EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种磁力滑动式翼型颤振能量俘获器

李支援,吕文博,马小青,周生喜

downloadPDF
李支援, 吕文博, 马小青, 周生喜. 一种磁力滑动式翼型颤振能量俘获器. 力学学报, 2023, 55(10): 2146-2155 doi: 10.6052/0459-1879-23-330
引用本文: 李支援, 吕文博, 马小青, 周生喜. 一种磁力滑动式翼型颤振能量俘获器. 力学学报, 2023, 55(10): 2146-2155doi:10.6052/0459-1879-23-330
Li Zhiyuan, Lyu Wenbo, Ma Xiaoqing, Zhou Shengxi. A magnetic sliding airfoil flutter energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2146-2155 doi: 10.6052/0459-1879-23-330
Citation: Li Zhiyuan, Lyu Wenbo, Ma Xiaoqing, Zhou Shengxi. A magnetic sliding airfoil flutter energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2146-2155doi:10.6052/0459-1879-23-330

一种磁力滑动式翼型颤振能量俘获器

doi:10.6052/0459-1879-23-330
基金项目:国家重点研发计划 (2022YFB2603200), 国家自然科学基金 (52161135106), 西北工业大学博士论文创新基金(CX2022001)和111基地(BP0719007)资助项目
详细信息
    通讯作者:

    周生喜, 教授, 主要研究方向为振动能量俘获、非顿线性振动、压电机器人等. E-mail:zhoushengxi@nwpu.edu.cn

  • 中图分类号:O322

A MAGNETIC SLIDING AIRFOIL FLUTTER ENERGY HARVESTER

  • 摘要:风致振动是自然界中普遍存在的一种现象, 并且蕴藏着巨大的可利用能源. 如何充分利用风致振动引起的结构大幅值响应进行能量俘获, 为微电子器件供电是能量俘获领域的一个难题. 为了高效俘获风致振动能量, 文章提出了一种磁力滑动式翼型颤振能量俘获器. 基于半经验非线性空气动力学模型并考虑与磁铁位置相关的机电耦合系数, 建立了该能量俘获器的动力学模型, 搭建了风洞实验平台, 制作了实验样机. 通过增加风速和降低风速的方式为能量俘获器提供两种不同的初始状态, 发现其具有两个临界风速(5.2 m/s 和 8.3 m/s), 降风速实验中在8.3 m/s风速下出现突跳现象. 在数值仿真中, 在6.8 m/s 和8.2 m/s 风速下出现了两个突跳点, 和一段多解区域. 分析了沉浮位移和电压响应, 发现沉浮位移以正弦形式响应, 输出电压以非正弦形式响应, 并出现明显的偶次谐波. 仿真的沉浮位移和电压输出波形与实验波形吻合较好, 验证了模型的准确性. 能量俘获器的均方根电压随电阻的增加而增加, 平均功率随电阻增加呈现先增加后降低的趋势. 分析了负载电阻对能量俘获性能的影响, 在8.6 m/s风速下, 实验中能量俘获器的负载电阻接近线圈内阻值时平均功率达到最大值7.5 mW. 文章为高效颤振式能量俘获器的设计提供了一种新方案, 可为驰振、涡振等其他形式的风致振动能量俘获器的设计提供参考.

  • 图 1磁力滑动式翼型颤振能量俘获器

    Figure 1.The magnetic sliding airfoil flutter energy harvester

    图 2等效电路

    Figure 2.Equivalent circuit

    图 3风洞实验平台

    Figure 3.Wind tunnel experimental platform

    图 4回复力测试

    Figure 4.Measurement of the restoring force

    图 5振动过程中磁铁的位置关系和受力关系

    Figure 5.Position relationship and force relationship of magnets during vibration

    图 6沉浮刚度实验数据与拟合

    Figure 6.Experimental data and fitting curve of plunging stiffness

    图 7扭矩与转角测试示意图

    Figure 7.Torque and angle test diagram

    图 8俯仰刚度实验数据与拟合

    Figure 8.Experimental data and fitting curve of the pitching stiffness

    图 9不同风速下均方根沉浮位移

    Figure 9.Root mean square (RMS) plunging displacement at different wind speeds

    图 10不同风速下均方根电压

    Figure 10.RMS voltage at different wind speeds

    图 11风速为9.1 m/s 时的时域沉浮位移

    Figure 11.Time-domain plunging displacement at a wind speed of 9.1 m/s

    图 12风速为9.1 m/s 时的频域沉浮位移

    Figure 12.Frequency-domain plunging displacement at a wind speed of 9.1 m/s

    图 13风速为9.1 m/s 时的时域电压

    Figure 13.Time-domain voltage at 9.1 m/s

    图 14风速为9.1 m/s 时的频域电压

    Figure 14.Frequency-domain voltage at 9.1 m/s

    图 15风速为8.6 m/s 时的均方根电压随负载电阻的变化

    Figure 15.Variation of root mean square voltage with load resistance at a wind speed of 8.6 m/s

