EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木基材料自上而下多尺度结构设计研究进展

宋睿 郑浩南 宋建伟 申胜平

宋睿, 郑浩南, 宋建伟, 申胜平. 木基材料自上而下多尺度结构设计研究进展. 力学学报, 2024, 56(1): 26-45 doi: 10.6052/0459-1879-23-319
引用本文: 宋睿, 郑浩南, 宋建伟, 申胜平. 木基材料自上而下多尺度结构设计研究进展. 力学学报, 2024, 56(1): 26-45 doi: 10.6052/0459-1879-23-319
Song Rui, Zheng Haonan, Song Jianwei, Shen Shengping. Advances in top-down multiscale structural design of wood-based material. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 26-45 doi: 10.6052/0459-1879-23-319
Citation: Song Rui, Zheng Haonan, Song Jianwei, Shen Shengping. Advances in top-down multiscale structural design of wood-based material. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 26-45 doi: 10.6052/0459-1879-23-319

木基材料自上而下多尺度结构设计研究进展

doi: 10.6052/0459-1879-23-319
基金项目: 国家自然科学基金(11902243, 12272285)和中国科协青年人才托举工程(2019QNRC001)资助项目
详细信息
    通讯作者:

    宋建伟, 教授, 主要研究方向为木基功能材料的设计、制备及应用, 智能材料与结构力学. E-mail: songjianwei@mail.xjtu.edu.cn

  • 中图分类号: O34

ADVANCES IN TOP-DOWN MULTISCALE STRUCTURAL DESIGN OF WOOD-BASED MATERIAL

  • 摘要: 在全球气候变暖危机和“双碳”战略的大背景下, 开发使用木基材料替代传统结构或功能材料, 可以大大降低能源消耗, 减少碳排放并增加碳封存量, 对改善生态环境、实现绿色可持续发展具有重大意义. 近年来, 为了开发利用木质资源并提升传统木基材料的宏观性能, 不少学者通过自上而下的“两步改性”策略实现了木材中从微观尺度到宏观尺度的多尺度结构设计调控, 从而赋予了木基材料诸如高强度等不同的宏观性能, 为开发设计可持续、绿色低碳的高性能木基材料开辟了新的天地. 基于此, 文章围绕木基材料中自上而下的多尺度结构设计策略进行了详细综述: 首先简要概述了木材天然具备的跨尺度多层级结构, 接着综述了微观尺度下木基材料中由纤维素主导的力学行为机制, 其次从细胞壁工程的角度回顾了不同微结构调控策略以及得到的具有不同性能的木基材料, 随后简要综述了近期木基材料的功能化应用新进展. 最后总结了现有木基材料多尺度结构设计方面存在的不足并提出了相应的研究展望.

     

  • 图  1  木材的跨尺度多层级结构[6, 30, 38]

    Figure  1.  Hierarchical structure of wood[6, 30, 38]

    图  2  纤维素中的链内及链间氢键行为[53, 57-58]

    Figure  2.  Mechanical behavior of intra- and interchain hydrogen bonds in cellulose[53, 57-58]

    图  3  界面氢键主导的纤维素基材料宏观力学响应[59-61, 63]

    Figure  3.  Mechanical behavior of cellulose-based material dominated by interfacial hydrogen bonds[59-61, 63]

    图  4  水分调控纤维素基材料的界面行为[65-68]

    Figure  4.  Regulation on interface behavior of cellulose-based material by water[65-68]

    图  5  纤维素微纤维之间的相互作用对材料宏观力学行为的影响[69, 71, 73]

    Figure  5.  Effect of cellulose microfibers interaction on macroscopic mechanical behavior of materials[69, 71, 73]

    图  6  基于孔道致密化的高强木基结构材料[79, 81, 84, 86, 88-89]

    Figure  6.  High performance wooden structural material from cellular densification[79, 81, 84, 86, 88-89]

