EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射流扩散火焰闪烁模态及频率特性的实验研究

张昊东,杨溢凡,李林烨,夏溪,齐飞

downloadPDF
张昊东, 杨溢凡, 李林烨, 夏溪, 齐飞. 射流扩散火焰闪烁模态及频率特性的实验研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-361
引用本文: 张昊东, 杨溢凡, 李林烨, 夏溪, 齐飞. 射流扩散火焰闪烁模态及频率特性的实验研究. 力学学报, 待出版doi:10.6052/0459-1879-23-361
Zhang Haodong, Yang Yifan, Li Linye, Xia Xi, Qi Fei. An experimental study on flickering modes and frequency characteristics of jet diffusion flames. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-361
Citation: Zhang Haodong, Yang Yifan, Li Linye, Xia Xi, Qi Fei. An experimental study on flickering modes and frequency characteristics of jet diffusion flames.Chinese Journal of Theoretical and Applied Mechanics, in pressdoi:10.6052/0459-1879-23-361

射流扩散火焰闪烁模态及频率特性的实验研究

doi:10.6052/0459-1879-23-361
基金项目:国家自然科学基金项目(52006139、92041001)和上海交通大学科技创新专项基金资助
详细信息
    通讯作者:

    夏溪, 副教授, 主要研究方向为涡动力学、燃烧不稳定性. E-mail:xiaxiss@sjtu.edu.cn

    齐飞, 教授, 主要研究方向为激光燃烧诊断、燃烧反应动力学. E-mail:fqi@sjtu.edu.cn

  • 中图分类号:TQ021

AN EXPERIMENTAL STUDY ON FLICKERING MODES AND FREQUENCY CHARACTERISTICS OF JET DIFFUSION FLAMES

  • 摘要:层流扩散火焰的闪烁是一种经典的火焰不稳定性现象, 然而现阶段对其不稳定性模态及频率特性的研究尚不充分. 本文利用高速摄影和粒子图像测速同步测量技术, 对宽工况下准静态环境中的浮力主控和动量主控圆口射流扩散火焰的不稳定性及其频率进行了实验研究. 实验发现, 燃料射流流量增大会导致火焰失稳, 所引起的闪烁现象可分为varicose模态和sinuous模态. 流场测量结果表明, 闪烁火焰的主要流动结构表现为分别位于火焰面内外的两个剪切层. 火焰外剪切层卷起形成的大尺度环形涡的周期性产生、增长和脱落是导致火焰面周期性形变(即火焰闪烁)的原因. 闪烁火焰具有准周期性, 其流场具有统一的主频率, 且该频率与火焰脉动频率一致, 说明闪烁火焰在本质上是种整体流动不稳定性的体现. 浮力主控火焰sinuous模态的频率比varicose模态高3 Hz左右, 并且在燃料流量较大的工况下存在varicose和sinuous模态间的切换. 浮力主控火焰的频率符合经典的1/2标度律, 但不同模态对应着不同的标度律系数. 动量主控火焰的频率显著偏离1/2标度率, 且偏离程度随射流动量增加而增强. 研究表明了流动不稳定性模态对于射流扩散火焰频率特性具有不可忽略的影响.

  • 图 1射流火焰装置示意图

    Figure 1.Schematic diagram of the jet flame setup

    图 2C2H4射流扩散火焰自发光高速成像实验工况图: 弗劳德数vs燃料流量

    Figure 2.Experimental conditions of high-speed imaging of C2H4jet diffusion flame chemiluminescence:FrvsQ

    图 3C2H4射流扩散火焰自发光高速成像示意图

    Figure 3.Schematic diagram of high-speed imaging of C2H4jet diffusion flame chemiluminescence

    图 4CH4-N2射流扩散火焰自发光/PIV同步高速测量实验装置示意图

    Figure 4.Schematic diagram of high-speed flame chemiluminescence/PIV measurement of CH4-N2jet diffusion flame

    图 5C2H4射流扩散火焰自发光瞬态图像序列(时长0.06 s,D= 9.9 mm)

    Figure 5.Instantaneous flame-chemiluminescence image sequences (duration 0.06 s,D= 9.9 mm) of C2H4jet diffusion flames

    图 6CH4-N2射流扩散火焰自发光瞬态图像及同步的示踪粒子图像

    Figure 6.Simultaneous instantaneous flame-chemiluminescence and tracer particles images of CH4-N2jet diffusion flames

