EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪能量采集及自供能海洋无人机电系统研究进展

邹鸿翔 苏昌胜 赵林川 张文明 魏克湘

邹鸿翔, 苏昌胜, 赵林川, 张文明, 魏克湘. 波浪能量采集及自供能海洋无人机电系统研究进展. 力学学报, 2023, 55(10): 2115-2131 doi: 10.6052/0459-1879-23-334
引用本文: 邹鸿翔, 苏昌胜, 赵林川, 张文明, 魏克湘. 波浪能量采集及自供能海洋无人机电系统研究进展. 力学学报, 2023, 55(10): 2115-2131 doi: 10.6052/0459-1879-23-334
Zou Hongxiang, Su Changsheng, Zhao Linchuan, Zhang Wenming, Wei Kexiang. Research progress of wave energy harvesting and self-powered marine unmanned electromechanical system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2115-2131 doi: 10.6052/0459-1879-23-334
Citation: Zou Hongxiang, Su Changsheng, Zhao Linchuan, Zhang Wenming, Wei Kexiang. Research progress of wave energy harvesting and self-powered marine unmanned electromechanical system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2115-2131 doi: 10.6052/0459-1879-23-334

波浪能量采集及自供能海洋无人机电系统研究进展

doi: 10.6052/0459-1879-23-334
基金项目: 国家自然科学基金(12172127, 52175089), 中国博士后科学基金(2023T160418, 2022M722086)和湖南省研究生科研创新项目(CX20221291)资助
详细信息
    通讯作者:

    魏克湘, 教授, 主要研究方向为动力学与控制. E-mail: kxwei@hnie.edu.cn

  • 中图分类号: P743.2, P756.6

RESEARCH PROGRESS OF WAVE ENERGY HARVESTING AND SELF-POWERED MARINE UNMANNED ELECTROMECHANICAL SYSTEM

  • 摘要: 海洋环境传感器、航行器/机器人等无人机电系统可用于海洋军事侦察、资源探测、生态监测、海洋大型设备设施状态监测等, 有益于海洋生态保护、海洋经济发展和海洋权益维护. 长期有效供能是制约海洋无人机电系统在辽阔海域作业的瓶颈难题. 电池电量有限且污染环境, 线缆供电成本高且限制了海洋机电系统的机动性. 波浪能是最丰富并且可以被大规模利用的可再生能源之一. 将波浪能量转换为电能, 可以实现海洋环境机电系统的自供能传感、控制与驱动, 具备可持续、灵活便捷和节能环保的优势, 有望破解海洋无人机电系统供能瓶颈难题. 此外, 随着化石能源面临着枯竭和严重的环境问题, 开发海洋能源能够缓解能源危机、减少环境污染并促进经济发展. 文章全面论述波浪能量采集、基于波浪能量采集的自供能海洋无人机电系统和海洋无人机电系统的研究进展, 讨论目前自供能海洋无人机电系统面临的关键挑战并进行展望, 为解决海洋无人机电系统长期有效供能难题提供多维度参考, 推动自供能传感、控制与驱动等技术的发展与应用, 助力海洋无人机电系统应用于深海远海.

     

  • 图  1  3类波浪驱动机制

    Figure  1.  Three types of wave driving mechanisms

    图  2  电磁波浪能量采集

    Figure  2.  Electromagnetic wave energy harvesting

    图  3  压电波浪能量采集. (a)基于压电悬臂梁的波浪能量采集[31]; (b)振荡水柱式压电波浪能量采集[35]; (c)基于压电膜的波浪能量采集方法[36]; (d)压电材料与太阳能水凝胶集成[38]

    Figure  3.  Piezoelectric wave energy harvesting. (a) Wave energy harvesting based on piezoelectric cantilever beam[31]; (b) Oscillating water column piezoelectric wave energy harvesting[35]; (c) Wave energy harvesting based on piezoelectric diaphragm[36]; (d) Integration of piezoelectric materials and solar hydrogel[38]

    图  4  基于摩擦纳米发电机的波浪能量采集. (a)滚筒式摩擦纳米发电机波浪能量采集[45]; (b)仿生蝴蝶式摩擦纳米发电机波浪能量采集[48]; (c)仿生莲花式摩擦纳米发电机波浪能量采集[50]; (d)环面球摩擦纳米发电机波浪能量采集[51]

    Figure  4.  Wave energy harvesting based on TENG. (a) Wave energy harvesting based on cylindrical TENG[45]; (b) Wave energy harvesting based on bionic butterfly TENG[48]; (c) Wave energy harvesting based on bionic lotus TENG[50]; (d) Wave energy harvesting based on toroidal sphere[51]

