EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类双层薄膜结构振动能量采集器的数据驱动建模方法及应用

邱宏蕴,王志霞,丁北,王炜

downloadPDF
邱宏蕴, 王志霞, 丁北, 王炜. 一类双层薄膜结构振动能量采集器的数据驱动建模方法及应用. 力学学报, 2023, 55(10): 2189-2198 doi: 10.6052/0459-1879-23-358
引用本文: 邱宏蕴, 王志霞, 丁北, 王炜. 一类双层薄膜结构振动能量采集器的数据驱动建模方法及应用. 力学学报, 2023, 55(10): 2189-2198doi:10.6052/0459-1879-23-358
Qiu Hongyun, Wang Zhixia, Ding Bei, Wang Wei. Data-driven modeling and application of vibration energy harvester with double film. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2189-2198 doi: 10.6052/0459-1879-23-358
Citation: Qiu Hongyun, Wang Zhixia, Ding Bei, Wang Wei. Data-driven modeling and application of vibration energy harvester with double film.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2189-2198doi:10.6052/0459-1879-23-358

一类双层薄膜结构振动能量采集器的数据驱动建模方法及应用

doi:10.6052/0459-1879-23-358
基金项目:国家自然科学基金(12172248, 12021002, 12132010, 12302022)和天津市应用基础研究(22JCQNJC00780) 资助项目
详细信息
    通讯作者:

    王炜, 副教授, 主要研究方向为振动能量采集器设计、数据驱动建模理论及应用. E-mail:wwang@tju.edu.cn

  • 中图分类号:O322

DATA-DRIVEN MODELING AND APPLICATION OF VIBRATION ENERGY HARVESTER WITH DOUBLE FILM

  • 摘要:随着工程研究对象日益复杂化、系统化, 单纯依赖先验知识的力学建模手段难以满足日渐复杂的系统建模需求. 相比而言, 数据驱动通过大数据处理方法得到准确反映系统当前运动状态的数学模型, 体现了数据科学融入基础与应用科学领域的发展趋势. 特别是稀疏非线性动力系统辨识算法(SINDy)的出现, 解决了直接构建非线性数学模型的难点问题, 实现了由实验数据到非线性控制方程的直接过渡. 然而, 受制于噪声数据的影响显著以及奇异矩阵难以准确分析等因素, SINDy在实际应用中的可靠性仍有待加强. 有鉴于此, 文章在已有SINDy算法基础上提出增强型稀疏筛选辨识算法(ESINDy), 改进了数据滤波模块以强化其对于含噪信号的处理能力, 并且改变了原有算法的循环函数体, 以提高其对于奇异问题的识别能力, 使之更适于分析工程信号中常见的强噪声、高奇异性等问题. 作为应用, 研究了一类双层薄膜结构电磁式振动能量采集器(EMH), 利用理论建模与ESINDy方法相结合的手段建立了采集器动力学方程, 并通过实验和仿真对理论结果进行验证. 结果表明: 相比于SINDy算法, ESINDy算法能够更加准确地识别该动力学系统的信息, 刻画系统蕴含的复杂振动行为. 理论、实验和仿真结果较好的一致性体现了改进算法对于提高实际非线性系统识别精度的有效性, 强化了数据驱动建模方法的工程应用价值, 为实际工程问题中的信号处理提供了一种可行的分析方法.

  • 图 1SINDy分析模式与ESINDy分析模式对比

    Figure 1.Comparison between SINDy and ESINDy

    图 2重建系统x分量数值解

    Figure 2.Numerical solution ofxcomponent of reconstruction system

    图 3双薄膜式双稳态振动系统结构

    Figure 3.Double-film-type bistable vibration system

    图 4磁力及弹力参数测量装置 (1. 测力计, 2. 手轮, 3. 磁铁, 4. EMH)

    Figure 4.Magnetic force and elastic force parameters measuring device (1. dynamometer, 2. rocker, 3. magnet, 4. EMH)

    图 5磁力的实验、仿真与理论结果

    Figure 5.Experimental, simulation and theoretical results of magnetic force

    图 6恢复力实验、仿真与理论结果

    Figure 6.Results of experiment, simulation and theory of resilience

    图 7振动实验测试系统

    Figure 7.Vibration experimental system

    图 8振动系统真实相图与SINDy, ESINDy重构系统相图

    Figure 8.Real phase diagram of vibration system, SINDy and ESINDy reconstruction system

