EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可压缩均匀湍流中重粒子运动行为的先验研究

宾远为,武琦,夏振华,史一蓬

downloadPDF
宾远为, 武琦, 夏振华, 史一蓬. 可压缩均匀湍流中重粒子运动行为的先验研究. 力学学报, 2024, 56(2): 151-161 doi: 10.6052/0459-1879-23-327
引用本文: 宾远为, 武琦, 夏振华, 史一蓬. 可压缩均匀湍流中重粒子运动行为的先验研究. 力学学报, 2024, 56(2): 151-161doi:10.6052/0459-1879-23-327
Bin Yuanwei, Wu Qi, Xia Zhenhua, Shi Yipeng. A prior investigation on heavy particles’ movement in compressible homogenous isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 151-161 doi: 10.6052/0459-1879-23-327
Citation: Bin Yuanwei, Wu Qi, Xia Zhenhua, Shi Yipeng. A prior investigation on heavy particles’ movement in compressible homogenous isotropic turbulence.Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 151-161doi:10.6052/0459-1879-23-327

可压缩均匀湍流中重粒子运动行为的先验研究

doi:10.6052/0459-1879-23-327
基金项目:国家自然科学基金资助项目(11988102)
详细信息
    通讯作者:

    夏振华, 研究员, 主要研究方向为湍流理论与数值模拟、计算流体力学和空气动力学. E-mail:xiazh@zju.edu.cn

    史一蓬, 教授, 主要研究方向为湍流理论与数值模拟、计算流体力学和空气动力学. E-mail:syp@mech.pku.edu.cn

A PRIOR INVESTIGATION ON HEAVY PARTICLES’ MOVEMENT IN COMPRESSIBLE HOMOGENOUS ISOTROPIC TURBULENCE

  • 摘要:本研究以高精度可压缩均匀各向同性湍流直接数值模拟数据为基础, 通过点粒子模型和单向耦合方式模拟了100万个重粒子在湍流中的运动. 着重进行了两方面的研究, 首先, 通过使用不同滤波宽度的谱截断滤波器来获得大尺度流场, 并研究了不同滤波尺度对粒子运动的影响; 其次, 设置了5种不同的粒子初速度, 以研究粒子聚集性和运动学性质的演化. 在研究粒子聚集性方面, 使用了香农熵来描述粒子的瞬时聚集性, 而稳态时的统计结果则通过概率密度分布函数来描述. 研究结果表明, 滤波尺度对不同Stokes数的粒子聚集效应产生不同的影响. 具体而言, 小尺度流动结构对低Stokes数的粒子聚集性有促进作用, 而对高 Stokes数的粒子聚集性则有抑制作用. 此外, 随着Stokes数的增加和截断波数的减小, 粒子的速度和加速度的概率密度分布变得更为集中. 另外, 还发现颗粒的初始速度差异会在演化的初期产生明显影响, 最终会趋于相同的统计定常状态. 这一发现强调了湍流中粒子运动的复杂性和统计特性的重要性.

  • 图 1图中的黑点表示粒子位置

    Figure 1.Contour of (a) and (b) nondimensional vorticity. Here, the back points indicate the location of the particles

    图 2一个随机选择的粒子在流动中的路径. 初始速度采用I.C.4

    Figure 2.Path of a randomly selected particle. Here, the initial velocity is I.C.4

    图 3流动能量谱$ E\left(k\right) $(实线), 和5个不同的截断波数(虚线). 从左到右分别是${k_{{\rm{max}}}}/{k_c} = 2,4,8,16,32$

    Figure 3.Flow energy spectrum $ E\left(k\right) $(solid line) and five different cut-off wavenumbers (dashed line). From left to right, they are ${k_{{\rm{max}}}}/{k_c} = 2,4,8,16,32$, respectively

    图 4$S(t)$随着时间的演化. 初始速度采用I.C.2

    Figure 4.$S(t)$ as a function of time. Initial velocity is I.C.2

    图 5平均数密度$ n $的PDF. 初始速度采用I.C.2

    Figure 5.PDF of $ n $. Initial velocity is I.C.2

    图 6图5相同, 但是为粒子绝对加速度的PDF

    Figure 6.Same asFig. 5, but for PDF of magnitude particle acceleration

    图 7图5相同, 但是为粒子绝对速度的PDF

    Figure 7.Same asFig. 5, but for PDF of magnitude particle velocity

    图 8粒子数平均速度随时间的演化. 驱动流场采用${k_{{\rm{max}}}}/{k_c} = 4$

    Figure 8.Averaged particle velocity as a function of time. Flow field is filtered by ${k_{{\rm{max}}}}/{k_c} = 4$

    图 9$S(t)$随时间的演化. 驱动流场采用${k_{{\rm{max}}}}/{k_c} = 4$

    Figure 9.$S(t)$ as a function of time. Flow field is filtered by ${k_{{\rm{max}}}}/{k_c} = 4$

    图 10与图 9相同, 但驱动流场采用${k_{{\rm{max}}}}/{k_c} = 16$

    Figure 10.Same as Fig. 9, but the flow field is filtered by ${k_{{\rm{max}}}}/{k_c} = 16$

    表 1粒子的初始速度条件.