    图  5  复合机电转换机制波浪能量采集

    Figure  5.  Wave energy harvesting based on hybrid electromechanical conversion mechanism

    图  6  自供能海洋环境传感器[53]

    Figure  6.  Self powered marine environmental sensors[53]

    图  7  自供能航行器/机器人(续)

    Figure  7.  Self-powered vehicles (continued)

    图  8  海洋环境无人机电系统

    Figure  8.  Unmanned electromechanical systems in marine environments

    图  9  无人水面航行器. (a)小型自主水面航行器 [89]; (b)自主水面航行器舰队单元[90]; (c)振动驱动两栖机器人[95]; (d)仿䲟鱼两栖机器人[96]

    Figure  9.  Unmanned surface vehicles. (a) Small autonomous surface vehicle[89]; (b) Fleet unit of autonomous surface vehicle[90]; (c) Vibration driven amphibious robot[95]; (d) A remora-like amphibious robot[96]

    图  10  有缆水下机器人. (a)用于鱼样采集有缆水下机器人[98]; (b)切割型有缆水下机器人[99]; (c)探测有缆水下机器人[100]; (d)具有光学定位系统的有缆水下机器人[104]

    Figure  10.  Remotely operated vehicles. (a) Remotely operated vehicle for fish sampling[98]; (b) Cut-out remotely operated vehicle[99]; (c) Remotely operated vehicle for detection[100]; (d) Remotely operated vehicle with optical positioning system[104]

    图  11  自主水下机器人. (a)矿井隧道探测自主水下机器人[110]; (b) DAGON[111]; (c)DaryaBird[115]; (d)基于线性肌肉调节的自主水下机器人[117]

    Figure  11.  Autonomous underwater vehicles. (a) Autonomous underwater vehicle for mine tunnel detection[110]; (b) DAGON[111]; (c) DaryaBird[115]; (d) Autonomous underwater vehicle based on linear muscle regulation[117]

    图  12  仿生软体机器人. (a)仿生机器鱼[121]; (b)深海软体机器人[126]; (c)仿生水下多足机器人[130]; (d)软体机械手[131]

    Figure  12.  Biomimetic soft robot. (a) Bionic robotic fish[121]; (b) Deep sea soft robot[126]; (c) Bionic underwater multi-legged robot[130]; (d) Soft manipulator[131]

    表  1  中国海洋能资源储量[13]

    Table  1.   China's marine energy resources reserves[13]

    Energy typeTheoretical reserves/kWAvailable reserves/kW
    wave energy5.74 × 10115.78 × 108
    ocean thermal energy3.66 × 10103.66 × 108
    tidal energy1.10 × 1082.18 × 107
    ocean salinity energy1.14 × 1081.14 × 107
    tidal current energy1.40 × 1074.19 × 106
    total ocean energy reserves6.11 × 10119.81 × 108
    下载: 导出CSV

