EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用斜齿离合升频机制实现瓦级输出的超低频电磁式振动能量收集器

毛新辉 张继元 齐欢 邱长泉 申维和 田建国 汪飞 陶凯

毛新辉, 张继元, 齐欢, 邱长泉, 申维和, 田建国, 汪飞, 陶凯. 利用斜齿离合升频机制实现瓦级输出的超低频电磁式振动能量收集器. 力学学报, 2023, 55(10): 2168-2177 doi: 10.6052/0459-1879-23-362
引用本文: 毛新辉, 张继元, 齐欢, 邱长泉, 申维和, 田建国, 汪飞, 陶凯. 利用斜齿离合升频机制实现瓦级输出的超低频电磁式振动能量收集器. 力学学报, 2023, 55(10): 2168-2177 doi: 10.6052/0459-1879-23-362
Mao Xinhui, Zhang Jiyuan, Qi Huan, Qiu Changquan, Shen Weihe, Tian Jianguo, Wang Fei, Tao Kai. An ultra-low frequency electromagnetic vibration energy harvester with watt-level output driven by the helical clutch frequency-upgrading mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2168-2177 doi: 10.6052/0459-1879-23-362
Citation: Mao Xinhui, Zhang Jiyuan, Qi Huan, Qiu Changquan, Shen Weihe, Tian Jianguo, Wang Fei, Tao Kai. An ultra-low frequency electromagnetic vibration energy harvester with watt-level output driven by the helical clutch frequency-upgrading mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2168-2177 doi: 10.6052/0459-1879-23-362

利用斜齿离合升频机制实现瓦级输出的超低频电磁式振动能量收集器

doi: 10.6052/0459-1879-23-362
基金项目: 深圳市科创委基础研究资助项目(JCYJ20220530161809020, JCYJ20220818100415033)
详细信息
    通讯作者:

    汪飞, 教授, 主要研究方向为环境振动能量采集器与环境自供能传感系统. E-mail: wangf@sustech.edu.cn

    陶凯, 研究员, 主要研究方向为微机电系统(MEMS)振动俘能和自供电传感器. E-mail: taokai@nwpu.edu.cn

  • 中图分类号: O313.3

AN ULTRA-LOW FREQUENCY ELECTROMAGNETIC VIBRATION ENERGY HARVESTER WITH WATT-LEVEL OUTPUT DRIVEN BY THE HELICAL CLUTCH FREQUENCY-UPGRADING MECHANISM

  • 摘要: 目前, 大多数的能量收集器从低频运动中只能收集到较少的能量, 且能量收集效率较低. 低频激励下发电输出能量低是当前限制电磁俘能器多场景应用的关键问题, 而电磁感应发电作为目前应用广泛且较为成熟的发电技术, 具有高功率输出, 被广泛应用于能量收集领域, 有望解决这一技术瓶颈. 文章提出了一种基于斜齿离合传动系统的电磁式振动俘能器, 以系统性解决输出频率低和能量转化时间短的问题. 俘能器的机械传动系统由直线−旋转转化模块、牙嵌离合模块和能量存储/释放模块3部分构成, 可将外界低频、不规则的瞬时激励(约0.2 ~ 5 Hz)转化为高频、连续的单向旋转运动以实现能量转换效率最大化. 对所提出的俘能器建立了机电耦合动力学模型并进行实验验证. 研究结果表明, 俘能器在外界脉冲激励下可以实现开路状态长达30 s的输出; 接入负载后惯性旋转运动的最高转速可达750 r/min, 并实现了运动频率从0.17 ~ 50 Hz的近300倍提升; 单层发电模块的峰值功率可达1.25 W, 两层发电模块并联输出2.5 W的峰值功率, 可实现134 mW平均输出功率. 此外, 其紧凑高效的传动结构设计使得俘能器可以进一步集成到可穿戴设备中, 在人体能量收集领域和构建自供能物联网传感节点等方向具有重要意义.

