EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械能量采集动力学调控方法

赵林川,陈泽文,邹鸿翔,孟光,张文明

downloadPDF
赵林川, 陈泽文, 邹鸿翔, 孟光, 张文明. 机械能量采集动力学调控方法. 力学学报, 2023, 55(10): 2094-2114 doi: 10.6052/0459-1879-23-341
引用本文: 赵林川, 陈泽文, 邹鸿翔, 孟光, 张文明. 机械能量采集动力学调控方法. 力学学报, 2023, 55(10): 2094-2114doi:10.6052/0459-1879-23-341
Zhao Linchuan, Chen Zewen, Zou Hongxiang, Meng Guang, Zhang Wenming. Dynamical regulation method of mechanical energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2094-2114 doi: 10.6052/0459-1879-23-341
Citation: Zhao Linchuan, Chen Zewen, Zou Hongxiang, Meng Guang, Zhang Wenming. Dynamical regulation method of mechanical energy harvesting.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2094-2114doi:10.6052/0459-1879-23-341

机械能量采集动力学调控方法

doi:10.6052/0459-1879-23-341
基金项目:国家自然科学基金(12202262, 12172127, 12032015和12102253)和中国博士后科学基金(2023T160418, 2022M722086)资助项目
详细信息
    通讯作者:

    邹鸿翔, 特聘教授, 主要研究方向为智能材料与结构动力学设计. E-mail:zouhongxiang@hnie.edu.cn

    张文明, 教授, 主要研究方向为动力学与振动控制. E-mail:wenmingz@sjtu.edu.cn

  • 中图分类号:O313

DYNAMICAL REGULATION METHOD OF MECHANICAL ENERGY HARVESTING

  • 摘要:机械能量采集是将环境中分散和无序的低品质高熵机械能转换为电能, 可以为广泛分布的传感器等低功耗电子器件供电实现自供能物联网, 具有灵活、便捷、可持续和零碳环保的优势, 能够广泛应用于生态环境监测、基础设施健康状态监测和设备状态监测等, 是国际前沿研究热点. 但是, 目前机械能量采集存在输出功率低、工作频带窄、低频效果差、环境适应性差和可靠性低等制约其实际应用的关键难题. 机械能量采集动力学调控方法能够改善机械能量采集系统的动力学性能, 使其与特定的环境激励相匹配, 提升系统的输出电学性能. 文章构建了机械能量采集动力学调控方法体系, 包括激励调制、非线性系统、多自由度系统、自适应控制和策略调控等方法; 论述了动力学调控方法的最新研究进展, 包括每类动力学调控方法的特点和典型设计; 最后, 总结了动力学调控方法的关键挑战, 并预测了未来发展方向. 为机械能量采集系统适应复杂环境激励提供了新的动力学调控视角, 有益于促进机械能量采集理论与技术的发展.

  • 图 1机械能量采集动力学调控方法概述[14-17]

    Figure 1.Overview of dynamic regulation methods for mechanical energy harvesting[14-17]

    图 2流体运动转换为机械运动的典型动力学调控能量采集系统: (a)水流能转换为旋转运动[20], (b)风能转换为振动(驰振)[24], (c)风能转换为振动(颤振)[25], (d)风能转换为旋转和振动[27]

    Figure 2.Typical dynamic regulation energy harvesting systems for converting fluid motion into mechanical motion: (a) convert water flow energy into rotary motion[20], (b) convert wind energy into vibration (galloping)[24], (c) convert wind energy into vibration (flutter)[25], (d) convert wind energy into rotation and vibration[27]

    图 3不可控运动形式转换为可控作用力的典型动力学调控能量采集系统: (a)杠铃式压电堆叠振动能量采集系统[28], (b)抗冲击式压电能量采集系统[30], (c)磁力耦合钹形振动能量采集系统[33]

    Figure 3.Typical dynamic regulation energy harvesting systems for converting uncontrollable motion forms into controllable forces: (a) barbell-shaped piezoelectric stacking vibration energy harvesting system[28], (b) impact resistant piezoelectric energy harvesting system[30], (c) magnetic coupling cymbal unit vibration energy harvesting system[33]

    图 4往复运动转换为旋转/滚动运动的典型动力学调控能量采集系统: (a)往复运动转换为双向旋转[34], (b), (c)往复运动转换为单向旋转[36-37], (d)往复运动转换为滚压运动[39]

    Figure 4.Typical dynamic regulation energy harvesting systems for converting reciprocating motion into rotation/rolling: (a) convert reciprocating motion into bidirectional rotation[34], (b) and (c) convert reciprocating motion into unidirectional rotation[36-37], (d) convert reciprocating motion to rolling-depression motion[39]

    图 5旋转/滚动运动转换为振动的典型动力学调控能量采集系统: (a)利用重力将旋转运动转换为振动[40], (b)利用磁力将旋转运动转换为振动[44], (c)滚动转换为振动[45], (d)利用拨动力将旋转运动转换为振动[46]