    表  2  波浪能量采集方法比较

    Table  2.   Comparison of wave energy harvesting methods

    ReferencesElectromechanical conversion mechanismExcitationPowerPower density
    Li et al.[19]EMG1 Hz, 200 mm520 mW0.66 mW/cm3
    Pan et al.[22]EMG1.5 Hz, 50 mm64.4 mW0.3 mW/cm3
    Li et al.[18]EMG400 ~ 800 mm0.13 W0.21 mW/cm3
    Shi et al.[33]PEH0.9 Hz, 70 mm6.32 mW
    He et al.[34]PEH1 Hz41.5 mW
    Jung et al.[45]TENG0.33 Hz117 μW*0.69 W/m3*
    Qu et al.[49]TENG2 Hz, 90 mm0.22 mW/m2
    Ouyang et al.[56]TENG & EMG1 Hz, 120 mm0.76 mW (EMG)79 W/m3(TENG)
    Han et al.[59]TENG & EMG1.4 Hz5.2 mW, 43.6 mW2.02 W/m3, 16.96 W/m3
    注: *表示为平均功率或平均功率密度
    Note: * means average power or average power density
    下载: 导出CSV
    Baidu
  • [1] Melnyk O, Volianska Y, Onishchenko O, et al. Marine incidents management and information exchange technologies in the process of safe ship operation. International Journal of Computer Science and Network Security, 2023, 23(1): 64
    [2] Xia P, Xu F, Song Z, et al. Sensory augmentation for subsea robot teleoperation. Computers in Industry, 2023, 145: 103836 doi: 10.1016/j.compind.2022.103836
    [3] Glaviano F, Esposito R, Cosmo AD, et al. Management and sustainable exploitation of marine environments through smart monitoring and automation. Journal of Marine Science and Engineering, 2022, 10(2): 297 doi: 10.3390/jmse10020297
    [4] Sruthy V, Preetha P. Implementation and operational feasibility of an offshore floating charging station for sustainable marine transportation. Environment, Development and Sustainability, 2023, in press
    [5] Gallutia D, Fard MT, Soto MG, et al. Recent advances in wave energy conversion systems: From wave theory to devices and control strategies. Ocean Engineering, 2022, 252: 111105 doi: 10.1016/j.oceaneng.2022.111105
    [6] Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 2022, 161: 112279 doi: 10.1016/j.rser.2022.112279
    [7] Algarni S, Tirth V, Alqahtani T, et al. Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable Energy Technologies and Assessments, 2023, 56: 103098 doi: 10.1016/j.seta.2023.103098
    [8] Østergaard PA, Duic N, Noorollahi Y, et al. Renewable energy for sustainable development. Renewable Energy, 2022, 199: 1145-1152 doi: 10.1016/j.renene.2022.09.065
    [9] Pennock S, Noble DR, Vardanyan Y, et al. A modelling framework to quantify the power system benefits from ocean energy deployments. Applied Energy, 2023, 347: 121413 doi: 10.1016/j.apenergy.2023.121413
    [10] Cavallo M, Bugeja Said A, Pérez Agúndez JA. Who is in and who is out in ocean economies development? Sustainability, 2023, 15(4): 3253
    [11] Ahn S, Neary VS, Ha T. A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates. Renewable Energy, 2023, 207: 499-511 doi: 10.1016/j.renene.2023.03.034
    [12] Liang X, Liu S, Yang H, et al. Triboelectric nanogenerators for ocean wave energy harvesting: unit integration and network construction. Electronics, 2023, 12(1): 225 doi: 10.3390/electronics12010225
    [13] 路晴, 史宏达. 中国波浪能技术进展与未来趋势. 海岸工程, 2022, 41(1): 1-12 (Lu Qing, Shi Hongda. Progress and future trend of wave energy technology in China. Coastal Engineering, 2022, 41(1): 1-12 (in Chinese)

    Lu Qing, Shi Hongda. Progress and future trend of wave energy technology in China, Coastal Engineering, 2022, 41(1): 1-12. (in Chinese))
    [14] Phillips RE. Harvesting ocean wave energy: a proposed system for conversion into electrical power. Natural Gas & Electricity, 2019, 36(2): 9-15
    [15] Zhang Y, Zhao Y, Sun W, et al. Ocean wave energy converters: technical principle, device realization, and performance evaluation. Renewable and Sustainable Energy Reviews, 2021, 141: 110764 doi: 10.1016/j.rser.2021.110764
    [16] Bao X, Li F, Sun H, et al. Performance characteristics and parameter analysis of a multi-DOF wave energy converter with hybrid power take-off systems. Energy Conversion and Management, 2023, 278: 116751 doi: 10.1016/j.enconman.2023.116751
    [17] Wang ZL. Maxwell’s equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v (r, t). Journal of Physics Communications, 2022, 6(8): 085013 doi: 10.1088/2399-6528/ac871e
    [18] Li Y, Guo Q, Huang M, et al. Study of an electromagnetic ocean wave energy harvester driven by an efficient swing body toward the self-powered ocean buoy application. IEEE Access, 2019, 7: 129758-129769 doi: 10.1109/ACCESS.2019.2937587
    [19] Li Y, Ma X, Tang T, et al. High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test. Applied Energy, 2022, 322: 119498 doi: 10.1016/j.apenergy.2022.119498
    [20] Zou HX, Zhao LC, Gao QH, et al. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Applied Energy, 2019, 255: 113871 doi: 10.1016/j.apenergy.2019.113871
    [21] Liang C, Ai J, Zuo L. Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Engineering, 2017, 136: 190-200 doi: 10.1016/j.oceaneng.2017.03.024
    [22] Pan Q, Wang B, Zhang L, et al. Whisk-inspired motion converter for ocean wave energy harvesting. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1808-1811 doi: 10.1109/TMECH.2021.3093939
    [23] Chen S, Jiang B, Li X, et al. Design, dynamic modeling and wave basin verification of a hybrid wave–current energy converter. Applied Energy, 2022, 321: 119320 doi: 10.1016/j.apenergy.2022.119320
    [24] Lee G, Lee D, Park J, et al. Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Communications Physics, 2022, 5(1): 94 doi: 10.1038/s42005-022-00869-4
    [25] Cai W, Roussinova V, Stoilov V. Piezoelectric wave energy harvester. Renewable Energy, 2022, 196: 973-982 doi: 10.1016/j.renene.2022.07.051
    [26] Vipin V, Koley S. Mathematical modeling of a submerged piezoelectric wave energy converter device installed over an undulated seabed. Renewable Energy, 2022, 200: 1382-1392 doi: 10.1016/j.renene.2022.10.051
    [27] Lee G, Park J, Choi W, et al. Multiband elastic wave energy localization for highly amplified piezoelectric energy harvesting using trampoline metamaterials. Mechanical Systems and Signal Processing, 2023, 200: 110593 doi: 10.1016/j.ymssp.2023.110593
    [28] Kazemi S, Nili-Ahmadabadi M, Tavakoli MR, et al. Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester. Renewable Energy, 2021, 179: 528-536 doi: 10.1016/j.renene.2021.07.042
    [29] Kim KJ, Kim J, Kim D. Slosh-induced piezoelectric energy harvesting in a liquid tank. Renewable Energy, 2023, 206: 409-417 doi: 10.1016/j.renene.2023.02.049
    [30] 孙维鹏, 刘宸涵, 郁小彬等. 钝体表面附着物对低速水流压电俘能器性能影响研究. 力学学报, 2023, 55(7): 1463-1472 (Sun Weipeng, Liu Chenhan, Yu Xiaobin, et al. Effect of attachment for bluf body surface onpiezoelectric energy harvester performance in low velocity water flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1463-1472 (in Chinese)