     

  • 图  1  总体设计

    Figure  1.  Overall design

    图  2  工作原理

    Figure  2.  Working principle

    图  3  受力分析

    Figure  3.  Force analysis

    图  4  样机结构及实验平台

    Figure  4.  Prototype structure and experimental platform

    图  5  电学测试 (续)

    Figure  5.  Electrical test (continued)

    图  6  理论计算与实际测量

    Figure  6.  Theoretical calculation and practical measurement

    图  7  俘能器在不同类型激励下的输出表现

    Figure  7.  Output performance of the VEH under different types of excitation

    图  8  应用演示 (续)

    Figure  8.  Demonstration of applications (continued)

    表  1  设计参数

    Table  1.   Design parameters

    ParametersSymbolsValues
    coil turn numberN200
    coil external diameterD0/mm15
    coil wire diameterd0/mm0.3
    coil internal diameterd1/mm5
    coil heighth/mm5
    coil resistanceR2.5
    array number of coils and diskn8
    magnet materialNdFeB
    magnet profileN35
    disk diameterdm/mm12
    disk thicknessδm/mm3
    magnetic pole number1
    threads of screw rodz3
    teeth number in matez040
    sleeve diameterd/mm24
    friction factorμ0.5
    ascent angle of screw rod$ \phi $/(°)26
    elasticity coefficient of sleeve reset springk1/(N·m−1)700
    elasticity coefficient of screw rod reset springk2/(N·m−1)800
    mass of screw rodm/g2.64
    rotational inertia of flywheelJF/(kg·m2)2.48 × 10−5
    rotational inertia of sleeveJR/(kg·m2)1.60 × 10−6
    下载: 导出CSV
    Baidu
  • [1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294-303 doi: 10.1038/nature11475
    [2] Wang ZL. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001
    [3] Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy & Environmental Science, 2021, 14(4): 2114-2157
    [4] Keum K, Kim JW, Hong SY, et al. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Advanced Materials, 2020, 32(51): 1-34
    [5] Tao K, Chen Z, Yu J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Advanced Science, 2022, 9(10): 2104168 doi: 10.1002/advs.202104168
    [6] Liang Y, Wu Z, Wei Y, et al. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-micro Letters, 2022, 14(1): 52 doi: 10.1007/s40820-021-00787-0
    [7] 于家豪, 陶凯. 振动俘能技术在可穿戴领域的应用. 机械工程学报, 2022, 58(20): 46-71 (Yu Jiahao, Tao Kai. Applications of vibration energy harvesting technology in the field of wearable devices. Chinese Journal of Mechanical Engineering, 2022, 58(20): 46-71 (in Chinese) doi: 10.3901/JME.2022.20.046