    图  7  基于细胞腔填充的高性能木基复合材料[95, 101, 106, 112, 116, 118]

    Figure  7.  High-performance wooden composites based on cellular infiltration[95, 101, 106, 112, 116, 118]

    图  8  基于微结构调控的柔性和高弹木基材料[119, 122, 124]

    Figure  8.  Flexible and highly elastic wooden material from cellular structure modification[119, 122, 124]

    图  9  微观结构设计实现木材宏观热管理功能[130, 131, 133]

    Figure  9.  Thermal functionalities in wood activated by microstructure design[130, 131, 133]

    图  10  微观结构设计实现木材宏观电学、流体输运功能[126, 140, 144, 148, 155, 158]

    Figure  10.  Electrical and fluid transportation functionalities in wood activated by microstructure design[126, 140, 144, 148, 155, 158]

    Baidu
  • [1] U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington DC, USA, 2017
    [2] Harris NL, Gibbs DA, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11(3): 234-240 doi: 10.1038/s41558-020-00976-6
    [3] Claisse PA. Civil Engineering Materials. Butterworth-Heinemann, 2015
    [4] 新华社. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.2021-10-24

    Xinhua News Agency. Opinions of CCCP and state council on the complete and accurate implementation of the new development philosiphy to achieve carbon peaking and carbon neutrality. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.2021-10-24 (in Chinese)
    [5] Wimmers GW. A construction material for tall buildings. Nature Reviews Materials, 2017, 2(12): 17051 doi: 10.1038/natrevmats.2017.51
    [6] Chen C, Kuang Y, Zhu S, et al. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5(9): 642-666 doi: 10.1038/s41578-020-0195-z
    [7] Crowther TW, Glick HB, Covey KR, et al. Mapping tree density at aglobal scale. Nature, 2015, 525(7568): 201-205 doi: 10.1038/nature14967
    [8] 人民日报. 《2021中国林草资源及生态状况》公布. http://www.forestry.gov.cn/main/586/20221129/084459358299794.html.2022-11-29

    People’s Daily. “Forest and grassland resources and ecology situation of China in 2021” was published. http://www.forestry.gov.cn/main/586/20221129/084459358299794.html.2022-11-29 (in Chinese)
    [9] FAO. Global production and trade in forest products in 2020. https://www.fao.org/forestry/statistics/80938/en/. 2021-12-24
    [10] 劳万里, 段新芳, 吕斌等. 碳达峰碳中和目标下木材工业的发展路径分析. 木材科学与技术, 2022, 36(1): 87-91 (Lao Wangli, Duan Xinfang, Lv Bin, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36(1): 87-91 (in Chinese)

    Lao Wangli, Duan Xinfang, Lv Bin, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36(01): 87-91 (in Chinese)
    [11] Nordby AS, Shea AD. Building materials in the operational phase. Journal of Industrial Ecology, 2013, 17(5): 763-776 doi: 10.1111/jiec.12046
    [12] Churkina G, Organschi A, Reyer CPO, et al. Buildings as a global carbon sink. Nature Sustainability, 2020, 3(4): 269-276 doi: 10.1038/s41893-019-0462-4
    [13] Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994 doi: 10.1039/c0cs00108b
    [14] 段博, 张俐娜. 可持续高分子−纤维素新材料研究进展. 高分子学报, 2020, 51(1): 66-86 (Duan Bo, Zhang Lina. Research progress of sustainable polymer – cellulose-based novel material. Acta Polymerica Sinica, 2020, 51(1): 66-86 (in Chinese)