    图 16风速为8.6 m/s 时的平均功率随负载电阻的变化

    Figure 16.Variation of average power with load resistance at a wind speed of 8.6 m/s

    表 1能量俘获器参数

    Table 1.Basic parameters of the harvester

    Parameters Values
    airfoil span,s/m 0.15
    airfoil semi-chord,b/m 0.06
    eccentricity, $ {x_\alpha } $ 0.41
    nondimensional position,a −0.53
    equivalent mass,M1/kg 0.134
    airfoil mass,mF/kg 0.048 4
    airfoil moment of inertia, $ {I_\alpha }/({\rm{kg}} \cdot {\rm{m}}^2) $ 1.64 × 10−4
    plunging damping coefficient,Ch/(kg·s−1) 0.000 1
    pitching damping coefficient, ${C_\alpha }/ ({\rm{kg}} \cdot {\rm{m}}^2 \cdot {\rm{s}}^{-1})$ 0.001
    magnet volume,Vm/m3 3.53 × 10−6
    residual magnetic flux density,Br/T 0.417
    load resistance,R 32
    下载: 导出CSV
  • [1] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)

    Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese))
    [2] 田海港, 单小彪, 张居彬等. 翼型颤振压电俘能器的输出特性研究. 力学学报, 2021, 53(11): 3016-3024 (Tian Haigang, Shan Xiaobiao, Zhang Jubin, et al. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese)

    Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese))
    [3] 杨杰, 许卓, 安坤等. MEMS压电-磁电复合式振动能量采集器. 微纳电子技术, 2015, 52(2): 103-107 (Yang Jie, Xu Zhuo, An Kun, et al. MEMS vibration energy harvester based on the piezoelectric and magnetoelectric effect.Micronanoelectronic Technology, 2015, 52(2): 103-107 (in Chinese)

    Yang Jie, Xu Zhuo, An Kun, et al. MEMS Vibration energy harvester based on the piezoelectric and magnetoelectric effect.Micronanoelectronic Technology, 2015, 52(2): 103–107 (in Chinese))
    [4] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications.Joule, 2018, 2(4): 642-697doi:10.1016/j.joule.2018.03.011
    [5] Zhao L, Zou H, Gao Q, et al. Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration.Science China-Technological Sciences, 2020, 63(10): 2051-2062doi:10.1007/s11431-020-1595-x
    [6] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述. 振动与冲击, 2018, 37(8): 190-199, 205.

    Xu Zhenlong, Shan Xiaobiao, Xie Tao. A review of broadband piezoelectric vibration energy harvester.Journal of Vibration and Shock, 2018, 37(8): 190-199, 205 (in Chinese))
    [7] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations.Applied Energy, 2020, 267: 114902doi:10.1016/j.apenergy.2020.114902
    [8] Li Z, Zhou S, Yang Z. Recent progress on flutter‐based wind energy harvesting.International Journal of Mechanical System Dynamics, 2022, 2(1): 82-98doi:10.1002/msd2.12035
    [9] 宋汝君, 单小彪, 杨先海等. 基于压电俘能器的流体能量俘获技术研究现状. 振动与冲击, 2019, 38(17): 244-250, 275 (Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters.Journal of Vibration and Shock, 2019, 38(17): 244-250, 275 (in Chinese)

    Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters.Journal of Vibration and Shock, 2019, 38(17): 244-250 + 275 (in Chinese))
    [10] 赵翔, 李思谊, 李映辉. 基于压电振动能量俘获的弯曲结构损伤监测研究. 力学学报, 2021, 53(11): 3035-3044 (Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044 (in Chinese)

    Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044 (in Chinese))
    [11] Bryant M, Garcia E. Modeling and testing of a novel aeroelastic flutter energy harvester.Journal of Vibration and Acoustics, 2011, 133(1): 011010doi:10.1115/1.4002788
    [12] McCarthy JM, Watkins S, Deivasigamani A, et al. Fluttering energy harvesters in the wind: a review.Journal of Sound and Vibration, 2016, 361: 355-377doi:10.1016/j.jsv.2015.09.043
    [13] Naseer R, Dai HL, Abdelkefi A, et al. Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics.Applied Energy, 2017, 203: 142-153doi:10.1016/j.apenergy.2017.06.018
    [14] Zhang LB, Abdelkefi A, Dai HL, et al. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations.Journal of Sound and Vibration, 2017, 408: 210-219doi:10.1016/j.jsv.2017.07.029
    [15] Hou C, Li C, Shan X, et al. A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations.Mechanical Systems and Signal Processing, 2022, 171: 108963doi:10.1016/j.ymssp.2022.108963
    [16] Bibo A, Daqaq MF. On the optimal performance and universal design curves of galloping energy harvesters.Applied Physics Letters, 2014, 104(2): 023901doi:10.1063/1.4861599
    [17] Barrero-Gil A, Vicente-Ludlam D, Gutierrez D, et al. Enhance of energy harvesting from transverse galloping by actively rotating the galloping body.Energies,Multidisciplinary Digital Publishing Institute, 2020, 13(1): 91
    [18] Yan Z, Wang L, Hajj MR, et al. Energy harvesting from iced-conductor inspired wake galloping.Extreme Mechanics Letters, 2020, 35: 100633doi:10.1016/j.eml.2020.100633
    [19] Li H, Ding H, Chen L. Chaos threshold of a multistable piezoelectric energy harvester subjected to wake-galloping.International Journal of Bifurcation and Chaos, 2019, 12: 1950162
    [20] 李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement analysis of variable-potential-well bi-stable flutter energy harvesting.Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)

    Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance Enhancement Analysis of Variable-Potential-Well Bi-stable Flutter Energy Harvesting.Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136–147 (in Chinese))
    [21] Bibo A, Daqaq MF. Energy harvesting under combined aerodynamic and base excitations.Journal of Sound and Vibration, 2013, 332(20): 247-257
    [22] Bibo A, Daqaq MF. Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator.Applied Physics Letters, 2013, 102(24): 243904doi:10.1063/1.4811408
    [23] Tian H, Shan X, Cao H, et al. A method for investigating aerodynamic load models of piezoaeroelastic energy harvester.Journal of Sound and Vibration, 2021, 502: 116084doi:10.1016/j.jsv.2021.116084
    [24] Li Z, Wang S, Zhou S. Multi-solution phenomena and nonlinear characteristics of tristable galloping energy harvesters with magnetic coupling nonlinearity.Communications in Nonlinear Science and Numerical Simulation, 2022, 119: 107076
    [25] Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: principle, progress, and perspectives.Journal of Sound and Vibration, 2022, 528: 116886
    [26] Li K, Yang Z, Gu Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: modeling, simulation and experimental verification.Smart Materials and Structures, 2019, 28(1): 015020doi:10.1088/1361-665X/aaede3
    [27] Li K, Yang Z, Zhou S. Performance enhancement for a magnetic-coupled bi-stable flutter-based energy harvester.Smart Materials and Structures, 2020, 29(8): 085045doi:10.1088/1361-665X/ab9238
    [28] Zhou Z, Qin W, Zhu P, et al. Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing.Applied Physics Letters, 2019, 114(24): 243902doi:10.1063/1.5100598
    [29] Hafezi M, Mirdamadi H. A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis.Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(1): 9doi:10.1007/s40430-018-1509-6
    [30] Xu Z, Shan X, Chen D, et al. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms.Applied Sciences, 2016, 6(1): 10doi:10.3390/app6010010
    [31] Li Z, Zhang H, Litak G, et al. Periodic solutions and frequency lock-in of vortex-induced vibration energy harvesters with nonlinear stiffness.Journal of Sound and Vibration, 2024, 568: 117952
  • 加载中
图(16)/ 表(1)
计量
  • 文章访问数:244
  • HTML全文浏览量:70
  • PDF下载量:68
  • 被引次数:0
出版历程
  • 收稿日期:2023-07-26
  • 录用日期:2023-08-22
  • 网络出版日期:2023-08-23
  • 刊出日期:2023-10-18

目录

    /

      返回文章
      返回
        Baidu
        map