    Table 1.Initial velocity of particles.

    Names Initial velocity/${v_{p,i}} $
    I.C.1 $0.0$
    I.C.2 $0.1{u_{{\rm{rms}}} }$
    I.C.3 $0.5{u_{{\rm{rms}}} }$
    I.C.4 $1.0{u_{{\rm{rms}}} }$
    I.C.5 $u\left( { {x_{p,i} } } \right)$
    下载: 导出CSV
  • [1] Falkovich G, Fouxon A, Stepanov MG. Acceleration of rain initiation by cloud turbulence.Nature, 2002, 419(6903): 151-154
    [2] Shaw RA. Particle-turbulence interactions in atmospheric clouds.Annual Review of Fluid Mechanics, 2003, 35(1): 183-227
    [3] Holmes NS, Morawska L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available.Atmospheric Environment, 2006, 40(30): 5902-5928
    [4] Sienfeld JH. Atmospheric Chemistry and Physics of Air Pollution. New York: Willey Interscience, 1986, 738
    [5] Post SL, Abraham J. Modeling the outcome of drop-drop collisions in diesel sprays.International Journal of Multiphase Flow, 2002, 28(6): 997-1019
    [6] Suman A, Kurz R, Aldi N, et al. Quantitative computational fluid dynamics analyses of particle deposition on a transonic axial compressor blade-part i: Particle zones impact.Journal of Turbomachinery-Transactions of the Asme, 2015. 137(2)
    [7] Saxena S, Jothiprasad G, Bourassa C, et al. Numerical simulation of particulates in multistage axial compressors.Journal of Turbomachinery-Transactions of the Asme, 2017. 139(3).
    [8] Balachandar S, Eaton JK. Turbulent dispersed multiphase flow.Annual Review of Fluid Mechanics, 2010, 42(1): 111-133
    [9] Kuerten JGM. Point-particle DNS and LES of particle-laden turbulent flow-a state-of-the-art review.Flow Turbulence and Combustion, 2016, 97(3): 689-713
    [10] Balachandar S. Ascaling analysis for point-particle approaches to turbulent multiphase flows.International Journal of Multiphase Flow, 2009, 35(9): 801-810doi:10.1016/j.ijmultiphaseflow.2009.02.013
    [11] Toschi F, Bodenschatz E. Lagrangian properties of particles in turbulence.Annual Review of Fluid Mechanics, 2009, 41(1): 375-404
    [12] Férec J, Ausias G. Rheological Modeling of Non-dilute Rod Suspensions. In: Chinesta F, Ausias G, eds. Rheology of Non-spherical Particle Suspensions. Elsevier, 2015: 77-117
    [13] Bagchi P, Balachandar S. Effect of turbulence on the drag and lift of a particle.Physics of Fluids, 2003, 15(11): 3496-3513
    [14] Uhlmann M. Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime.Physics of Fluids, 2008, 20(5): 053305doi:10.1063/1.2912459
    [15] Patankar NA, Joseph DD. Modeling and numerical simulation of particulate flows by the eulerian-lagrangian approach.International Journal of Multiphase Flow, 2001, 27(10): 1659-1684
    [16] Tsai ST, Sedimentation motion of sand particles in moving water (ⅰ)——The resistance ok a small sphere moving in non-uniform flow.Acta Physica Sinica, 1957. 13(5): 389.
    [17] Maxey MR, Riley JJ. Equation of motion for a small rigid sphere in a nonuniform flow.Physics of Fluids, 1983, 26(4): 883-889
    [18] Maxey MR. The gravitational settling of aerosol-particles in homogeneous turbulence and random flow-fields.Journal of Fluid Mechanics, 1987, 174: 441-465
    [19] Wang LP, Maxey MR. Settling velocity and concentration distribution of heavy-particles in homogeneous isotropic turbulence.Journal of Fluid Mechanics, 1993, 256: 27-68
    [20] Zhang QQ, Xiao ZL, Single-particle dispersion in compressible turbulence.Physics of Fluids, 2018. 30(4).
    [21] Urzay J, Bassenne M, Park GI, et al. Characteristic regimes of subgrid-scale coupling in les of particle-laden turbulent flows//Proceedings of Summer Program, Center for Turbulence Research, Stanford University, 2014: 3-13
    [22] Elghobashi S. On predicting particle-laden turbulent flows.Applied Scientific Research, 1994, 52(4): 309-329doi:10.1007/BF00936835
    [23] Poelma C. Westerweel J. Ooms G. Particle–fluid interactions in grid-generated turbulence.Journal of Fluid Mechanics, 2007. 589: 315-351.