    Duan Bo, Zhang Lina. Research progress of sustainable polymer – cellulose-based novel material. Acta Polymerica Sinica, 2020, 51(1): 66-86 (in Chinese)
    [15] Chen Y, Fu J, Dang B, et al. Artificial wooden nacre: A high specific strength engineering material. ACS Nano, 2020, 14(2): 2036-2043 doi: 10.1021/acsnano.9b08647
    [16] Guan QF, Yang HB, Han ZM, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6(18): eaaz1114 doi: 10.1126/sciadv.aaz1114
    [17] Mittal N, Ansari F, Gowda V K, et al. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano, 2018, 12(7): 6378-6388
    [18] Sun WB, Han ZM, Yue X, et al. Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Advanced Materials, 2023, 35(24): e2300241 doi: 10.1002/adma.202300241
    [19] Zhu JY, Agarwal UP, Ciesielski PN, et al. Towards sustainable production and utilization of plant-biomass-based nanomaterials: A review and analysis of recent developments. Biotechnology for Biofuels, 2021, 14(1): 114 doi: 10.1186/s13068-021-01963-5
    [20] Iglesias MC, Gomez-Maldonado D, Via BK, et al. Pulping processes and their effects on cellulose fibers and nanofibrillated cellulose properties: A review. Forest Products Journal, 2020, 70(1): 10-21 doi: 10.13073/FPJ-D-19-00038
    [21] Li J, Chen C, Zhu JY, et al. In situ wood delignification toward sustainable applications. Accounts of Materials Research, 2021, 2(8): 606-620 doi: 10.1021/accountsmr.1c00075
    [22] Keplinger T, Wittel FK, Rüggeberg M, et al. Wood derived cellulose scaffolds - processing and mechanics. Advanced Materials, 2021, 33(28): 2001375 doi: 10.1002/adma.202001375
    [23] Ding Y, Pang Z, Lan K, et al. Emerging engineered wood for building applications. Chemical Reviews, 2023, 123(5): 1843-1888 doi: 10.1021/acs.chemrev.2c00450
    [24] Mao Y, Hu L, Ren ZJ. Engineered wood for asustainable future. Matter, 2022, 5(5): 1326-1329 doi: 10.1016/j.matt.2022.04.013
    [25] Chen C, Berglund L, Burgert I, et al. Wood nanomaterials and nanotechnologies. Advanced Materials, 2021, 33(28): 2006207 doi: 10.1002/adma.202006207
    [26] Jiang F, Li T, Li Y, et al. Wood‐based nanotechnologies toward sustainability. Advanced Materials, 2017, 30(1): 1703453
    [27] Farid T, Rafiq MI, Ali A, et al. Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat, 2022, 4(1): e12154 doi: 10.1002/eom2.12154
    [28] Sjostrom E. Wood Chemistry: Fundamentals and Applications. Elsevier Science, 2013
    [29] Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3(4): 18016 doi: 10.1038/natrevmats.2018.16
    [30] Zhu H, Luo W, Ciesielski PN, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305-9374 doi: 10.1021/acs.chemrev.6b00225
    [31] Gibson LJ, Ashby MF, Harley BA. Cellular Materials in Nature and Medicine. Cambridge: Cambridge University Press, 2010
    [32] Meyers MA, Chen PY, Lin AY-M, et al. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53(1): 1-206 doi: 10.1016/j.pmatsci.2007.05.002