    图 7CH4-N2射流扩散火焰的叠加了流线的瞬态涡量场: (a) 浮力主控、varicose 模态 (D= 20 mm,Q= 1400 sccm); (b) 动量主控、sinuous 模态 (D= 3.08 mm,Q= 1400 sccm)

    Figure 7.The instantaneous vorticity field overlapped with streamline of CH4-N2jet diffusion flamess: (a) buoyance-driven, varicose mode (D=20 mm,Q= 1400 sccm); (b) momentum-driven, sinuous mode (D=3.08 mm,Q= 1400 sccm)

    图 8CH4-N2射流扩散火焰(D= 20 mm,Q= 1400 sccm)

    Figure 8.CH4-N2jet diffusion flame (D= 20 mm,Q= 1400 sccm)

    图 9C2H4射流扩散火焰闪烁频率随燃料流量的变化: (a)D= 2.07, 3.85, 4.8和6.93 mm; (b)D= 9.9和20 mm. 相应的典型火焰形态图像: (c)D= 2.07 mm(A1 ~ A5); (d)D= 20 mm(B1 ~ B5, C1 ~ C2)

    Figure 9.The flickering frequency of C2H4jet diffusion flame varies with the fuel flow rate: (a)D= 2.07, 3.85, 4.8 and 6.93 mm; (b)D= 9.9 and 20 mm. Corresponding typical flame image: (c)D= 2.07 mm (A1 ~ A5); (d)D= 20 mm (B1 ~ B5, C1 ~ C2)

    图 10C2H4射流扩散火焰的斯特劳哈尔数随弗劳德数的变化

    Figure 10.Variation of Strouhal number with Froude number for C2H4jet diffusion flames

    表 1C2H4射流扩散火焰的闪烁频率标度率($St = a(1/F{r^m})$)

    Table 1.The scaling law of the flickering frequency of C2H4jet diffusion flame ($St = a(1/F{r^m})$)

    D/mm 编号 V(varicose模态) S(sinuous模态)
    a m R2 a m R2
    2.07 1 0.1803 0.4597 1 0.1798 0.4483 0.9984
    3.85 2 0.2545 0.4675 0.9999 0.2459 0.4595 0.9831
    4.8 3 0.2877 0.4813 1 0.2833 0.4704 1
    6.93 4 0.3395 0.4986 0.9998 0.3419 0.4829 0.9991
    9.9 5 0.3911 0.5016 0.9995 0.4881 0.5091 0.9958
    20 6 0.5378 0.4974 0.9998 0.6719 0.5012 0.9948
    下载: 导出CSV
  • [1] Turns S. An Introduction to Combustion: Concepts and Applications, 3rd edition. New York: McGraw Hill, 2011
    [2] Burke SP, Schumann TEW. Diffusion flames.Proceedings of the Symposium on Combustion, 1948, 1-2: 2-11
    [3] Chamberlin DS, Rose A. The flicker of luminous flames.Proceedings of the Symposium on Combustion, 1948, 1-2: 27-32
    [4] Cheatham SA. On the structure and stability of diffusion flames [PhD Thesis]. Evanston, Illinois: Northwestern University, 1997
    [5] Cetegen BM, Ahmed TA. Experiments on the periodic instability of buoyant plumes and pool fires.Combustion and Flame, 1993, 93(1): 157-184
    [6] Sato H, Amagai K, Arai M. Flickering frequencies of diffusion flames observed under various gravity fields.Proceedings of the Combustion Institute, 2000, 28(2): 1981-1987doi:10.1016/S0082-0784(00)80604-9
    [7] 邓瑞英, 李永超, 杨茉等. 不同伴流速度下压力对火焰闪烁的影响. 动力工程学报, 2020, 40(11): 906-914 (Deng Ruiying, Li Yongchao, Yang Mo, et al. Effect of pressure on flame flickering under different co-flow velocities.Journal of Chinese Society of Power Engineering, 2020, 40(11): 906-914(in Chinese)doi:10.19805/j.cnki.jcspe.2020.11.007