    Figure 5.Typical dynamic regulation energy harvesting systems for converting rotation/rolling into vibration: (a) convert rotation into vibration by gravity[40], (b) convert rotation into vibration by magnetic force[44], (c) convert rolling into vibration[45], (d) convert rotation motion into vibration by plucking force[46]

    图 6激励频率提升的典型动力学调控能量采集系统: (a)齿轮组升频机制[47], (b)机械拨动升频机制[50], (c)机械碰撞升频机制[51], (d)磁增频转换器机制[53], (e)栅盘式结构升频机制[56]

    Figure 6.Typical dynamic regulation energy harvesting systems using excitation frequency-up conversion: (a) gear set frequency-up mechanism[47], (b) mechanical plucking frequency-up mechanism[50], (c) mechanical collision frequency-up mechanism[51], (d) magnetic frequency-up converter mechanism[53], (e) segmentally structured disk frequency-up mechanism[56]

    图 7激励力放大的典型动力学调控能量采集系统: (a)压电堆弯张放大结构[61], (b)双向两级放大型弯张结构[63], (c)高效压缩模式压电能量采集器[65], (d)杠杆原理用于激励力放大[73]

    Figure 7.Typical dynamic regulation energy harvesting systems using excitation force amplification: (a) piezoelectric stack flextensional structure[61], (b) two-directional two-stage amplified flextensional structure[63], (c) high efficiency compression mode energy harvester[65], (d) lever mechanism for excitation force amplification[73]

    图 8基于非线性磁力调控的典型动力学调控能量采集系统: (a)双稳态系统[82], (b)非线性磁力升频系统[85], (c)复合型多稳态振动能量采集系统[86], (d)旋转多稳态系统[88]

    Figure 8.Typical dynamic regulation energy harvesting systems using nonlinear magnetic regulation: (a) bistable system[82], (b) nonlinear magnetic frequency-up system[85], (c) hybrid multistable vibration energy harvesting system[86], (d) multistable rotating energy harvesting system[88]

    图 9基于内共振原理的典型动力学调控能量采集系统

    Figure 9.Typical dynamic regulation energy harvesting systems using internal resonance principle

    图 10基于非线性几何结构的典型动力学调控能量采集系统: (a) 三弹簧双稳态准零刚度系统[99], (b) X型结构[102], (c) 锥形弹簧系统[105], (d) 多稳态正交平面柔顺机构[106], (e) 屈曲梁系统[109], (f) 柔性边界系统[111]

    Figure 10.Typical dynamic regulation energy harvesting systems based on nonlinear geometry: (a) three spring bistable quasi-zero-stiffness system[99], (b) X-shaped structure[102], (c) tapered spring system[105], (d) multistable compliant orthoplanar spring mechanism[106], (e) buckling beam system[109], (f) flexible stopper system[111]

    图 11基于阵列结构多自由度系统的典型动力学调控能量采集系统

    Figure 11.Typical dynamic regulation energy harvesting systems based on array structure multi-DOF system

    图 12基于耦合多自由度系统的典型动力学调控能量采集系统: (a) 振动−风能复合能量采集系统[118], (b) 梳状梁风能采集系统[119],(c) 2-DOF电磁能量采集系统[120], (d) 磁力调控2-DOF系统[124], (e) 超材料系统[125]

    Figure 12.Typical dynamic regulation energy harvesting systems based on coupled multi-DOF system: (a) vibration-wind energy harvesting system[118], (b) comb-like beam based wind energy harvesting system[119], (c) 2-DOF electromagnetic energy harvesting system[120], (d) magnetic regulation 2-DOF system[124], (e) metamaterial system[125]

    图 13基于自适应调控的典型动力学调控能量采集系统: (a)扭转结构和棘轮系统[128], (b)自适应调整固有频率系统[135], (c)离心力自适应控制系统[138]

    Figure 13.Typical dynamic regulation energy harvesting systems based on adaptive regulation: (a) twist rod and ratchet system[128], (b) adaptive natural frequency adjustment system[135], (c) centrifugal force adaptive control system[138]

    图 14基于策略调控的典型动力学调控能量采集系统: (a)飞轮储能策略[140], (b)平面涡卷弹簧储能与擒纵机构配合策略[145], (c)电荷泵浦策略[149], (d)引入相位延迟的非线性电路系统[151]

    Figure 14.Typical dynamic regulation energy harvesting systems based on strategy regulation: (a) flywheel energy storage strategy[140], (b) hair spring energy storage strategy and escapement mechanism[145], (c) charge pumping strategy[149], (d) nonlinear circuit system with phase delay[151]

  • [1] Zhou Y, Xiao X, Chen G, et al. Self-powered sensing technologies for human metaverse interfacing.Joule, 2022, 6(7): 1381-1389doi:10.1016/j.joule.2022.06.011
    [2] 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望. 机械工程学报, 2020, 55(7): 89-101 (Zhang Chi, Fu Xianpeng, Wang Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems.Journal of Mechanical Engineering, 2020, 55(7): 89-101 (in Chinese)