    [33] Fratzl P, Weinkamer R. Nature’s hierarchical materials. Progress in Materials Science, 2007, 52(8): 1263-1334 doi: 10.1016/j.pmatsci.2007.06.001
    [34] Qing H, Jr Mishnaevsky L. 3D multiscale micromechanical model of wood: From annual rings to microfibrils. International Journal of Solids and Structures, 2010, 47(9): 1253-1267 doi: 10.1016/j.ijsolstr.2010.01.014
    [35] Berglund LA, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30(19): 1704285 doi: 10.1002/adma.201704285
    [36] Gibson LJ. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 2012, 9(76): 2749-2766 doi: 10.1098/rsif.2012.0341
    [37] Page DH. A method for determining the fibrillar angle in wood tracheids. Journal of Microscopy, 1969, 90(2): 137-143 doi: 10.1111/j.1365-2818.1969.tb00701.x
    [38] Barnett JR, Bonham VA. Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews, 2004, 79(2): 461-472 doi: 10.1017/S1464793103006377
    [39] Lichtenegger H, Muller M, Paris O, et al. Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. Journal of Applied Crystallography, 1999, 32(6): 1127-1133 doi: 10.1107/S0021889899010961
    [40] Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG, 2017
    [41] Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 2010, 110(6): 3479-3500 doi: 10.1021/cr900339w
    [42] Lu F. Lignin. Nova Science Publishers, Incorporated, 2019
    [43] Lu F, Ralph J. Lignin//Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Sun RC ed. Amsterdam: Elsevier, 2010: 169-207
    [44] Rao J, Lyu Z, Chen G, et al. Hemicellulose: Structure, chemical modification, and application. Progress in Polymer Science, 2023, 140: 101675 doi: 10.1016/j.progpolymsci.2023.101675
    [45] Fratzl P. Cellulose and collagen: from fibres to tissues. Current Opinion in Colloid & Interface Science, 2003, 8(1): 32-39
    [46] Yano H, Hirose A, Inaba S. High-strength wood-based materials. Journal of Materials Science Letters, 1997, 16(23): 1906-1909 doi: 10.1023/A:1018578431873
    [47] Mark RE. Cell Wall Mechanics of Tracheids. New Haven, CT: Yale University Press, 1967
    [48] Rowell RM. Handbook of Wood Chemistry and Wood Composites. CRC Press, 2005
    [49] Reiterer A, Lichtenegger H, Tschegg S, et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine A, 1999, 79(9): 2173-2184 doi: 10.1080/01418619908210415
    [50] Cai P, Wang C, Gao H, et al. Mechanomaterials: A rational deployment of forces and geometries in programming functional materials. Advanced Materials, 2021, 33(46): 2007977
    [51] Hill CAS. Wood Modification: Chemical, Thermal and Other Processes. Wiley, 2007
    [52] Homan WJ, Jorissen AJ M. Wood modification developments. Heron, 2004, 49(4): 361-385
    [53] Hou Y, Xia J, He Z, et al. Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023, 16: 8036-8041
    [54] Hou Y, He Z, Zhu Y, et al. Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021, 273: 118578 doi: 10.1016/j.carbpol.2021.118578
    [55] 何泽洲. 非共价界面层状纳米复合材料的多尺度力学与设计. [博士论文]. 合肥: 中国科学技术大学, 2021