    Sun Wepeng, Liu Chenhan, Yu Xiaobin et al. Effect of attachment for bluf body surface onpiezoelectric energy harvester performance in low velocity water flow. Chinese Journal of Theoretical and Applied Mechanics. 2023, 55(7): 1463-1472(in Chinese))
    [31] Chen SE, Yang RY, Qiu ZH, et al. A piezoelectric wave energy harvester using plucking-driven and frequency up-conversion mechanism. Energies, 2021, 14(24): 8441 doi: 10.3390/en14248441
    [32] Viet NV, Xie XD, Liew KM, et al. Energy harvesting from ocean waves by a floating energy harvester. Energy, 2016, 112: 1219-1226 doi: 10.1016/j.energy.2016.07.019
    [33] Shi G, Tong D, Xia Y, et al. A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls. Applied Energy, 2022, 310: 118511 doi: 10.1016/j.apenergy.2021.118511
    [34] He L, Liu R, Liu X, et al. A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling. Renewable Energy, 2023, 210: 397-407 doi: 10.1016/j.renene.2023.04.043
    [35] Du X, Zhang M, Kang H, et al. Theoretical study on a novel piezoelectric ocean wave energy harvester driven by oscillating water column. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-21
    [36] Chen SE, Yang RY, Wu GK, et al. A piezoelectric wave-energy converter equipped with a geared-linkage-based frequency up-conversion mechanism. Sensors, 2020, 21(1): 204 doi: 10.3390/s21010204
    [37] 钱有华, 陈娅昵. 双稳态压电俘能器的簇发振荡与俘能效率分析. 力学学报, 2022, 54(11): 3157-3168

    Qian Youhua, Chen Yani. Bursting oscillations and energy harvesting efficiency analysis of bistable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168 (in Chinese))
    [38] Meng S, Tang CY, Yang J, et al. A wave-driven piezoelectrical film for interfacial steam generation: beyond the limitation of hydrogel. Advanced Science, 2022, 9(33): 2204187
    [39] Zhang C, Hao Y, Yang J, et al. Recent advances in triboelectric nanogenerators for marine exploitation. Advanced Energy Materials, 2023, 13(19): 2300387
    [40] Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano energy, 2012, 1(2): 328-334 doi: 10.1016/j.nanoen.2012.01.004
    [41] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 (Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese) doi: 10.6052/0459-1879-21-411

    Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927(in Chinese)) doi: 10.6052/0459-1879-21-411
    [42] Li Y, Guo Z, Zhao Z, et al. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Applied Energy, 2023, 336: 120792 doi: 10.1016/j.apenergy.2023.120792
    [43] Zhao LC, Zou HX, Wei KX, et al. Mechanical intelligent energy harvesting: from methodology to applications. Advanced Energy Materials, 2023, 13(29): 2300557
    [44] Wang W, Yang D, Yan X, et al. Triboelectric nanogenerators: the beginning of blue dream. Frontiers of Chemical Science and Engineering, 2023, 17(6): 635-678 doi: 10.1007/s11705-022-2271-y
    [45] Jung H, Ouro-Koura H, Salalila A, et al. Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy, 2022, 99: 107365 doi: 10.1016/j.nanoen.2022.107365
    [46] Zhang D, Shi J, Si Y, et al. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61: 132-140 doi: 10.1016/j.nanoen.2019.04.046
    [47] Gao Q, Xu Y, Yu X, et al. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano, 2022, 16(4): 6781-6788 doi: 10.1021/acsnano.2c01594
    [48] Wang X, Gao Q, Zhu M, et al. Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Applied Energy, 2022, 323: 119648 doi: 10.1016/j.apenergy.2022.119648
    [49] Qu Z, Huang M, Chen C, et al. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Advanced Functional Materials, 2022, 32(29): 2202048 doi: 10.1002/adfm.202202048
    [50] Wen H, Yang P, Liu G, et al. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy, 2022, 93: 106796 doi: 10.1016/j.nanoen.2021.106796
    [51] Liu W, Xu L, Bu T, et al. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy, 2019, 58: 499-507 doi: 10.1016/j.nanoen.2019.01.088
    [52] 赵林川, 邹鸿翔, 刘丰瑞等. 压电与摩擦电复合型旋转能量采集动力学协同调控机制研究. 力学学报, 2021, 53(11): 2961-2971 (Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971 (in Chinese) doi: 10.6052/0459-1879-21-410

    Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971 (in Chinese)) doi: 10.6052/0459-1879-21-410
    [53] Zhao LC, Zou HX, Xie X, et al. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy, 2023, 108: 108222 doi: 10.1016/j.nanoen.2023.108222
    [54] Panda S, Hajra S, Oh Y, et al. Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small, 2023, 19(25): 202300847
    [55] Wang Y, Qian Z, Zhao C, et al. Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing. Advanced Materials Technologies, 2023, 8(4): 2201245 doi: 10.1002/admt.202201245
    [56] Ouyang R, Miao J, Wu T, et al. Magnets assisted triboelectric nanogenerator for harvesting water wave energy. Advanced Materials Technologies, 2022, 7(9): 2200403 doi: 10.1002/admt.202200403
    [57] Sun Y, Zheng F, Wei X, et al. Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Applied Materials & Interfaces, 2022, 14(13): 15187-94
    [58] Wang J, Pan L, Guo H, et al. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Advanced Energy Materials, 2019, 9(8): 1802892 doi: 10.1002/aenm.201802892
    [59] Han C, Cao Z, Yuan Z, et al. Hybrid triboelectric‐electromagnetic nanogenerator with a double-sided fluff and double halbach array for wave energy harvesting. Advanced Functional Materials, 2022, 32(36): 2205011 doi: 10.1002/adfm.202205011
    [60] Cao X, Xiong Y, Sun J, et al. Piezoelectric nanogenerators derived self‐powered sensors for multifunctional applications and artificial intelligence. Advanced Functional Materials, 2021, 31(33): 2102983 doi: 10.1002/adfm.202102983
    [61] Zhang C, Yuan W, Zhang B, et al. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Advanced Functional Materials, 2022, 32(18): 2111775 doi: 10.1002/adfm.202111775
    [62] Zhao LC, Zou HX, Zhao YJ, et al. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Applied Energy, 2022, 314: 118983 doi: 10.1016/j.apenergy.2022.118983
    [63] Chen X, Bao G, Xie S, et al. A self-powered wide-range ocean-wave sensor enabled by triboelectric nanogenerators embedded with overrunning clutches. Nano Energy, 2023, 115: 108685
    [64] Zhang W, He W, Dai S, et al. Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy, 2023, 111: 108432 doi: 10.1016/j.nanoen.2023.108432
    [65] Demircioglu O, Cicek MO, Doganay D, et al. Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions. Nano Energy, 2023, 107: 108157 doi: 10.1016/j.nanoen.2022.108157
    [66] Wang H, Zhu C, Wang W, et al. A stackable triboelectric nanogenerator for wave-driven marine buoys. Nanomaterials, 2022, 12(4): 594
    [67] Wang H, Wu W, Cui L, et al. A new wave energy converter for marine data buoy. IEEE Transactions on Industrial Electronics, 2022, 70(2): 2076-2084
    [68] Liang X, Liu S, Ren Z, et al. Self‐powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Advanced Functional Materials, 2022, 32(35): 2205313 doi: 10.1002/adfm.202205313
    [69] Xie Q, Zhang T, Pan Y, et al. A novel oscillating buoy wave energy harvester based on a spatial double X-shaped mechanism for self-powered sensors in sea-crossing bridges. Energy Conversion and Management, 2020, 204: 112286 doi: 10.1016/j.enconman.2019.112286
    [70] Tian B, Zhou W, Li L, et al. Research on realization mechanisms of multifunctional hybrid glider//Oceans, Shanghai, 2016. IEEE, 2016: 1-5
    [71] Townsend NC, Shenoi RA. Feasibility study of a new energy scavenging system for an autonomous underwater vehicle. Autonomous Robots, 2016, 40(6): 973-985 doi: 10.1007/s10514-015-9506-4
    [72] Li H, Wu X, Zhang Z, et al. An extended-range wave-powered autonomous underwater vehicle applied to underwater wireless sensor networks. Iscience, 2022, 25(8): 104738 doi: 10.1016/j.isci.2022.104738
    [73] Chen W, Lu Y, Li S, et al. A bio-inspired foldable-wing wave energy converter for ocean robots. Applied Energy, 2023, 334: 120696 doi: 10.1016/j.apenergy.2023.120696
    [74] Urso M, Ussia M, Pumera M. Smart micro- and nanorobots for water purification. Nature Reviews Bioengineering, 2023, 1(4): 236-251 doi: 10.1038/s44222-023-00025-9
    [75] Karthikeyan A, Joseph A, Nair BG. Promising bioactive compounds from the marine environment and their potential effects on various diseases. Journal of Genetic Engineering and Biotechnology, 2022, 20(1): 14 doi: 10.1186/s43141-021-00290-4
    [76] Kabanov A, Kramar V. Marine internet of things platforms for interoperability of marine robotic agents: An overview of concepts and architectures. Journal of Marine Science and Engineering, 2022, 10(9): 1279 doi: 10.3390/jmse10091279
    [77] Josey SA, Grist JP, Mecking JV, et al. A clearer view of Southern Ocean air-sea interaction using surface heat flux asymmetry. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2023, 381(2249): 20220067 doi: 10.1098/rsta.2022.0067
