1 - {x^2}\left( t \right)} }}$ $\left. \begin{aligned}& {v\left( t \right) = \sqrt {1 - {x^2}\left( t \right)} } \\ & {w\left( t \right) = {1 / {v\left( t \right)}}} \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) - 1 = 0} \\ & {{v^2}\left( t \right) + {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$
    $u\left( t \right) = {\text{arccos}}\left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = {{ - \dot x\left( t \right)} \mathord{\left/ {\vphantom {{ - \dot x\left( t \right)} {\sqrt {1 - {x^2}\left( t \right)} }}} \right. } {\sqrt {1 - {x^2}\left( t \right)} }}$ $\left.\begin{aligned}& {v\left( t \right) = \sqrt {1 - {x^2}\left( t \right)} } \\ & {w\left( t \right) = - {1 / {v\left( t \right)}}} \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) + 1 = 0} \\ & {{v^2}\left( t \right) + {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$
    $u\left( t \right) = {\text{arctan}}\left[ {x\left( t \right)} \right]$ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\left( {1 + {x^2}\left( t \right)} \right)}}} \right. } {\left( {1 + {x^2}\left( t \right)} \right)}}$ $\left. \begin{aligned}& {v\left( t \right) = 1 + {x^2}\left( t \right)} \\ & {w\left( t \right) = {1 / {v\left( t \right)}}} \end{aligned}\right\}$ $\left.\begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) - 1 = 0} \\ & {v\left( t \right) - {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$
    下载: 导出CSV
    Baidu
  • [1] 代洪华, 岳晓奎, 汪雪川. 非线性动力学系统高性能计算方法. 北京: 科学出版社, 2022 (Dai Honghua, Yue Xiaokui, Wang Xuechuan. High-performance Computing Method for Solving Nonlinear Dynamical Systems. Beijing: Science Publishing & Media, 2022(in Chinese)

    Dai Honghua, Yue Xiaokui, Wang Xuechuan. High-performance Computing Method for Solving Nonlinear Dynamical Systems. Beijing: Science Publishing & Media, 2022(in Chinese)
    [2] Yan ZP, Dai HH, Wang QS, et al. Harmonic balance methods: a review and recent developments. CMES-Computer Modeling in Engineering & Sciences, 2023, 137(2): 1419-1459.
    [3] Hall KC, Thomas JP, Clark WS. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA journal, 2002, 40(5): 879-886. doi: 10.2514/2.1754
    [4] Liu LP, Thomas JP, Dowell EH, et al. A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. Journal of Computational Physics, 2006, 215(1): 298-320. doi: 10.1016/j.jcp.2005.10.026
    [5] LaBryer A, Attar P J. High dimensional harmonic balance de-aliasing techniques for a Duffing oscillator. Journal of Sound and Vibration, 2009, 324(3-5): 1016-1038. doi: 10.1016/j.jsv.2009.03.005
    [6] Dai HH, Yan ZP, Wang XC, et al. Collocation-based harmonic balance framework for highly accurate periodic solution of nonlinear dynamical system. International Journal for Numerical Methods in Engineering, 2023, 124(2): 458-481. doi: 10.1002/nme.7128
    [7] Chen Y, Hou L, Chen G, et al. Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mechanical Systems and Signal Processing, 2023, 185: 109805(1-27).
    [8] Chen YM, Liu JK, Meng G. An incremental method for limit cycle oscillations of an airfoil with an external store. International Journal of Non-Linear Mechanics, 2012, 47(3): 75-83. doi: 10.1016/j.ijnonlinmec.2011.12.006
    [9] Beléndez A, Hernández A, Márquez A, et al. Analytical approximations for the period of a nonlinear pendulum. European Journal of Physics, 2006, 27(3): 539-551. doi: 10.1088/0143-0807/27/3/008
    [10] Cameron T M, Griffin J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. Journal of Applied Mechanics, 1989, 56(1): 149-154. doi: 10.1115/1.3176036
    [11] Krack M, Gross J. Harmonic Balance for Nonlinear Vibration Problems. Cham: Springer International Publishing, 2019. 53-55.
    [12] Cochelin B, Vergez C. A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration, 2009, 324(1-2): 243-262. doi: 10.1016/j.jsv.2009.01.054
    [13] Karkar S, Cochelin B, Vergez C. A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities. Journal of Sound and Vibration, 2013, 332(4): 968-977. doi: 10.1016/j.jsv.2012.09.033
    [14] Guillot L, Cochelin B, Vergez C. A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems. International Journal for Numerical Methods in Engineering, 2019, 119(4): 261-280. doi: 10.1002/nme.6049
    [15] Liu G, Lv ZR, Liu JK, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. International Journal of Non-Linear Mechanics, 2018, 100: 10-19. doi: 10.1016/j.ijnonlinmec.2018.01.004
    [16] Huang JL, Zhu WD. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. Journal of Vibration and Acoustics, 2017, 139(2): 021010(1-15).
    [17] Li H, Ekici K. Supplemental-frequency harmonic balance: A new approach for modeling aperiodic aerodynamic response. Journal of Computational Physics, 2021, 436: 110278(1-18).
    [18] 龚冰清, 郑泽昌, 陈衍茂等. 准周期响应对称破缺分岔点的一种快速计算方法. 力学学报, 2022, 54(11): 3138-3188 (Gong Bingqing, Zheng Zechang, Chen Yanmao, et al. A fast calculation for the symmetry breaking point of quasi-periodic responses. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3138-3188(in Chinese)