    Deng Ruiying, Li Yongchao, Yang Mo, et al . Effect of pressure on flame flickering under different co-flow velocities. Journal of Chinese Society of Power Engineering, 2020 , 40 ( 11 ): 906 - 914 (in Chinese)doi:10.19805/j.cnki.jcspe.2020.11.007
    [8] 嵇铭栋, 潘文轩, 杨茉. 稀释气体对火焰闪烁的影响及其非线性特性研究. 动力工程学报, 2021, 41(12): 1069-1074 (Ji Mingdong, Pan Wenxuan, Yang Mo. Study on effects of diluent gas on flame flickering and its nonlinear characteristics.Journal of Chinese Society of Power Engineering, 2021, 41(12): 1069-1074(in Chinese)doi:10.19805/j.cnki.jcspe.2021.12.008

    Ji Mingdong, Pan Wenxuan, Yang Mo . Study on effects of diluent gas on flame flickering and its nonlinear characteristics. Journal of Chinese Society of Power Engineering, 2021 , 41 ( 12 ): 1069 - 1074 (in Chinese)doi:10.19805/j.cnki.jcspe.2021.12.008
    [9] 潘文轩, 杨茉. 同轴射流非预混火焰闪烁特性及非线性分析. 动力工程学报, 2020, 40(7): 571-579 (Pan Wenxuan, Yang Mo. Flickering characteristics and nonlinear analysis of non-premixed coaxial jet flames.Journal of Chinese Society of Power Engineering, 2020, 40(7): 571-579(in Chinese)doi:10.19805/j.cnki.jcspe.2020.07.008

    Pan Wenxuan, Yang Mo . Flickering characteristics and nonlinear analysis of non-premixed coaxial jet flames. Journal of Chinese Society of Power Engineering, 2020 , 40 ( 7 ): 571 - 579 (in Chinese)doi:10.19805/j.cnki.jcspe.2020.07.008
    [10] 孔文俊, 张孝谦. 预混气体燃烧火焰闪烁现象分析. 工程热物理学报, 2000(1): 125-128 (Kong Wenjun, Zhang Xiaoqian. Analysis of flame flickering in combustion of premixed gas.Journal of Engineering Thermophysics, 2000(1): 125-128(in Chinese)doi:10.3321/j.issn:0253-231X.2000.01.030