    Zhang Chi, Fu Xianpeng, Wang Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems. Journal of Mechanical Engineering, 2020, 55(7): 89-101 (in Chinese))
    [3] 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望. 机械工程学报, 2020, 56(13): 1-15 (Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters.Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese)doi:10.3901/JME.2020.13.001

    Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese))doi:10.3901/JME.2020.13.001
    [4] 张伟, 刘爽, 毛佳佳等. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报, 2022, 54(4): 1102-1112 (Zhang Wei, Liu Shuang, Mao Jiajia, et al. Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese)doi:10.6052/0459-1879-21-676

    Zhang Wei, Liu Shuang, Mao Jia-Jia, et al. Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese))doi:10.6052/0459-1879-21-676
    [5] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 (Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese)

    Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-27 (in Chinese))
    [6] 赵林川, 邹鸿翔, 刘丰瑞等. 压电−摩擦电复合型旋转能量采集动力学协同调控机制研究. 力学学报, 2021, 53(11): 1-11 (Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 1-11 (in Chinese)doi:10.6052/0459-1879-377

    Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 1-11 (in Chinese))doi:10.6052/0459-1879-377
    [7] Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: principle, progress, and perspectives.Journal of Sound and Vibration, 2022, 528: 116886doi:10.1016/j.jsv.2022.116886
    [8] Lai Z, Xu J, Bowen CR, et al. Self-powered and self-sensing devices based on human motion.Joule, 2022, 6(7): 1501-1565doi:10.1016/j.joule.2022.06.013
    [9] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)

    Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-909 (in Chinese))
    [10] 吴义鹏 李森, 蓝春波等. 压电能量俘获结构及其升频转换技术的发展现状. 机械工程学报, 2022, 58(20): 27-45 (Wu Yipeng, Li Sen, Lan Chunbo, et al. Recent development of piezoelectric energy harvesting structures and the technology of frequency up-converting oscillators.Journal of Mechanical Engineering, 2022, 58(20): 27-45 (in Chinese)doi:10.3901/JME.2022.20.027

    Wu Yipeng, Li Sen, Lan Chunbo, et al. Recent development of piezoelectric energy harvesting structures and the technology of frequency up-converting oscillators. Journal of Mechanical Engineering, 2022, 58(20): 27-45 (in Chinese))doi:10.3901/JME.2022.20.027
    [11] 陈仲生, 曹军义, 秦朝烨等. 汽车悬架同步振动抑制与能量收集综述与展望. 机械工程学报, 2022, 58(20): 3-26