    He Zezhou. Multiscale mechanics and design of noncovalent interface layered nanocomposite. [PhD Thesis]. Hefei: University of Science and Technolygy of China, 2021 (in Chinese)
    [56] Li T. EML webinar overview: Advanced materials toward a sustainable future—mechanics design. Extreme Mechanics Letters, 2021, 42: 101107 doi: 10.1016/j.eml.2020.101107
    [57] Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the National Academy of Sciences, 2015, 112(29): 8971-8976 doi: 10.1073/pnas.1502870112
    [58] Sinko R, Keten S. Traction–separation laws and stick–slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78: 526-539 doi: 10.1016/j.jmps.2015.02.012
    [59] Meng Q, Shi X. A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43: 101158 doi: 10.1016/j.eml.2020.101158
    [60] Meng Q, Li B, Li T, et al. Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194: 350-361 doi: 10.1016/j.engfracmech.2018.03.034
    [61] Meng Q, Li B, Li T, et al. A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103: 22-39
    [62] Chen Q, Chen B, Jing S, et al. Flaw sensitivity of cellulose paper. Extreme Mechanics Letters, 2022, 56: 101865 doi: 10.1016/j.eml.2022.101865
    [63] He Z, Zhu Y, Wu H. A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022, 158: 104560 doi: 10.1016/j.jmps.2021.104560
    [64] Solhi L, Guccini V, Heise K, et al. Understanding nanocellulose-water interactions: Turning a detriment into an asset. Chemical Reviews, 2023, 123(5): 1925-2015 doi: 10.1021/acs.chemrev.2c00611
    [65] Zhang C, Chen M, Keten S, et al. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Science Advances, 2021, 7(37): eabi8919 doi: 10.1126/sciadv.abi8919
    [66] Jin K, Qin Z, Buehler MJ. Molecular deformation mechanisms of the wood cell wall material. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198-206 doi: 10.1016/j.jmbbm.2014.11.010
    [67] Kulasinski K, Derome D, Carmeliet J. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. Journal of the Mechanics and Physics of Solids, 2017, 103: 221-235 doi: 10.1016/j.jmps.2017.03.016
    [68] Hou Y, Guan QF, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320 doi: 10.1021/acsnano.0c08574
    [69] Zhang Y, Yu J, Wang X, et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science, 2021, 372(6543): 706-711 doi: 10.1126/science.abf2824
    [70] Qin X, Feng S, Meng Z, et al. Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations. Cellulose, 2017, 24(8): 3289-3299 doi: 10.1007/s10570-017-1367-x
    [71] Ray U, Pang Z, Li T. Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme. Cellulose, 2021, 28(6): 3359-3372 doi: 10.1007/s10570-021-03740-x
    [72] Shishehbor M, Zavattieri PD. Effects of interface properties on the mechanical properties of bio-inspired cellulose nanocrystal (CNC)-based materials. Journal of the Mechanics and Physics of Solids, 2019, 124: 871-896 doi: 10.1016/j.jmps.2018.12.002
    [73] Wang X, Pang Z, Chen C, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Advanced Functional Materials, 2020, 30(22): 1910417 doi: 10.1002/adfm.201910417
    [74] Pařil P, Brabec M, Maňák O, et al. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. European Journal of Wood and Wood Products, 2014, 72(5): 583-591 doi: 10.1007/s00107-014-0814-8
    [75] Fang CH, Mariotti N, Cloutier A, et al. Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 2012, 70(1): 155-163
    [76] Bekhta P, Hiziroglu S, Shepelyuk O. Properties of plywood manufactured from compressed veneer as building material. Materials & Design, 2009, 30(4): 947-953
    [77] Stamm AJ, Seborg RM. Resin-treated, laminated, compressed wood. 1941
    [78] Sotayo A, Bradley D, Bather M, et al. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Developments in the Built Environment, 2020, 1: 100004 doi: 10.1016/j.dibe.2019.100004
    [79] Song J, Chen C, Zhu S, et al. Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554(7691): 224-228 doi: 10.1038/nature25476
    [80] Han X, Ye Y, Lam F, et al. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. Journal of Materials Chemistry A, 2019, 7(47): 27023-27031 doi: 10.1039/C9TA11118B