    [24] Brandt L, Coletti F. Particle-laden turbulence: Progress and perspectives.Annual Review of Fluid Mechanics, 2022, 54: 159-189
    [25] Huilier DGF. An overview of the lagrangian dispersion modeling of heavy particles in homogeneous isotropic turbulence and considerations on related les simulations.Fluids, 2021, 6(4): 145
    [26] Squires KD, Eaton JK. Preferential concentration of particles by turbulence.Physics of Fluids a-Fluid Dynamics, 1991, 3(5): 1169-1179
    [27] Squires KD, Eaton JK. Particle response and turbulence modification in isotropic turbulence.Physics of Fluids a-Fluid Dynamics, 1990, 2(7): 1191-1203
    [28] Bec J, Biferale L, Boffetta G, et al. Acceleration statistics of heavy particles in turbulence.Journal of Fluid Mechanics, 2006, 550: 349-358
    [29] Xia ZH, Shi YP, Zhang QQ, et al. Modulation to compressible homogenous turbulence by heavy point particles. I. Effect of particles' density.Physics of Fluids, 2016. 28(1).
    [30] Homann H, Bec J. Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow.Journal of Fluid Mechanics, 2010, 651: 81-91
    [31] Lesieur M, Métais O, Comte P. Large-eddy Simulations of Turbulence. Cambridge University Press, 2005
    [32] Fede P, Simonin O. Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles.Physics of Fluids, 2006. 18(4).
    [33] Jin GD, He GW, Wang LP, Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence.Physics of Fluids, 2010. 22(5).
    [34] Ray B, Collins LR. Preferential concentration and relative velocity statistics of inertial particles in navier-stokes turbulence with and without filtering.Journal of Fluid Mechanics, 2011, 680: 488-510
    [35] Pozorski J, Apte SV. Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion.International Journal of Multiphase Flow, 2009, 35(2): 118-128
    [36] Lalescu CC, Wilczek M. Acceleration statistics of tracer particles in filtered turbulent fields.Journal of Fluid Mechanics, 2018, 847: R2
    [37] Yang YT, Wang JC, Shi YP, et al. , Interactions between inertial particles and shocklets in compressible turbulent flow.Physics of Fluids, 2014. 26(9).
    [38] Wang JC, Wang LP, Xiao ZL, et al. A hybrid numerical simulation of isotropic compressible turbulence.Journal of Computational Physics, 2010, 229(13): 5257-5279doi:10.1016/j.jcp.2010.03.042
    [39] Samtaney R, Pullin DI, Kosovic B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics.Physics of Fluids, 2001, 13(5): 1415-1430
    [40] Zhang QQ, Liu H, Ma ZQ, et al. Preferential concentration of heavy particles in compressible isotropic turbulence.Physics of Fluids, 2016. 28(5).
    [41] Capecelatro J, Desjardins O. An euler-lagrange strategy for simulating particle-laden flows.Journal of Computational Physics, 2013, 238: 1-31
    [42] Loth E. Compressibility and rarefaction effects on drag of a spherical particle.AIAA Journal, 2008, 46(9): 2219-2228doi:10.2514/1.28943
    [43] Lele SK. Compact finite-difference schemes with spectral-like resolution.Journal of Computational Physics, 1992, 103(1): 16-42
    [44] Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy.Journal of Computational Physics, 2000, 160(2): 405-452
    [45] Wang J, Yang Y, Shi Y, et al. Cascade of kinetic energy in three-dimensional compressible turbulence.Phys Rev Lett, 2013, 110(21): 214505
    [46] Good GH, Ireland PJ, Bewley GP, et al. , Settling regimes of inertial particles in isotropic turbulence.Journal of Fluid Mechanics, 2014, 759
    [47] Whitaker SM, Prenter R, Bons JP, The effect of freestream turbulence on deposition for nozzle guide vanes.Journal of Turbomachinery-Transactions of the Asme, 2015. 137(12).
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:77
  • HTML全文浏览量:27
  • PDF下载量:6
  • 被引次数:0
出版历程
  • 网络出版日期:2023-10-07

目录

    /

      返回文章
      返回
        Baidu
        map