    Chen Zhongsheng, Cao Junyi, Qin Zhaoye, et al. Simultaneous vibration suppression and energy harvesting of vehicle suspension systems: status and prospects.Journal of Mechanical Engineering, 2022, 58(20): 3-26 (in Chinese))
    [12] Zhao LC, Zou HX, Wei KX, et al. Mechanical intelligent energy harvesting: from methodology to applications.Advanced Energy Materials, 2023, 13(29): 2300557
    [13] Zou HX, Zhao LC, Gao QH, et al. Mechanical modulations for enhancing energy harvesting: principles, methods and applications.Applied Energy, 2019, 255: 113871doi:10.1016/j.apenergy.2019.113871
    [14] Wang Y, Liu X, Wang Y, et al. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things.ACS Nano, 2021, 15(10): 15700-15709doi:10.1021/acsnano.1c05127
    [15] Jia Y, Jiang Q, Sun H, et al. Wearable thermoelectric materials and devices for self-powered electronic systems.Advanced Materials, 2021, 33(42): 2102990doi:10.1002/adma.202102990
    [16] An J, Wang Z, Jiang T, et al. Reliable mechatronic indicator for self-powered liquid sensing toward smart manufacture and safe transportation.Materials Today, 2020, 41: 10-20doi:10.1016/j.mattod.2020.06.003
    [17] Zhao X, Askari H, Chen J. Nanogenerators for smart cities in the era of 5 g and internet of things.Joule, 2021, 5(6): 1391-1431doi:10.1016/j.joule.2021.03.013
    [18] Zhong Y, Zhao H, Guo Y, et al. An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city.Advanced Materials Technologies, 2019, 4(12): 1900741doi:10.1002/admt.201900741
    [19] Pan H, Li H, Zhang T, et al. A portable renewable wind energy harvesting system integrated s-rotor and H-rotor for self-powered applications in high-speed railway tunnels.Energy Conversion and Management, 2019, 196: 56-68doi:10.1016/j.enconman.2019.05.115
    [20] Cheng G, Lin ZH, Du ZL, et al. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator.ACS Nano, 2014, 8(2): 1932-1939doi:10.1021/nn406565k
    [21] Xie Y, Wang S, Niu S, et al. Multi-layered disk triboelectric nanogenerator for harvesting hydropower.Nano Energy, 2014, 6: 129-136doi:10.1016/j.nanoen.2014.03.015
    [22] Kan J, Fan C, Wang S, et al. Study on a piezo-windmill for energy harvesting.Renewable Energy, 2016, 97: 210-217doi:10.1016/j.renene.2016.05.055
    [23] Myers R, Vickers M, Kim H, et al. Small scale windmill.Applied Physics Letters, 2007, 90(5): 054106doi:10.1063/1.2435346
    [24] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments.Energy Conversion and Management, 2019, 181: 645-652doi:10.1016/j.enconman.2018.12.034
    [25] Wang S, Mu X, Wang X, et al. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy.ACS Nano, 2015, 9(10): 9554-9563doi:10.1021/acsnano.5b04396
    [26] Xie Y, Wang S, Lin L, et al. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy.ACS Nano, 2013, 7(8): 7119-7125doi:10.1021/nn402477h
    [27] Ye C, Dong K, An J, et al. A triboelectric-electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor.ACS Energy Letters, 2021, 6(4): 1443-1452
    [28] Wu J, Chen X, Chu Z, et al. A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3ceramic.Applied Physics Letters, 2016, 109(17): 173901doi:10.1063/1.4966125
    [29] Chen C, Sharafi A, Sun JQ. A high density piezoelectric energy harvesting device from highway traffic-design analysis and laboratory validation.Applied Energy, 2020, 269: 115073doi:10.1016/j.apenergy.2020.115073
    [30] Chen C, Xu TB, Yazdani A, et al. A high density piezoelectric energy harvesting device from highway traffic-system design and road test.Applied Energy, 2021, 299: 117331doi:10.1016/j.apenergy.2021.117331
    [31] Li X, Guo M, Dong S. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(4): 698-703doi:10.1109/TUFFC.2011.1862
    [32] Yan B, Zhang C, Li L. Design and fabrication of a high-efficiency magnetostrictive energy harvester for high-impact vibration systems.IEEE Transactions on Magnetics, 2015, 51(11): 8205404
    [33] Zou HX, Zhang WM, Li WB, et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments.Journal of Sound and Vibration, 2018, 416: 55-79doi:10.1016/j.jsv.2017.11.041
    [34] Ali A, Qi L, Zhang T, et al. Design of novel energy-harvesting regenerative shock absorber using barrel cam follower mechanism to power the auxiliaries of a driverless electric bus.Sustainable Energy Technologies and Assessments, 2021, 48: 101565doi:10.1016/j.seta.2021.101565
    [35] Cho S, Yun Y, Jang S, et al. Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator.Nano Energy, 2020, 71: 104584doi:10.1016/j.nanoen.2020.104584
    [36] Yun Y, Jang S, Cho S, et al. Exo-shoe triboelectric nanogenerator: toward high-performance wearable biomechanical energy harvester.Nano Energy, 2020, 71: 105525
    [37] Liang C, Ai J, Zuo L. Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier.Ocean Engineering, 2017, 136: 190-200doi:10.1016/j.oceaneng.2017.03.024
    [38] Mi J, Li Q, Liu M, et al. Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification.Applied Energy, 2020, 279: 115726doi:10.1016/j.apenergy.2020.115726
    [39] Zou HX, Zhang WM, Wei KX, et al. Design and analysis of a piezoelectric vibration energy harvester using rolling mechanism.Journal of Vibration and Acoustics, 2016, 138(5): 051007doi:10.1115/1.4033493