    [81] Frey M, Widner D, Segmehl JS, et al. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Applied Materials & Interfaces, 2018, 10(5): 5030-5037
    [82] He S, Chen C, Li T, et al. An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods, 2020, 4(1): 1900747 doi: 10.1002/smtd.201900747
    [83] Zhu M, Wang Y, Zhu S, et al. Anisotropic, transparent films with aligned cellulose nanofibers. Advanced Materials, 2017, 29(21): 1606284 doi: 10.1002/adma.201606284
    [84] Gan W, Chen C, Kim HT, et al. Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10(1): 5084 doi: 10.1038/s41467-019-13053-0
    [85] Gan W, Chen C, Wang Z, et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Advanced Functional Materials, 2019, 29(14): 1807444 doi: 10.1002/adfm.201807444
    [86] Chen B, Leiste UH, Fourney WL, et al. Hardened wood as a renewable alternative to steel and plastic. Matter, 2021, 4(12): 3941-3952 doi: 10.1016/j.matt.2021.09.020
    [87] Fang Z, Li B, Liu Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter, 2020, 2(4): 1000-1014 doi: 10.1016/j.matt.2020.01.016
    [88] Li Z, Chen C, Mi R, et al. A strong, tough, and scalable structural material from fast-growing bamboo. Advanced Materials, 2020, 32(10): 1906308 doi: 10.1002/adma.201906308
    [89] Xiao S, Chen C, Xia Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374(6566): 465-471 doi: 10.1126/science.abg9556
    [90] Luo D, Maheshwari A, Danielescu A, et al. Autonomous self-burying seed carriers for aerial seeding. Nature, 2023, 614(7948): 463-470 doi: 10.1038/s41586-022-05656-3
    [91] Khakalo A, Tanaka A, Korpela A, et al. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3195-3202
    [92] Khakalo A, Tanaka A, Korpela A, et al. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Applied Materials & Interfaces, 2020, 12(20): 23532-23542
    [93] Li Y, Vasileva E, Sychugov I, et al. Optically transparent wood: Recent progress, opportunities, and challenges. Advanced Optical Materials, 2018, 6(14): 1800059 doi: 10.1002/adom.201800059
    [94] Wang K, Dong Y, Ling Z, et al. Transparent wood developed by introducing epoxy vitrimers into a delignified wood template. Composites Science and Technology, 2021, 207: 108690 doi: 10.1016/j.compscitech.2021.108690
    [95] Kong W, Wang C, Jia C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Advanced Materials, 2018, 30(39): 1801934 doi: 10.1002/adma.201801934
    [96] Chen C, Wang Y, Wu Q, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chemical Engineering Journal, 2020, 400: 125876 doi: 10.1016/j.cej.2020.125876
    [97] Shams MI, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: Effects of sodium chlorite treatment. Journal of Wood Science, 2005, 51(3): 234-238 doi: 10.1007/s10086-004-0638-y
    [98] Shams MI, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: Effects of pressing pressure and pressure holding. Journal of Wood Science, 2004, 50(4): 337-342 doi: 10.1007/s10086-003-0570-6
    [99] Shams MI, Yano H. A new method for obtaining high strength phenol formaldehyde resin-impregnated wood composites at low pressing pressure. Journal of Tropical Forest Science, 2009, 21: 175-180
    [100] Yano H. Potential strength for resin-impregnated compressed wood. Journal of Materials Science Letters, 2001, 20(12): 1127-1129 doi: 10.1023/A:1010996424453
    [101] Frey M, Schneider L, Masania K, et al. Delignified wood–polymer interpenetrating composites exceeding the rule of mixtures. ACS Applied Materials & Interfaces, 2019, 11(38): 35305-35311
    [102] Li T, Zhu M, Yang Z, et al. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Advanced Energy Materials, 2016, 6(22): 1601122
    [103] Fink S. Transparent wood – a new approach in the functional study of wood structure. 1992, 46(5): 403-408
    [104] Mi R, Chen C, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11(1): 3836 doi: 10.1038/s41467-020-17513-w
    [105] Mi R, Li T, Dalgo D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 2020, 30(1): 1907511 doi: 10.1002/adfm.201907511