    Gong Bingqing, Zheng Zechang, Chen Yanmao, et al. A fast calculation for the symmetry breaking point of quasi-periodic responses. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3138-3188(in Chinese)
    [19] Chua L, Ushida A. Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies. IEEE Transactions on Circuits and Systems, 1981, 28(10): 953-971. doi: 10.1109/TCS.1981.1084921
    [20] Ju R, Fan W, Zhu W D, et al. A modified two-timescale incremental harmonic balance method for steady-state quasi-periodic responses of nonlinear systems. Journal of Computational and Nonlinear Dynamics, 2017, 12(5): 051007(1-12).
    [21] Kim YB, Choi SK. A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. Journal of Sound and Vibration, 1997, 208(5): 745-761. doi: 10.1006/jsvi.1997.1221
    [22] Liu L, Dowell E H, Hall K C. A novel harmonic balance analysis for the Van Der Pol oscillator. International Journal of Non-Linear Mechanics, 2007, 42(1): 2-12. doi: 10.1016/j.ijnonlinmec.2006.09.004
    [23] Wang QS, Yan ZP, Dai HH. An efficient multiple harmonic balance method for computing quasi-periodic responses of nonlinear systems. Journal of Sound and Vibration, 2023, 554: 117700(1-16).
    [24] Hall KC, Ekici K, Thomas JP, et al. Harmonic balance methods applied to computational fluid dynamics problems. International Journal of Computational Fluid Dynamics, 2013, 27(2): 52-67. doi: 10.1080/10618562.2012.742512
    [25] Dai HH, Schnoor M, Atluri SN. A simple collocation scheme for obtaining the periodic solutions of the duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations. CMES-Computer Modeling in Engineering & Sciences, 2012, 84(5): 459-498.
    [26] Moreau W, Easther R, Neutze R. Relativistic (an) harmonic oscillator. American Journal of Physics, 1994, 62(6): 531-535. doi: 10.1119/1.17513
    [27] Biazar J, Hosami M. An easy trick to a periodic solution of relativistic harmonic oscillator. Journal of the Egyptian Mathematical Society, 2014, 22(1): 45-49. doi: 10.1016/j.joems.2013.04.013
    [28] 孟艳平, 孙维鹏, 张皆杰. 相对论谐振子解析逼近解的构造. 吉林大学学报(理学版), 2013, 51(1): 83-88 (Meng Yanping, Sun Weipeng, Zhang Jiejie. Construction of analytical approximate solutions to relativistic harmonic oscillators. Journal of Jilin University (Science Edition), 2013, 51(1): 45-49 (in Chinese)

    Meng Yanping, Sun Weipeng, Zhang Jiejie. Construction of analytical approximate solutions to relativistic harmonic oscillators. Journal of Jilin University (Science Edition), 2013, 51(1): 45-49 (in Chinese)
    [29] Mickens R E. Periodic solutions of the relativistic harmonic oscillator. Journal of Sound and Vibration, 1998, 212(5): 905-908. doi: 10.1006/jsvi.1997.1453
    [30] Beléndez A, Pascual C, Méndez D I, et al. Solution of the relativistic (an) harmonic oscillator using the harmonic balance method. Journal of Sound and Vibration, 2008, 311(3-5): 1447-1456. doi: 10.1016/j.jsv.2007.10.010
    [31] Zheng ZC, Lv ZR, Chen YM, et al. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system. Journal of Applied Mechanics, 2022, 89(2): 021001(1-12).
    [32] 黄建亮, 张兵许, 陈树辉. 优化迭代步长的两种改进增量谐波平衡法. 力学学报, 2022, 54(5): 1353-1363 (Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration steps. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363(in Chinese)

    Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration steps. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363(in Chinese)
    [33] Thomas J, Dowell E H. Using broyden's method to improve the computational performance of a harmonic balance aeroelastic solution technique//AIAA SCITECH 2023 Forum. 2023.
    [34] Ranganathan A. The Levenberg-Marquardt algorithm. Tutoral on LM Algorithm, 2004, 11(1): 101-110.
    [35] Liu G, Liu JK, Wang L, et al. Time-domain minimum residual method combined with energy balance for nonlinear conservative systems. Mechanical Systems and Signal Processing, 2022, 170: 108818(1-18).
    [36] Jia QH, Luo Y, Zhou HJ, et al. Nonlinear coupling in an asymmetric pendulum. American Journal of Physics, 2022, 90(8): 594-603. doi: 10.1119/10.0010391
    [37] 张哲, 代洪华, 冯浩阳等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法. 力学学报, 2022, 54(2): 503-516 (Zhang Zhe, Dai Honghua, Feng Haoyang, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point-boundary-value constraints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516(in Chinese)

    Zhang Zhe, Dai Honghua, Feng Haoyang, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point-boundary-value constraints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516(in Chinese)
    [38] 王昌涛, 代洪华, 张哲等. 并行加速的局部变分迭代法及其轨道计算应用. 力学学报, 2023, 55(4): 991-1003 (Wang Changtao, Dai Honghua, Zhang Zhe, et al. Parallel accelerated local variational iteration method and its application orbit computation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003(in Chinese)

    Wang Changtao, Dai Honghua, Zhang Zhe, et al. Parallel accelerated local variational iteration method and its application orbit computation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003(in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-10-17

目录

    /

    返回文章
    返回
    Baidu
    map