    [40] Rui X, Zeng Z, Zhang Y, et al. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels.IEEE Transactions on Vehicular Technology, 2019, 69(2): 1440-1451
    [41] Nezami S, Jung H, Lee S. Design of a disk-swing driven piezoelectric energy harvester for slow rotary system application.Smart Materials and Structures, 2019, 28(7): 074001doi:10.1088/1361-665X/ab1598
    [42] Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting.Sensors and Actuators A-Physical, 2017, 262: 123-129doi:10.1016/j.sna.2017.05.027
    [43] Yang Y, Shen Q, Jin J, et al. Rotational piezoelectric wind energy harvesting using impact-induced resonance.Applied Physics Letters, 2014, 105(5): 053901doi:10.1063/1.4887481
    [44] Fu H, Yeatman EM. Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation.Mechanical Systems and Signal Processing, 2019, 125: 229-244doi:10.1016/j.ymssp.2018.04.043
    [45] Chen J, Guo H, Liu G, et al. A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems.Nano Energy, 2017, 33: 508-514doi:10.1016/j.nanoen.2017.01.052
    [46] He L, Zhou J, Zhang Z, et al. Research on multi-group dual piezoelectric energy harvester driven by inertial wheel with magnet coupling and plucking.Energy Conversion and Management, 2021, 243: 114351doi:10.1016/j.enconman.2021.114351
    [47] Donelan JM, Li Q, Naing V, et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.Science, 2008, 319(5864): 807-810doi:10.1126/science.1149860
    [48] Rome LC, Flynn L, Goldman EM, et al. Generating electricity while walking with loads.Science, 2005, 309(5741): 1725doi:10.1126/science.1111063
    [49] Ahmad MM, Khan NM, Khan FU. Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism.International Journal of Energy Research, 2021, 45(11): 15609-15645doi:10.1002/er.6832
    [50] Pozzi M, Zhu M. Plucked piezoelectric bimorphs for knee-joint energy harvesting: Modelling and experimental validation.Smart Materials and Structures, 2011, 20(5): 055007doi:10.1088/0964-1726/20/5/055007
    [51] Fan K, Tan Q, Liu H, et al. Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations.Smart Materials and Structures, 2018, 27(8): 085001doi:10.1088/1361-665X/aaae92
    [52] Li W, Chau KT, Jiang JZ. Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting.IEEE Transactions on Magnetics, 2011, 47(10): 2624-2627doi:10.1109/TMAG.2011.2146233
    [53] Cai M, Wang J, Liao WH. Self-powered smart watch and wristband enabled by embedded generator.Applied Energy, 2020, 263: 114682doi:10.1016/j.apenergy.2020.114682
    [54] Zou HX, Zhang WM, Li WB, et al. Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester.Smart Materials and Structures, 2017, 26(11): 115023doi:10.1088/1361-665X/aa8eb8
    [55] Lin L, Wang S, Xie Y, et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy.Nano Letters, 2013, 13(6): 2916-2923doi:10.1021/nl4013002
    [56] Bai Y, Xu L, He C, et al. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping.Nano Energy, 2019, 66: 104117doi:10.1016/j.nanoen.2019.104117
    [57] Chen Y, Cheng Y, Jie Y, et al. Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator.Energy&Environmental Science, 2019, 12(9): 2678-2684
    [58] Wang H, Jasim A, Chen X. Energy harvesting technologies in roadway and bridge for different applications—a comprehensive review.Applied Energy, 2018, 212: 1083-1094doi:10.1016/j.apenergy.2017.12.125
    [59] Newnham RE, Zhang J, Meyer R. Cymbal transducers: A review ISAF 2000//Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics. IEEE, 2000, 1: 29-132
    [60] Evans M, Tang L, Tao K, et al. Design and optimisation of an underfloor energy harvesting system.Sensors and Actuators A:Physical, 2019, 285: 613-622doi:10.1016/j.sna.2018.12.002
    [61] Qian F, Xu TB, Zuo L. Design, optimization, modeling and testing of a piezoelectric footwear energy harvester.Energy Conversion and Management, 2018, 171: 1352-1364doi:10.1016/j.enconman.2018.06.069
    [62] Qian F, Xu TB, Zuo L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism.Energy, 2019, 189: 116140doi:10.1016/j.energy.2019.116140
    [63] Wu Z, Xu Q. Design and development of a novel two-directional energy harvester with single piezoelectric stack.IEEE Transactions on Industrial Electronics, 2020, 68(2): 1290-1298
    [64] Yang Z, Zu J. Toward harvesting vibration energy from multiple directions by a nonlinear compressive-mode piezoelectric transducer.IEEE-ASME Transactions on Mechatronics, 2016, 21(3): 1787-1791doi:10.1109/TMECH.2015.2459014
    [65] Yang Z, Zu J. High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism.Energy Conversion and Management, 2014, 88: 829-833doi:10.1016/j.enconman.2014.09.026
    [66] Yang Z, Zhu Y, Zu J. Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations.Smart Materials and Structures, 2015, 24(2): 025028doi:10.1088/0964-1726/24/2/025028
    [67] Yang Z, Zu J, Xu Z. Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits.IEEE-ASME Transactions on Mechatronics, 2016, 21(4): 2174-2184doi:10.1109/TMECH.2016.2530619
    [68] Wang Y, Yang Z, Cao D. On the offset distance of rotational piezoelectric energy harvesters.Energy, 2021, 220: 119676doi:10.1016/j.energy.2020.119676