    表 1ESINDy算法流程

    Table 1.ESINDy algorithm

    Input:X, ${\lambda _1}$, ${\lambda _2}$, iter
    fori= 1:iter
     (1) Using${\lambda _1}$for curvature filtering
     (2) Using${\lambda _2}$for SINDy
     (3) Calculate sparsitySp
     (4) Updating regularization parameters according toSp
    下载: 导出CSV

    表 2x分量识别结果

    Table 2.xcomponent identification result

    Parameter Theoretical result SINDy ESINDy
    C 0 0 0
    x 0 0.0605 0
    y −1 −0.9868 −1.0030
    z −1 −1.1658 −0.9638
    x2 0 0 0
    x y 0 0 0
    x z 0 0.0267 0
    y2 0 0 0
    y z 0 0 0
    z2 0 0 0
    下载: 导出CSV

    表 3部分参数识别结果

    Table 3.Partial parameter identification results

    Parameter Theoretical result SINDy ESINDy
    α 0.2 0.2803 0.2242
    β 0.2 0.2289 0.2034
    γ 5.7 4.0227 4.9240
    recognition accuracy 76.43% 91.93%
    下载: 导出CSV

    表 4Ansys仿真采用的模型参数

    Table 4.Model parameters used in Ansys simulation

    Symbol Physical significance Parameter value Unit
    R outer radius 0.032 5 m
    r inner radius 0.005 0 m
    h thickness 0.000 3 m
    E Young's modulus $9.4 \times {10^6}$ Pa
    μ Poisson ratio 0.28
    D membrane bending stiffness $2.3 \times {10^{ - 5}}$ ${\text{N}} \cdot {\text{m}}$
    ${E_0}$ magnet stiffness $2.0 \times {10^{14}}$ Pa
    下载: 导出CSV

    表 5理论和识别结果对比

    Table 5.Comparison between theory and identification results

    Parameter Theorical result SINDy ESINDy
    C 0.13 0.42 0.14
    x $ - 1.75 \times {10^4}$ $ - 8.46 \times {10^4}$ $ - 1.98 \times {10^4}$
    $\dot x$ −0.50 0 −0.31
    z 1.00 1.03 1.01
    ${x^2}$ $ - 3.04 \times {10^7}$ $ - 3.12 \times {10^7}$ $ - 2.53 \times {10^7}$
    $ x \dot{x} $ 0 0 0
    ${\dot x^2}$ 0 0 0
    ${x^3}$ $ - 1.29 \times {10^{10}}$ $ - 3.14 \times {10^{10}}$ $ - 1.67 \times {10^{10}}$
    ${x^2}\dot x$ 0 0 0
    $ x {\dot{x}}^{2} $ 0 $ - 3.10 \times {10^6}$ 0
    ${\dot x^3}$ 0 0 $ - 10.1$
    下载: 导出CSV
  • [1] Frank IE, Friedman JH. A statistical view of some chemometrics regression tools.Technometrics, 1996, 35(2): 109-148
    [2] Tibshirani R. Regression shrinkage and selection via the Lasso.Journal of the Royal Statistical Society, 1996, 58(1): 267-288
    [3] 施万锋, 胡学钢, 俞奎. 一种面向高维数据的迭代式Lasso特征选择方法. 计算机应用研究, 2011, 28(12): 4463-4466 (Shi Wanfeng, Hu Xuegang, Yu Kui. Iterative lasso based on feature selection for high dimensional data.Application Research of Computers, 2011, 28(12): 4463-4466 (in Chinese)doi:10.3969/j.issn.1001-3695.2011.12.016

    Shi W. , Hu X. , Yu K. . Iterative Lasso Based on Feature Selection For High Dimensional Data[J]. Application Research of Computers, 2011, 28(12): 4463-4466 (in Chinese))doi:10.3969/j.issn.1001-3695.2011.12.016
    [4] Fan J, Li RZ. Variable selection via penalized Likelihood.Journal of American Statissitcal Asociation, 2001, 96(4): 1348-1360
    [5] Zou H, Trevor H. Regularization and variable selection via the elactic net.Journal of the Royal Statistical Society Series B-Statistical Methodology, 2005, 67(5): 301-330
    [6] Barahona M, Poon CS. Detection of nonlinear dynamics in short, noisy time series.Nature, 1996, 381(6579): 215-217
    [7] Gandino E. Identification of a duffing oscillator under different types of excitation.Mathematical Problems in Engineering, 2010, 2010(3): 242-256
    [8] Zhou SX, Cao YJ, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification.Applied Energy, 2014, 133: 33-39
    [9] Donoho DL. Compressed sensing.IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306doi:10.1109/TIT.2006.871582
    [10] Wang WX, Yang R, Lai YC, et. al Predicting catastrophes in nonlinear dynamical systems by compressive sensing.Physical Review Letters, 2011, 106(15): 154101
    [11] Koza JR. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992
    [12] Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 3932-3937
    [13] Rudy SH, Brunton SL, Proctor JL, et al. Data-driven discovery of partial differential equations.Science Advances, 2017, 3(4): e1602614
    [14] 江昊, 王伯福, 卢志明. 基于数据驱动的流场控制方程的稀疏识别. 力学学报, 2021, 53(6): 1543-1551 (Jiang Hao, Wang Bofu, Lu Zhiming. Data-driven sparse identification of governing equations for fluid dynamics.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1543-1551 (in Chinese)doi:10.6052/0459-1879-21-052