    [78] Hu G, Li L, Ren Z, et al. The characteristics of the 2022 tonga volcanic tsunami in the pacific ocean. Natural Hazards and Earth System Sciences, 2023, 23(2): 675-691 doi: 10.5194/nhess-23-675-2023
    [79] Nose T, Rabault J, Waseda T, et al. A comparison of an operational wave-ice model product and drifting wave buoy observation in the central arctic ocean: Investigating the effect of sea ice forcing in thin ice cover. arXiv, 2023, 230202820
    [80] Kodaira T, Sasmal K, Miratsu R, et al. Uncertainty in wave hindcasts in the north atlantic ocean. Marine Structures, 2023, 89: 103370 doi: 10.1016/j.marstruc.2023.103370
    [81] Zhao T, Xu M, Xiao X, et al. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88: 106199 doi: 10.1016/j.nanoen.2021.106199
    [82] Liu S, Song M, Chen S, et al. An intelligent modeling framework to optimize the spatial layout of ocean moored buoy observing networks. Frontiers in Marine Science, 2023, 10: 1134418 doi: 10.3389/fmars.2023.1134418
    [83] Chai F, Johnson KS, Claustre H, et al. Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 2020, 1(6): 315-26
    [84] Shen X, Kong W, Chen P, et al. A shipborne photon-counting lidar for depth-resolved ocean observation. Remote Sensing, 2022, 14(14): 3351 doi: 10.3390/rs14143351
    [85] Wang L, Wang Y, Wang J, et al. A high spatial resolution fbg sensor array for measuring ocean temperature and depth. Photonic Sensors, 2019, 10(1): 57-66
    [86] Shi Y, Wang G, Sun W, et al. A miniature soft sensor with origami-inspired self-folding parallel mechanism. Micromachines, 2022, 13(8): 1188 doi: 10.3390/mi13081188
    [87] Vasudevan SK, Baskaran B. An improved real-time water quality monitoring embedded system with iot on unmanned surface vehicle. Ecological Informatics, 2021, 65: 101421 doi: 10.1016/j.ecoinf.2021.101421
    [88] Campbell S, Naeem W, Irwin GW. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control, 2012, 36(2): 267-283 doi: 10.1016/j.arcontrol.2012.09.008
    [89] Carlson DF, Fürsterling A, Vesterled L, et al. An affordable and portable autonomous surface vehicle with obstacle avoidance for coastal ocean monitoring. Hardware X, 2019, 5: e00059 doi: 10.1016/j.ohx.2019.e00059
    [90] Wang W, Mateos LA, Park S, et al. Design, modeling, and nonlinear model predictive tracking control of a novel autonomous surface vehicle//IEEE International Conference on Robotics and Automation (ICRA), Brisbane. IEEE, 2018: 6189-6196
    [91] Pan C, Peng Z, Liu L, et al. Data-driven distributed formation control of under-actuated unmanned surface vehicles with collision avoidance via model-based deep reinforcement learning. Ocean Engineering, 2023, 267: 113166 doi: 10.1016/j.oceaneng.2022.113166
    [92] Lai P, Liu Y, Zhang W, et al. Intelligent controller for unmanned surface vehicles by deep reinforcement learning. Physics of Fluids, 2023, 35(3): 037111 doi: 10.1063/5.0139568
    [93] Wang N, Zhang Y, Ahn CK, et al. Autonomous pilot of unmanned surface vehicles: Bridging path planning and tracking. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2358-2374 doi: 10.1109/TVT.2021.3136670
    [94] Meyer E, Heiberg A, Rasheed A, et al. Colreg-compliant collision avoidance for unmanned surface vehicle using deep reinforcement learning. IEEE Access, 2020, 8: 165344-165364 doi: 10.1109/ACCESS.2020.3022600
    [95] Wang D, Liu Y, Deng J, et al. Miniature amphibious robot actuated by rigid-flexible hybrid vibration modules. Advanced Science, 2022, 9(29): 2203054 doi: 10.1002/advs.202203054
    [96] Li L, Wang S, Zhang Y, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Science Robotics, 2022, 7(66): 6695 doi: 10.1126/scirobotics.abm6695
    [97] Dalhatu AA, Sa’ad AM, Cabral de Azevedo R, et al. Remotely operated vehicle taxonomy and emerging methods of inspection, maintenance, and repair operations: An overview and outlook. Journal of Offshore Mechanics and Arctic Engineering, 2023, 145(2): 020801 doi: 10.1115/1.4055476
    [98] Chaloux N, Phillips BT, Gruber DF, et al. A novel fish sampling system for rovs. Deep Sea Research Part I:Oceanographic Research Papers, 2021, 167: 103428 doi: 10.1016/j.dsr.2020.103428
    [99] Bogue R. Underwater robots: A review of technologies and applications. Industrial Robot: An International Journal, 2015, 42(3): 186-191 doi: 10.1108/IR-01-2015-0010
    [100] He Y, Wang DB, Ali ZA. A review of different designs and control models of remotely operated underwater vehicle. Measurement and Control, 2020, 53(9-10): 1561-1570 doi: 10.1177/0020294020952483
    [101] 阎军, 胡海涛, 苏琦等. 海洋电缆中关键力学问题的研究进展与展望. 力学学报, 2022, 54(4): 846-861 (Yan Jun, Hu Haitao, Su Qi, et al. Prospect and progression of key mechanical problems in marine cables. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846-861 (in Chinese)