    [69] Li HT, Yang Z, Zu J, et al. Numerical and experimental study of a compressive-mode energy harvester under random excitations.Smart Materials and Structures, 2017, 26(3): 035064doi:10.1088/1361-665X/aa5e61
    [70] Wang M, Yin P, Li Z, et al. Harnessing energy from spring suspension systems with a compressive-mode high-power-density piezoelectric transducer.Energy Conversion and Management, 2020, 220: 113050doi:10.1016/j.enconman.2020.113050
    [71] Li Z, Zu J, Yang Z. Introducing hinge mechanisms to one compressive-mode piezoelectric energy harvester.Journal of Renewable and Sustainable Energy, 2018, 10(3): 034704doi:10.1063/1.4997184
    [72] Li Z, Yang Z, Naguib H, et al. Design and studies on a low-frequency truss-based compressive-mode piezoelectric energy harvester.IEEE-ASME Transactions on Mechatronics, 2018, 23(6): 2849-2858doi:10.1109/TMECH.2018.2871781
    [73] Hua R, Liu H, Yang H, et al. A nonlinear interface integrated lever mechanism for piezoelectric footstep energy harvesting.Applied Physics Letters, 2018, 113(5): 053902doi:10.1063/1.5041259
    [74] Zhang YH, Lee CH. Permanent magnet energy harvesting pedal based on compliant lever and energy storage structure.Advances in Mechanical Engineering, 2020, 12(10): 1687814020963858
    [75] Yang K, Fei F, An H. Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response.Nonlinear Dynamics, 2019, 96(4): 2369-2392doi:10.1007/s11071-019-04929-3
    [76] Yang K, Fei F, Du J. Investigation of the lever mechanism for bistable nonlinear energy harvesting under Gaussian-type stochastic excitations.Journal of Physics D-Applied Physics, 2018, 52(5): 055501
    [77] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting.Physical Review Letters, 2009, 102(8): 080601doi:10.1103/PhysRevLett.102.080601
    [78] Erturk A, Hoffmann J, Inman DJ. A piezomagnetoelastic structure for broadband vibration energy harvesting.Applied Physics Letters, 2009, 94(25): 254102doi:10.1063/1.3159815
    [79] Cao DX, Lu YM, Lai SK, et al. A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester.Energy, 2022, 254: 124309doi:10.1016/j.energy.2022.124309
    [80] Tang L, Yang Y, Soh CK. Improving functionality of vibration energy harvesters using magnets.Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1433-1449doi:10.1177/1045389X12443016
    [81] Harne RL, Wang KW. A review of the recent research on vibration energy harvesting via bistable systems.Smart Materials and Structures, 2013, 22(2): 023001doi:10.1088/0964-1726/22/2/023001
    [82] Zhou S, Cao J, Erturk A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets.Applied Physics Letters, 2013, 102(17): 173901doi:10.1063/1.4803445
    [83] Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification.Applied Energy, 2014, 133: 33-39doi:10.1016/j.apenergy.2014.07.077
    [84] Zhou S, Cao J, Inman DJ, et al. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement.Journal of Sound and Vibration, 2016, 373: 223-235doi:10.1016/j.jsv.2016.03.017
    [85] Tang QC, Yang YL, Li X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion.Smart Materials and Structures, 2011, 20(12): 125011doi:10.1088/0964-1726/20/12/125011
    [86] Wang C, Lai SK, Wang JM, et al. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power.Applied Energy, 2021, 291: 116825doi:10.1016/j.apenergy.2021.116825
    [87] Zhang Y, Zheng R, Nakano K, et al. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting.Applied Physics Letters, 2018, 112(14): 143901doi:10.1063/1.5019907
    [88] Mei X, Zhou S, Yang Z, et al. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells.Mechanical Systems and Signal Processing, 2021, 148: 107167doi:10.1016/j.ymssp.2020.107167
    [89] Chen LQ, Jiang WA. Internal resonance energy harvesting.Journal of Applied Mechanics, 2015, 82(3): 031004doi:10.1115/1.4029606
    [90] Chen LQ, Jiang WA, Panyam M, et al. A broadband internally resonant vibratory energy harvester.Journal of Vibration and Acoustics, 2016, 138(6): 061007doi:10.1115/1.4034253
    [91] Chen L, Jiang W. A piezoelectric energy harvester based on internal resonance.Acta Mechanica Sinica, 2015, 31(2): 223-228doi:10.1007/s10409-015-0409-6
    [92] Aravindan M, Ali SF. Exploring 1: 3 internal resonance for broadband piezoelectric energy harvesting.Mechanical Systems and Signal Processing, 2021, 153: 107493doi:10.1016/j.ymssp.2020.107493
    [93] Xie Z, Wang T, Kwuimy CAK, et al. Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance.Smart Materials and Structures, 2019, 28(8): 085027doi:10.1088/1361-665X/ab2e15
    [94] Xu J, Tang J. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance.Applied Physics Letters, 2015, 107(21): 213902doi:10.1063/1.4936607
    [95] Xu J, Tang J. Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting.Journal of Intelligent Material Systems and Structures, 2017, 28(3): 323-338doi:10.1177/1045389X16642302
    [96] Bao B, Zhou S, Wang Q. Interplay between internal resonance and nonlinear magnetic interaction for multi-directional energy harvesting.Energy Conversion and Management, 2021, 244: 114465doi:10.1016/j.enconman.2021.114465
    [97] Younesian D, Alam MR. Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting.Applied Energy, 2017, 197: 292-302doi:10.1016/j.apenergy.2017.04.019