    [106] Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Advanced Materials, 2016, 28(26): 5181-5187 doi: 10.1002/adma.201600427
    [107] Yu Z, Yao Y, Yao J, et al. Transparent wood containing Cs xWO3 nanoparticles for heat-shielding window applications. Journal of Materials Chemistry A, 2017, 5(13): 6019-6024 doi: 10.1039/C7TA00261K
    [108] Zhu M, Li T, Davis CS, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy, 2016, 26: 332-339 doi: 10.1016/j.nanoen.2016.05.020
    [109] Jia C, Chen C, Mi R, et al. Clear wood toward high-performance building materials. ACS Nano, 2019, 13(9): 9993-10001 doi: 10.1021/acsnano.9b00089
    [110] Li Y, Fu Q, Yu S, et al. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules, 2016, 17(4): 1358-1364 doi: 10.1021/acs.biomac.6b00145
    [111] Li Y, Yu S, Veinot JG C, et al. Luminescent transparent wood. Advanced Optical Materials, 2017, 5(1): 1600834 doi: 10.1002/adom.201600834
    [112] Li Y, Yang X, Fu Q, et al. Towards centimeter thick transparent wood through interface manipulation. Journal of Materials Chemistry A, 2018, 6(3): 1094-1101 doi: 10.1039/C7TA09973H
    [113] Xia Q, Chen C, Li T, et al. Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7(5): eabd7342 doi: 10.1126/sciadv.abd7342
    [114] Xia Q, Chen C, Yao Y, et al. In situ lignin modification toward photonic wood. Advanced Materials, 2021, 33(8): 2001588 doi: 10.1002/adma.202001588
    [115] Li Y, Fu Q, Rojas R, et al. Lignin-retaining transparent wood. Chem Sus Chem, 2017, 10(17): 3445-3451 doi: 10.1002/cssc.201701089
    [116] Zhu M, Jia C, Wang Y, et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Applied Materials & Interfaces, 2018, 10(34): 28566-28571
    [117] Li K, Wang S, Chen H, et al. Self-densification of highly mesoporous wood structure into a strong and transparent film. Advanced Materials, 2020, 32(42): 2003653 doi: 10.1002/adma.202003653
    [118] Chen C, Zhou T, Wan Z, et al. Insulative biobased glaze from wood laminates obtained by self-adhesion. Small, 2023, 19(38): 2301472
    [119] Song J, Chen C, Wang C, et al. Superflexible wood. ACS Applied Materials & Interfaces, 2017, 9(28): 23520-23527
    [120] Jia C, Li T, Chen C, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36: 366-373 doi: 10.1016/j.nanoen.2017.04.059
    [121] Fu Q, Chen Y, Sorieul M. Wood-based flexible electronics. ACS Nano, 2020, 14(3): 3528-3538 doi: 10.1021/acsnano.9b09817
    [122] Chen C, Song J, Cheng J, et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano, 2020, 14(12): 16723-16734 doi: 10.1021/acsnano.0c04298
    [123] Garemark J, Perea-Buceta JE, Felhofer M, et al. Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly. ACS Nano, 2023, 17(5): 4775-4789 doi: 10.1021/acsnano.2c11220
    [124] Song J, Chen C, Yang Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano, 2018, 12(1): 140-147 doi: 10.1021/acsnano.7b04246
    [125] Wang K, Liu X, Tan Y, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 2019, 371: 769-780 doi: 10.1016/j.cej.2019.04.108
    [126] Chen C, Song J, Zhu S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem, 2018, 4(3): 544-554 doi: 10.1016/j.chempr.2017.12.028
    [127] Guan H, Cheng Z, Wang X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 2018, 12(10): 10365-10373 doi: 10.1021/acsnano.8b05763
    [128] Han ZM, Sun WB, Yang KP, et al. An all-natural wood-inspired aerogel. Angewandte Chemie International Edition, 2023, 62(6): e202211099 doi: 10.1002/anie.202211099
    [129] Li X, Jin X, Wu Y, et al. A comprehensive review of lignocellulosic biomass derived materials for water/oil separation. Science of the Total Environment, 2023, 876: 162549 doi: 10.1016/j.scitotenv.2023.162549
    [130] Li T, Song J, Zhao X, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4(3): eaar3724 doi: 10.1126/sciadv.aar3724
    [131] Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763 doi: 10.1126/science.aau9101
    [132] Xu J, Yang T, Xu X, et al. Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106098 doi: 10.1016/j.compositesa.2020.106098