    Yan Jun, Hu Haitao, Su Qi, Yin Yuanchao, Wu Shanghua, Lu Hailong, Lu Qingzhen. Prospect and progression of key mechanical problems in marine cables. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846-861 (in Chinese))
    [102] Viel C. Self-management of the umbilical of a rov for underwater exploration. Ocean Engineering, 2022, 248: 110695 doi: 10.1016/j.oceaneng.2022.110695
    [103] Rahimuddin HH, Rivai HA, et al. Design of omni directional remotely operated vehicle (ROV). Journal of Physics: Conference Series, 2018, 962: 012017 doi: 10.1088/1742-6596/962/1/012017
    [104] Lund-Hansen LC, Juul T, Eskildsen TD, et al. A low-cost remotely operated vehicle (ROV) with an optical positioning system for under-ice measurements and sampling. Cold Regions Science and Technology, 2018, 151: 148-155 doi: 10.1016/j.coldregions.2018.03.017
    [105] Xu P, Han C, Lyu T, et al. Underwater absorber for a remotely operated vehicle. Journal of Marine Science and Engineering, 2022, 10(4): 485 doi: 10.3390/jmse10040485
    [106] Gladkova OI, Veltishev VV, Egorov SA. Development of an information control system for a remotely operated vehicle with hybrid propulsion system//Robotics: Industry 4.0 Issues & New Intelligent Control Paradigms, 2020: 205-217
    [107] Liu L, Zhang L, Pan G, et al. Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller. Ocean Engineering, 2022, 257: 111493 doi: 10.1016/j.oceaneng.2022.111493
    [108] 张康宇, 路宽, 程晖等. 基于共振转换器的自主水下航行器动力学建模及减振降噪. 力学学报, 2023, 55(9): 1-14 (Zhang Kangyu, Lu Kuan, Cheng Hui, et al. Dynamic modeling and vibration and noise reduction of autonomous underwater vehicles based on resonance changer. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1-14 (in Chinese) doi: 10.6052/0459-1879-22-589