    [98] Yang T, Cao Q. Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity.Journal of Statistical Mechanics-Theory and Experiment, 2019, 2019(3): 033405doi:10.1088/1742-5468/ab0c15
    [99] Wang K, Zhou J, Ouyang H, et al. A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy.Mechanical Systems and Signal Processing, 2021, 151: 107368doi:10.1016/j.ymssp.2020.107368
    [100] Yang T, Cao Q, Hao Z. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting.Mechanical Systems and Signal Processing, 2021, 155: 107636doi:10.1016/j.ymssp.2021.107636
    [101] Yang T, Zhou S, Fang S, et al. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications.Applied Physics Reviews, 2021, 8(3): 031317doi:10.1063/5.0051432
    [102] Li M, Jing X. A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: design, analysis, and experimental tests.Energy Conversion and Management, 2021, 244: 114466doi:10.1016/j.enconman.2021.114466
    [103] Sun S, Tse PW. Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH).Mechanical Systems and Signal Processing, 2019, 114: 467-485doi:10.1016/j.ymssp.2018.05.029
    [104] Boisseau S, Despesse G, Seddik BA. Nonlinear h-shaped springs to improve efficiency of vibration energy harvesters.Journal of Applied Mechanics, 2013, 80(6): 061013doi:10.1115/1.4023961
    [105] Paul K, Amann A, Roy S. Tapered nonlinear vibration energy harvester for powering internet of things.Applied Energy, 2021, 283: 116267doi:10.1016/j.apenergy.2020.116267
    [106] Dhote S, Yang Z, Behdinan K, et al. Enhanced broadband multi-mode compliant orthoplanar spring piezoelectric vibration energy harvester using magnetic force.International Journal of Mechanical Sciences, 2018, 135: 63-71doi:10.1016/j.ijmecsci.2017.11.012
    [107] Dhote S, Zu J, Zhu Y. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring.Applied Physics Letters, 2015, 106(16): 163903doi:10.1063/1.4919000
    [108] Qian F, Abaid N, Zuo L. Multiple-scale analysis of a tunable bi-stable piezoelectric energy harvester.ASME Letters in Dynamic Systems and Control, 2020, 1(2): 021006
    [109] Jung SM, Yun KS. Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation.Applied Physics Letters, 2010, 96(11): 111906doi:10.1063/1.3360219
    [110] Fang S, Zhou S, Yurchenko D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: a review.Mechanical Systems and Signal Processing, 2022, 166: 108419doi:10.1016/j.ymssp.2021.108419
    [111] Machado SP, Febbo M, Ramírez JM, et al. Rotational double-beam piezoelectric energy harvester impacting against a stop.Journal of Sound and Vibration, 2020, 469: 115141doi:10.1016/j.jsv.2019.115141
    [112] Fang S, Wang S, Zhou S, et al. Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting.Applied Physics Letters, 2020, 116(6): 063903doi:10.1063/1.5140060
    [113] Zhang X, Hu J, Yang Q, et al. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling.Advanced Functional Materials, 2021, 31(50): 2106527doi:10.1002/adfm.202106527
    [114] Deng H, Du Y, Wang Z, et al. Poly-stable energy harvesting based on synergetic multistable vibration.Communications Physics, 2019, 2(1): 21doi:10.1038/s42005-019-0117-9
    [115] Fang S, Fu X, Du X, et al. A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers.Applied Physics Letters, 2019, 114(23): 233902doi:10.1063/1.5098439
    [116] Lai SK, Wang C, Zhang LH. A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations.Mechanical Systems and Signal Processing, 2019, 122: 87-102doi:10.1016/j.ymssp.2018.12.020
    [117] Chen X, Gao L, Chen J, et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system.Nano Energy, 2020, 69: 104440doi:10.1016/j.nanoen.2019.104440
    [118] Iqbal M, Khan FU. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications.Energy Conversion and Management, 2018, 172: 611-618doi:10.1016/j.enconman.2018.07.044
    [119] Hu G, Wang J, Tang L. A comb-like beam based piezoelectric system for galloping energy harvesting.Mechanical Systems and Signal Processing, 2021, 150: 107301doi:10.1016/j.ymssp.2020.107301
    [120] Yu N, Ma H, Wu C, et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester.Mechanical Systems and Signal Processing, 2021, 156: 107608doi:10.1016/j.ymssp.2021.107608
    [121] Gu L, Livermore C. Compact passively self-tuning energy harvesting for rotating applications.Smart materials and structures, 2011, 21(1): 015002
    [122] Gu L, Livermore C. Passive self-tuning energy harvester for extracting energy from rotational motion.Applied Physics Letters, 2010, 97(8): 081904doi:10.1063/1.3481689
    [123] Kim P, Nguyen MS, Kwon O, et al. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester.Scientific Reports, 2016, 6(1): 34411doi:10.1038/srep34411
    [124] Zou HX, Zhang WM, Li WB, et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion.Energy Conversion and Management, 2017, 148: 1391-8doi:10.1016/j.enconman.2017.07.005
    [125] Xu X, Wu Q, Pang Y, et al. Multifunctional metamaterials for energy harvesting and vibration control.Advanced Functional Materials, 2021, 32(7): 2107896
    [126] Yong S, Wang J, Yang L, et al. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator.Advanced Energy Materials, 2021, 11(26): 2101194doi:10.1002/aenm.202101194