    Kong Wenjun, Zhang Xiaoqian . Analysis of flame flickering in combustion of premixed gas. Journal of Engineering Thermophysics, 2000 ( 1 ): 125 - 128 (in Chinese)doi:10.3321/j.issn:0253-231X.2000.01.030
    [11] Hamins A, Yang JC, Kashiwagi T. An experimental investigation of the pulsation frequency of flames.Proceedings of the Combustion institute, 1992, 24: 1695-1702doi:10.1016/S0082-0784(06)80198-0
    [12] Shu Z, Aggarwal SK, Katta VR, et al. Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects.Combustion and Flame, 1997, 111(4): 276-295doi:10.1016/S0010-2180(97)00018-7
    [13] Fang J, Wang J, Guan J, et al. Momentum- and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures.Fuel, 2016, 163: 295-303
    [14] Xia X, Zhang P. A vortex-dynamical scaling theory for flickering buoyant diffusion flames.Journal of Fluid Mechanics, 2018, 855: 1156-1169doi:10.1017/jfm.2018.707
    [15] Sato H, Amagai K, Arai M. Diffusion flames and their flickering motions related with Froude numbers under various gravity levels.Combustion and Flame, 2000, 123(1): 107-118
    [16] Cetegen BM, Dong Y. Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities.Experiments in Fluids, 2000, 28(6): 546-558doi:10.1007/s003480050415
    [17] Zhang H, Xia X, Gao Y. Instability transition of a jet diffusion flame in quiescent environment.Proceedings of the Combustion Institute, 2021, 38(3): 4971-4978doi:10.1016/j.proci.2020.07.086
    [18] Buckmaster J, Peters N. The infinite candle and its stability—a paradigm for flickering diffusion flames.Proceedings of the Combustion Institute, 1988, 21: 1829-1836doi:10.1016/S0082-0784(88)80417-X
    [19] Hu L, Hu J, de Ris JL. Flame necking-in and instability characterization in small and medium pool fires with different lip heights.Combustion and Flame, 2015, 162(4): 1095-1103doi:10.1016/j.combustflame.2014.10.001
    [20] Chen L-D, Seaba JP, Roquemore WM, et al. Buoyant diffusion flames.Symposium(International)on Combustion, 1989, 22(1): 677-684
    [21] Chen L-D, Roquemore WM. Visualization of jet flames.Combustion and Flame, 1986, 66(1): 81-86doi:10.1016/0010-2180(86)90035-0
    [22] Chen L-D, Vilimpoc V, Goss LP, et al. Time evolution of a buoyant jet diffusion flame.Proceedings of the Combustion Institute, 1992, 24(1): 303-310doi:10.1016/S0082-0784(06)80040-8
    [23] Gutmark E, Parr TP, Hanson-Parr DM, et al. Coherent and random structure in reacting jets.Experiments in Fluids, 1990, 10(2–3): 147–156
    [24] Papadopoulos G, Bryant R, Pitts W. Flow characterization of flickering methane/air diffusion flames using particle image velocimetry.Experiments in Fluids, 2002, 33(3): 472-481doi:10.1007/s00348-002-0483-y
    [25] Yilmaz N, Lucero RE, Donaldson AB, et al. Flow characterization of diffusion flame oscillations using particle image velocimetry.Experiments in Fluids, 2009, 46(4): 737-746doi:10.1007/s00348-008-0605-2
    [26] Xia X, Fu C, Yang Y, et al. Vortex formation and frequency tuning of periodically-excited jet diffusion flames.Proceedings of the Combustion Institute, 2021, 38(2): 2067-2074doi:10.1016/j.proci.2020.08.015
    [27] Carpio J, Sánchez-Sanz M, Fernández-Tarrazo E. Pinch-off in forced and non-forced, buoyant laminar jet diffusion flames.Combustion and Flame, 2012, 159(1): 161-169doi:10.1016/j.combustflame.2011.06.008
    [28] Fujisawa N, Sakai K, Yamagata T. Observation of large-scale structure in flickering diffusion flame by time-resolved particle image velocimetry and shadowgraph imaging.Experimental Thermal and Fluid Science, 2018, 92: 286-294doi:10.1016/j.expthermflusci.2017.11.026
    [29] Su LK, Sun OS, Mungal MG. Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames.Combustion and Flame, 2006, 144(3): 494-512doi:10.1016/j.combustflame.2005.08.010
    [30] Jiang X, Luo KH. Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects.Combustion and Flame, 2003, 133(1): 29-45
    [31] Chung SH, Hwang JY, Lee HH, et al. Visualization using reactive mie scattering for buoyant diffusion flames.Journal of Visualization, 1999, 1(4): 332-332doi:10.1007/BF03181417
    [32] Albers BW, Agrawal AK. Schlieren analysis of an oscillating gas-jet diffusion flame.Combustion and Flame, 1999, 119(1-2): 84-94doi:10.1016/S0010-2180(99)00034-6
    [33] Yang T, Zhang P. Faster flicker of buoyant diffusion flames by weakly rotatory flows.Theoretical and Computational Fluid Dynamics, 2023, Published online: July 18, 2023. doi:10.1007/s00162-023-00671-0
    [34] Boulanger J. Laminar round jet diffusion flame buoyant instabilities: Study on the disappearance of varicose structures at ultra-low Froude number.Combustion and Flame, 2010, 157(4): 757-768doi:10.1016/j.combustflame.2009.12.005
    [35] Coats CM. Coherent structures in combustion.Progress in Energy and Combustion Science, 1996, 22(5): 427-509doi:10.1016/S0360-1285(96)00011-1
    [36] Drazin PG, Reid WH. Hydrodynamic Stability. Cambridge Univ Pr, 2004
    [37] Blake WK. Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources. Elsevier Science, 2017
    [38] Bostwick JB, Steen PH. Static rivulet instabilities: varicose and sinuous modes.Journal of Fluid Mechanics, 2018, 837: 819-838doi:10.1017/jfm.2017.876
    [39] Balasubramaniyan M, Kushwaha A, Guan Y, et al. Global hydrodynamic instability and blowoff dynamics of a bluff-body stabilized lean-premixed flame.Physics of Fluids, 2021, 33(3): 034103doi:10.1063/5.0029168
    [40] Zhao K, Li S, Lin Z, et al. Study on the global and spatial pulsation frequencies of rectangular syngas jet fire with different aspect ratios.Fuel, 2022, 330: 125558doi:10.1016/j.fuel.2022.125558
    [41] Delichatsios MA. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships.Combustion and Flame, 1993, 92(4): 349-364doi:10.1016/0010-2180(93)90148-V
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:49
  • HTML全文浏览量:18
  • PDF下载量:6
  • 被引次数:0
出版历程
  • 网络出版日期:2023-10-28

目录

    /

      返回文章
      返回
        Baidu
        map