    [133] Gan W, Chen C, Wang Z, et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Advanced Functional Materials, 2020, 30(10): 1909196 doi: 10.1002/adfm.201909196
    [134] Fu Q, Medina L, Li Y, et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Applied Materials & Interfaces, 2017, 9(41): 36154-36163
    [135] Chen L, Song N, Shi L, et al. Anisotropic thermally conductive composite with wood-derived carbon scaffolds. Composites Part A:Applied Science and Manufacturing, 2018, 112: 18-24 doi: 10.1016/j.compositesa.2018.05.023
    [136] Wan J, Song J, Yang Z, et al. Highly anisotropic conductors. Advanced Materials, 2017, 29(41): 1703331 doi: 10.1002/adma.201703331
    [137] Chen C, Hu L. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154-3165 doi: 10.1021/acs.accounts.8b00391
    [138] Shen F, Luo W, Dai J, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Advanced Energy Materials, 2016, 6(14): 1600377 doi: 10.1002/aenm.201600377
    [139] Peng X, Zhang L, Chen Z, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Advanced Materials, 2019, 31(16): 1900341 doi: 10.1002/adma.201900341
    [140] Chen C, Xu S, Kuang Y, et al. Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Advanced Energy Materials, 2019, 9(9): 1802964 doi: 10.1002/aenm.201802964
    [141] Song H, Xu S, Li Y, et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Advanced Energy Materials, 2018, 8(4): 1701203 doi: 10.1002/aenm.201701203
    [142] Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 2017, 114(14): 3584-3589 doi: 10.1073/pnas.1618871114
    [143] Chen C, Zhang Y, Li Y, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3 D current collectors. Advanced Energy Materials, 2017, 7(17): 1700595 doi: 10.1002/aenm.201700595
    [144] Tran VC, Mastantuoni GG, Zabihipour M, et al. Electrical current modulation in wood electrochemical transistor. Proceedings of the National Academy of Sciences, 2023, 120(18): e2218380120
    [145] Li T, Li SX, Kong W, et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5(2): eaau4238 doi: 10.1126/sciadv.aau4238
    [146] Zhao J, Zhang W, Liu T, et al. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664 doi: 10.1002/smtd.202200664
    [147] Wu QY, Wang C, Wang R, et al. Salinity-gradient power generation with ionized wood membranes. Advanced Energy Materials, 2019, 10(1): 1902590
    [148] Sun J, Guo H, Schädli GN, et al. Enhanced mechanical energy conversion with selectively decayed wood. Science Advances, 2021, 7(11): eabd9138 doi: 10.1126/sciadv.abd9138
    [149] Sun J, Guo H, Ribera J, et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano, 2020, 14(11): 14665-14674 doi: 10.1021/acsnano.0c05493
    [150] Cai C, Mo J, Lu Y, et al. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 2021, 83: 105833 doi: 10.1016/j.nanoen.2021.105833
    [151] Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756 doi: 10.1002/adma.201701756
    [152] Zhu M, Li Y, Chen F, et al. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028 doi: 10.1002/aenm.201701028
    [153] Chen X, He S, Falinski MM, et al. Sustainable off-grid desalination of hypersaline waters using janus wood evaporators. Energy & Environmental Science, 2021, 14(10): 5347-5357
    [154] He S, Chen C, Chen G, et al. High-performance, scalable wood-based filtration device with a reversed-tree design. Chemistry of Materials, 2020, 32(5): 1887-1895 doi: 10.1021/acs.chemmater.9b04516
    [155] Liu KK, Jiang Q, Tadepalli S, et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675-7681
    [156] Chen F, Gong AS, Zhu M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275-4282 doi: 10.1021/acsnano.7b01350
    [157] Zhang W, Xu C, Che X, et al. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions. ACS Nano, 2022, 16(8): 13144-13151 doi: 10.1021/acsnano.2c06173
    [158] Chen G, Li T, Chen C, et al. A highly conductive cationic wood membrane. Advanced Functional Materials, 2019, 29(44): 1902772 doi: 10.1002/adfm.201902772
  • 加载中
图(10)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 录用日期:  2023-10-08
  • 网络出版日期:  2023-10-09

目录

    /

    返回文章
    返回
    Baidu
    map