    [127] Zhang Y, Luo A, Wang Y, et al. Rotational electromagnetic energy harvester for human motion application at low frequency.Applied Physics Letters, 2020, 116(5): 053902doi:10.1063/1.5142575
    [128] Luo A, Zhang Y, Dai X, et al. An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency.Applied Energy, 2020, 279: 115762doi:10.1016/j.apenergy.2020.115762
    [129] Fan K, Wang C, Chen C, et al. A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy.Renewable Energy, 2021, 179: 339-350doi:10.1016/j.renene.2021.06.139
    [130] Fan K, Hao J, Wang C, et al. An eccentric mass-based rotational energy harvester for capturing ultralow-frequency mechanical energy.Energy Conversion and Management, 2021, 241: 114301doi:10.1016/j.enconman.2021.114301
    [131] Wang Z, Du Y, Li T, et al. A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design.Applied Energy, 2021, 303: 117577doi:10.1016/j.apenergy.2021.117577
    [132] Shi G, Yang Y, Chen J, et al. A broadband piezoelectric energy harvester with movable mass for frequency active self-tuning.Smart Materials and Structures, 2020, 29(5): 055023doi:10.1088/1361-665X/ab7f44
    [133] Sun W, Seok J. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration.Energy Conversion and Management, 2020, 205: 112472doi:10.1016/j.enconman.2020.112472
    [134] Kim H, Smith A, Barry O, et al. Self-resonant energy harvester with a passively tuned sliding mass//Proceedings of the ASME 2019 Dynamic Systems and Control Conference. Park City, Utah, USA, October 8-11, 2019. ASME, 2019: V002T27A002
    [135] Shin YH, Choi J, Kim SJ, et al. Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting.Nano Energy, 2020, 77: 104986doi:10.1016/j.nanoen.2020.104986
    [136] Kim H, Tai WC, Parker J, et al. Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires.Mechanical Systems and Signal Processing, 2019, 122: 769-785doi:10.1016/j.ymssp.2018.12.040
    [137] Mei X, Zhou R, Fang S, et al. Theoretical modeling and experimental validation of the centrifugal softening effect for high-efficiency energy harvesting in ultralow-frequency rotational motion.Mechanical Systems and Signal Processing, 2021, 152: 107424doi:10.1016/j.ymssp.2020.107424
    [138] Fang S, Wang S, Zhou S, et al. Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting.Journal of Sound and Vibration, 2020, 488: 115643doi:10.1016/j.jsv.2020.115643
    [139] Mei X, Zhou R, Yang B, et al. Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation.Journal of Sound and Vibration, 2021, 505: 116146doi:10.1016/j.jsv.2021.116146
    [140] Xie Z, Zeng Z, Wang Y, et al. Novel sweep-type triboelectric nanogenerator utilizing single freewheel for random triggering motion energy harvesting and driver habits monitoring.Nano Energy, 2020, 68: 104360doi:10.1016/j.nanoen.2019.104360
    [141] Lu X, Xu Y, Qiao G, et al. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission.Nano Energy, 2020, 72: 104726doi:10.1016/j.nanoen.2020.104726
    [142] Yang W, Gao Q, Xia X, et al. Travel switch integrated mechanical regulation triboelectric nanogenerator with linear-rotational motion transformation mechanism.Extreme Mechanics Letters, 2020, 37: 100718doi:10.1016/j.eml.2020.100718
    [143] Yin M, Lu X, Qiao G, et al. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting.Advanced Energy Materials, 2020, 10(22): 2000627doi:10.1002/aenm.202000627
    [144] Yang Y, Yu X, Meng L, et al. Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting.Extreme Mechanics Letters, 2021, 46: 101338doi:10.1016/j.eml.2021.101338
    [145] Han KW, Kim JN, Rajabi-Abhari A, et al. Long-lasting and steady triboelectric energy harvesting from low-frequency irregular motions using escapement mechanism.Advanced Energy Materials, 2020, 11(4): 2002929
    [146] Xu L, Bu TZ, Yang XD, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators.Nano Energy, 2018, 49: 625-633doi:10.1016/j.nanoen.2018.05.011
    [147] Wang H, Xu L, Bai Y, et al. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling.Nature Communications, 2020, 11(1): 4203doi:10.1038/s41467-020-17891-1
    [148] Yang Z, Yang Y, Wang H, et al. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current.Advanced Energy Materials, 2021, 11(28): 2101147doi:10.1002/aenm.202101147
    [149] Bai Y, Xu L, Lin S, et al. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators.Advanced Energy Materials, 2020, 10(21): 2000605doi:10.1002/aenm.202000605
    [150] Zhang Z, Xiang H, Tang L. Modeling, analysis and comparison of four charging interface circuits for piezoelectric energy harvesting.Mechanical Systems and Signal Processing, 2021, 152: 107476doi:10.1016/j.ymssp.2020.107476
    [151] Lallart M, Zhou S, Yang Z, et al. Coupling mechanical and electrical nonlinearities: the effect of synchronized discharging on tristable energy harvesters.Applied Energy, 2020, 266: 114516doi:10.1016/j.apenergy.2020.114516
  • 加载中
图(14)
计量
  • 文章访问数:366
  • HTML全文浏览量:98
  • PDF下载量:202
  • 被引次数:0
出版历程
  • 收稿日期:2023-07-28
  • 录用日期:2023-09-27
  • 网络出版日期:2023-09-28
  • 刊出日期:2023-10-18

目录

    /

      返回文章
      返回
        Baidu
        map