    Jiang H. , Wang B. , Lu Z. . Data-Driven Sparse Identification of Governing Equations for Fluid Dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1543-1551 (in Chinese)).doi:10.6052/0459-1879-21-052
    [15] 刘吉悦. 基于偏微分方程网络的水平集方法研究. [硕士论文]. 西安: 西安电子科技大学, 2022

    Liu Jiyue. Level Set method based on partial differential equation network. [Master Thesis]. Xi’an: Xidian University, 2022 (in Chinese))
    [16] 聂滋森, 李冬安, 曹明志等. 基于频率数据与稀疏正则化的悬臂梁损伤识别. 中山大学学报:自然科学版, 2020, 59(6): 148-153 (Nie Zisen, Li Dong’an, Cao Mingzhi, et al. Structural damage identification based on frequency data and sparse regularization.Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(6): 148-153 (in Chinese)

    Nie Z. , Li D. , Cao M. , et al. Structural Damage Identification Based on Frequency Data and Sparse Regularization[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(6): 148-153 (in Chinese))
    [17] Schmid PJ, Sesterhenn J. Dynamic mode decomposition of numerical and experimental data.Journal of Fluid Mechanics, 2010, 656(10): 5-28
    [18] Proctor JL, Eckhoff PA. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition.International Health, 2015, 7(2): 139-145
    [19] Berger E, Sastuba M, Vogt D, et al. Estimation of perturbations in robotic behavior using dynamic mode decomposition.Journal of Advanced Robotics, 2015, 29(5): 331-343
    [20] Kaheman K, Kutz JN, Brunton SL. SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics.The Royal Society, 2020, 476(2242): 20200279
    [21] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms.Physica D Nonlinear Phenomena, 1992, 60(1-4): 259-268
    [22] Zou H, Hastie T, Tibshirani R. Sparse principal component analysis.Graphical Statistics, 2006, 15(2): 265-286
    [23] Rudy SH, Brunton SL, Proctor JL, et al. Data-driven discovery of partial differential equations.Science Advances, 2017, 3(4): 1602614
    [24] Li YY, Lin Y, Cheng XF, et al. Nonconvex penalized regularization for robust sparse recovery in the presence of SαS noise.IEEE Access, 2018, 6: 25474-25485
    [25] Rick C, Valentina S. Restricted isometry properties and nonconvex compressive sensing.Inverse Problems, 2008, 24(3): 035020
    [26] Gong YH. Spectrally Regularized Surfaces. ETH Zurich, 2015
    [27] Melih CY, Firas AK. Data driven model identification for a chaotic pendulum with variable interaction potential//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020: V002 T02 A011
    [28] StenderM, Obsert S, Hoffmann N. Recovery of differential equations from impulse response time series data for model identification and feature extraction.Vibration, 2019, 2(1): 25-46
    [29] Goharoodi SK, Dekemele K, Dupre L, et al. Sparse identification of nonlinear duffing oscillator from measurement data//IFAC Conference on Analysis and Control of Chaotic Systems, 2019: 162-167
    [30] Guo XY, Zhang B, Cao DX, et al. Influence of nonlinear terms on dynamical behavior of graphene reinforced laminated composite plates.Applied Mathematical Modelling, 2020, 78: 169-184
    [31] Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator.Physica D:Nonlinear Phenomena, 2010, 239(10): 640-653
    [32] Zou HX, Zhang WM, Li WB, et al. Magnetically coupled flextensional transducer for impulsive energy harvesting//2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 2017
  • 加载中
图(8)/ 表(5)
计量
  • 文章访问数:273
  • HTML全文浏览量:75
  • PDF下载量:70
  • 被引次数:0
出版历程
  • 收稿日期:2023-07-31
  • 录用日期:2023-09-22
  • 网络出版日期:2023-09-23
  • 刊出日期:2023-10-25

目录

    /

      返回文章
      返回
        Baidu
        map