    Yu Jiahao, Tao Kai. Applications of vibration energy harvesting technology in the field of wearable devices. Chinese Journal of Mechanical Engineering, 2022, 58(20): 46-71. (in Chinese)) doi: 10.3901/JME.2022.20.046
    [8] Chandrasekhar A, Vivekananthan V, Khandelwal G, et al. A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting morse code. Nano Energy, 2019, 60: 850-856 doi: 10.1016/j.nanoen.2019.04.004
    [9] Qiu Y, Sun S, Xu C, et al. The frequency-response behaviour of flexible piezoelectric devices for detecting the magnitude and loading rate of stimuli. Journal of Materials Chemistry, 2021, 9(2): 584-594
    [10] Song Y, Wang N, Hu C, et al. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy, 2021, 84: 105919
    [11] Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Advanced Energy Materials, 2017, 7(12): 1602397 doi: 10.1002/aenm.201602397
    [12] Cao X, Jie Y, Wang N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Advanced Energy Materials, 2016, 6(23): 1600665 doi: 10.1002/aenm.201600665
    [13] Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246 doi: 10.1126/science.1124005
    [14] Yang K, Wang J, Yurchenko D. A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Applied Physics Letters, 2019, 115(19): 193901
    [15] Zhukov S, von Seggern H, Zhang XQ, et al. Microenergy harvesters based on fluorinated ethylene propylene piezotubes. Advanced Engineering Materials, 2020, 22(5): 1901399 doi: 10.1002/adem.201901399
    [16] Zhang YL, Luo AX, Wang YF, et al. Rotational electromagnetic energy harvester for human motion application at low frequency. Applied Physics Letters, 2020, 116(5): 053902 doi: 10.1063/1.5142575
    [17] Wu Z, Cao Z, Ding R, et al. An electrostatic-electromagnetic hybrid generator with largely enhanced energy conversion efficiency. Nano Energy, 2021, 89(B): 106425
    [18] Han N, Zhao D, Schluter JU, et al. Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow. Applied Energy, 2016, 178: 672-680 doi: 10.1016/j.apenergy.2016.06.103
    [19] Ding R, Cao Z, Wu Z, et al. Theoretical study of the rotary electrostatic generators based on a universal equivalent circuit model. Social Science Research Network Electronic Journal, 2022, 100: 107512
    [20] Tao K, Wu J, Tang LH, et al. Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 2017, 27(4): 044002 doi: 10.1088/1361-6439/aa5e73
    [21] Tao K, Tang L H, Wu J, et al. Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity, Journal of Microelectromechanical Systems, 2018, 27(2): 276-288
    [22] Ma G, Li B, Niu S, et al. A bioinspired triboelectric nanogenerator for all state energy harvester and self-powered rotating monitor. Nano Energy, 2022, 91: 106637 doi: 10.1016/j.nanoen.2021.106637
    [23] Tao K, Chen Z, Yi H, et al. Hierarchical honeycomb-structured electret /triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-micro Letters, 2021, 13(1): 123 doi: 10.1007/s40820-021-00644-0
    [24] Li C, Liu D, Xu C, et al. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12(1): 2950 doi: 10.1038/s41467-021-23207-8
    [25] Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature Communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x
    [26] Cheng XL, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096
    [27] Han J, Feng Y, Chen P, et al. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Advanced Functional Materials, 2021, 32(2): 2108580
    [28] Ye C, Liu D, Peng X, et al. A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Applied Nano Materials, 2021, 15(11): 18172-18181
    [29] Luo A, Zhang Y, Dai X, et al. An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 2020, 279: 115762 doi: 10.1016/j.apenergy.2020.115762
    [30] Guo X, He T, Zhang Z, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Applied Nano Materials, 2021, 15(12): 19054-19069
    [31] Kim HJ, Kim JH, Jun KW, et al. Silk nanofiber-networked bio-triboelectric generator. Advanced Energy Materials, 2016, 6(8): 1502329 doi: 10.1002/aenm.201502329
    [32] Huang T, Wang C, Yu H, et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 2015, 14: 226-235 doi: 10.1016/j.nanoen.2015.01.038
    [33] Bui VT, Oh JH, Kim JN, et al. Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator. Nano Energy, 2020, 71: 104561 doi: 10.1016/j.nanoen.2020.104561
    [34] Tao K, Yi HP, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104-197
    [35] Zi Y, Guo H, Wen Z, et al. Harvesting low-frequency ( < 5 Hz): Irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Applied Nano Materials, 2016, 10(4): 4797-4805
    [36] Yang B, Zeng W, Peng ZH, et al. A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source. Advanced Energy Materials, 2016, 6(16): 1600505 doi: 10.1002/aenm.201600505
    [37] Feng L, Liu G, Guo H, et al. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217-223 doi: 10.1016/j.nanoen.2018.02.042
    [38] Han KW, Kim JN, Rajabi-Abhari A, et al. Long-lasting and steady triboelectric energy harvesting from low-frequency irregular motions using escapement mechanism. Advanced Energy Materials, 2021, 11(4): 2002929 doi: 10.1002/aenm.202002929
    [39] Cho S, Yun Y, Jang S, et al. Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy, 2020, 71: 104584 doi: 10.1016/j.nanoen.2020.104584
    [40] 郭纪元, 樊康旗, 张妍等. 线绳驱动转速提升式低频俘能器的设计与研究. 力学学报, 2021, 53(11): 3025-3034 (Guo Jiyuan, Fan Kangqi, Zhang Yan, et al. Development of a low-frequency harvester based on a rope-driven rotor with rotation speed up-regulation function. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3025-3034 (in Chinese) doi: 10.6052/0459-1879-21-469

    Guo Jiyuan, Fan Kangqi, Zhang Yan, et al. Development of a low-frequency harvester based on a rope-driven rotor with rotation speed up-regulation function. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3025-3034. (in Chinese)) doi: 10.6052/0459-1879-21-469
    [41] 邹鸿翔, 郭丁华, 甘崇早等. 磁力耦合道路能量收集设计与动力学分析. 力学学报, 2021, 53(11): 2941-2949 (Zou Hongxiang, Guo Dinghua, Gan Chongzao, et al. Design and dynamic analysis of magnetic coupling road energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949 (in Chinese) doi: 10.6052/0459-1879-21-374

    Zou Hongxiang, Guo Dinghua, Gan Chongzao, et al. Design and dynamic analysis of magnetic coupling road energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949. (in Chinese)) doi: 10.6052/0459-1879-21-374
    [42] Zhao LC, Zou HX, Xie X, et al. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy, 2023, 108: 108222 doi: 10.1016/j.nanoen.2023.108222
    [43] Xu Y, Yang W, Lu X, et al. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Applied Nano Materials, 2021, 15(10): 16368-16375
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  43
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 录用日期:  2023-09-21
  • 网络出版日期:  2023-09-22
  • 刊出日期:  2023-10-18

目录

    /

    返回文章
    返回
    Baidu
    map