    Zhang Kangyu, Lu Kuan, Cheng Hui, Fu Chao, Guo Dong. Dynamic modeling and vibration and noise reduction of autonomous underwater vehicles based on resonance changer. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1-14 (in Chinese)) doi: 10.6052/0459-1879-22-589
    [109] Hadi B, Khosravi A, Sarhadi P. Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle. Applied Ocean Research, 2022, 129: 103326 doi: 10.1016/j.apor.2022.103326
    [110] Fernandez RAS, Milosevic Z, Dominguez S, et al. Design, modeling and control of a spherical autonomous underwater vehicle for mine exploration//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid. IEEE, 2018: 1513-1519
    [111] Hildebrandt M, Gaudig C, Christensen L, et al. Two years of experiments with the AUV Dagon: A versatile vehicle for high precision visual mapping and algorithm evaluation//Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK. 2012: 24-27
    [112] Iscar E, Barbalata C, Goumas N, et al. Towards low cost, deep water AUV optical mapping//Oceans, Charleston. IEEE, 2018: 1-6
    [113] Gu S, Guo S, Zheng L. A highly stable and efficient spherical underwater robot with hybrid propulsion devices. Autonomous Robots, 2020, 44(5): 759-771 doi: 10.1007/s10514-019-09895-8
    [114] Wang Z, Liu X, Huang H, et al. Development of an autonomous underwater helicopter with high maneuverability. Applied Sciences, 2019, 9(19): 4072 doi: 10.3390/app9194072
    [115] Hidaka S, Kawashima S, Nam S, et al. System design and hardware development of autonomous underwater robot “DaryaBird”//Proceedings of the AUVSI&ONR’s 18th Annual RoboSub Competition Journal Paper, 2015
    [116] Li J, Liu T, Yu D, et al. Development of a long range autonomous underwater vehicle for ocean observation//Global Oceans 2020, Singapore–US Gulf Coast. IEEE, 2020: 1-4
    [117] Wang B, Chen Y, Wu Y, et al. An underwater glider with muscle—actuated buoyancy control and caudal fin turning. Machines, 2022, 10(5): 381 doi: 10.3390/machines10050381
    [118] Filogna S, Paterno L, Vecchi F, et al. A bioinspired fluid-filled soft linear actuator. Soft Robotics, 2023, 10(3): 454-66 doi: 10.1089/soro.2021.0091
    [119] Yasa O, Toshimitsu Y, Michelis MY, et al. An overview of soft robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6: 1-29 doi: 10.1146/annurev-control-062322-100607
    [120] Salazar R, Fuentes V, Abdelkefi A. Classification of biological and bioinspired aquatic systems: A review. Ocean Engineering, 2018, 148: 75-114 doi: 10.1016/j.oceaneng.2017.11.012
    [121] Xie F, Zuo Q, Chen Q, et al. Designs of the biomimetic robotic fishes performing body and/or Caudal Fin (BCF) swimming locomotion: A review. Journal of Intelligent & Robotic Systems, 2021, 102: 1-19
    [122] Zhang R, Shen Z, Wang Z. Ostraciiform underwater robot with segmented caudal fin. IEEE Robotics and Automation Letters, 2018, 3(4): 2902-2909 doi: 10.1109/LRA.2018.2847198
    [123] Li Z, Chao X, Hameed I, et al. Biomimetic omnidirectional multi-tail underwater robot. Mechanical Systems and Signal Processing, 2022, 173: 109056 doi: 10.1016/j.ymssp.2022.109056
    [124] Christianson C, Goldberg NN, Deheyn DD, et al. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science Robotics, 2018, 3(17): 1893 doi: 10.1126/scirobotics.aat1893
    [125] Shintake J, Cacucciolo V, Shea H, et al. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot, 2018, 5(4): 466-474 doi: 10.1089/soro.2017.0062
    [126] Li G, Chen X, Zhou F, et al. Self-powered soft robot in the mariana trench. Nature, 2021, 591(7848): 66-71 doi: 10.1038/s41586-020-03153-z
    [127] Armanini C, Farman M, Calisti M, et al. Flagellate underwater robotics at macroscale: design, modeling, and characterization. IEEE Transactions on Robotics, 2021, 38(2): 731-747
    [128] Zhang J, Diller E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet. Soft Robot, 2018, 5(6): 761-776 doi: 10.1089/soro.2017.0126
    [129] Ren Z, Hu W, Dong X, et al. Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 2019, 10(1): 2703 doi: 10.1038/s41467-019-10549-7
    [130] Picardi G, Chellapurath M, Iacoponi S, et al. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Science Robotics, 2020, 5(42): 1012 doi: 10.1126/scirobotics.aaz1012
    [131] Liu J, Iacoponi S, Laschi C, et al. Underwater mobile manipulation: a soft arm on a benthic legged robot. IEEE Robotics & Automation Magazine, 2020, 27(4): 12-26
    [132] Stuart HS, Wang S, Cutkosky MR. Tunable contact conditions and grasp hydrodynamics using gentle fingertip suction. IEEE Transactions on Robotics, 2018, 35(2): 295-306
    [133] Huang J, Zhou J, Wang Z, et al. Modular origami soft robot with the perception of interaction force and body configuration. Advanced Intelligent Systems, 2022, 4(9): 2200081
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  58
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2023-10-18

目录

    /

    返回文章
    返回
    Baidu
    map