EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准零刚度驱动式压电低频振动能量采集方法

陈婷婷 王凯 成利 周加喜

陈婷婷, 王凯, 成利, 周加喜. 准零刚度驱动式压电低频振动能量采集方法. 力学学报, 2023, 55(10): 2156-2167 doi: 10.6052/0459-1879-23-315
引用本文: 陈婷婷, 王凯, 成利, 周加喜. 准零刚度驱动式压电低频振动能量采集方法. 力学学报, 2023, 55(10): 2156-2167 doi: 10.6052/0459-1879-23-315
Chen Tingting, Wang Kai, Cheng Li, Zhou Jiaxi. Research on quasi-zero-stiffness-enabled piezoelectric low-frequency vibration energy harvesting method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2156-2167 doi: 10.6052/0459-1879-23-315
Citation: Chen Tingting, Wang Kai, Cheng Li, Zhou Jiaxi. Research on quasi-zero-stiffness-enabled piezoelectric low-frequency vibration energy harvesting method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2156-2167 doi: 10.6052/0459-1879-23-315

准零刚度驱动式压电低频振动能量采集方法

doi: 10.6052/0459-1879-23-315
基金项目: 国家自然科学基金(12272129, 12002122和12122206)和香江学者计划(XJ2022012)资助项目
详细信息
    通讯作者:

    王凯, 副研究员, 主要研究方向为低频减隔振及能量采集. E-mail: wangkai@hnu.edu.cn

    周加喜, 教授, 主要研究方向为特种装备低频减振隔振. E-mail: jxizhou@hnu.edu.cn

  • 中图分类号: O313

RESEARCH ON QUASI-ZERO-STIFFNESS-ENABLED PIEZOELECTRIC LOW-FREQUENCY VIBRATION ENERGY HARVESTING METHOD

  • 摘要: 如何高效且经济环保地为数以万计的传感器网络节点供电, 是物联网快速发展和大范围应用的瓶颈性难题. 将振动能转换为电能以实现传感器自供电是物联网传感器网络节点供能的潜在方案. 但是, 环境振动中低频成分占比较大, 而传统振动能量采集方法较难实现低频( < 10 Hz)振动能量的高效转化, 这限制了振动能量采集技术在物联网领域的大范围应用. 文章提出了一种准零刚度驱动式压电振动能量采集装置, 可将环境、人体及部分机械设备的低频振动能量高效地转化为电能. 首先利用能量法得到压电俘能单元的机电耦合方程, 并用谐波平衡法获得系统动力学及电学响应的解析表达式, 同时对比了数值解与解析表达式的结果; 进一步探究了阻尼比、激励幅值等参数对动力学响应及电学输出的影响. 最后加工制备了准零刚度驱动式压电振动能量采集装置样机, 搭建了实验平台, 测试了系统的动力学响应与电学输出, 验证了理论结果的正确性. 研究结果显示当频率为2.5 Hz时, 准零刚度驱动式压电振动能量采集装置中单个能量转化单元的最大峰值电压达到25 V. 文章提出的准零刚度压电能量采集装置有望克服传统共振型压电能量采集装置能量采集频带依赖于能量采集系统固有频率以及多稳态能量采集器需要跨越势垒而难以实现超低频小幅值能量俘获的难题, 进一步夯实振动能量采集理论, 为超低频小振幅振动能量的高效采集提供新思路.

     

  • 图  1  俘能装置结构模型图

    Figure  1.  Structure model diagram of energy harvesting device

    图  2  复合梁模型及其截面图

    Figure  2.  Composite beam model and its cross section

    图  3  回复力和机电耦合系数的原函数和拟合函数图($\gamma = 1.56{\text{2 5}}$, $ \theta = 0.21 $,$ A = 0.17 $,$ B = 0.{\text{25}} $)

    Figure  3.  The original function and polynomial approximation diagram of restoring force and electromechanical coupling coefficient ($\gamma = 1.56{\text{2 5}}$, $ \theta = 0.21 $,$ A = 0.17 $,$ B = 0.{\text{25}} $)

    图  4  数值结果与解析解结果对比($\gamma = 1.56{\text{2 5}}$, $ \zeta = 0.055 $, $ \rho = 2 $,$ \theta = 0.21 $, u0 = 0.03)

    Figure  4.  Comparison of numerical results and analytical results ($\gamma = 1.56{\text{2 5}}$,$ \zeta = 0.055 $, $ \rho = 2 $,$ \theta = 0.21 $, u0 = 0.03)

    图  5  阻尼对位移及电压响应的影响($\gamma = 1.56{\text{2 5}}$,$ \rho = 2 $,$ \theta = 0.21 $, u0 = 0.03)

    Figure  5.  Influence of damping on displacement and voltage response ($\gamma = 1.56{\text{2 5}}$,$ \rho = 2 $,$ \theta = 0.21 $, u0 = 0.03)

    图  6  激励幅值对位移和输出电压响应的影响($\gamma = 1.56{\text{2 5}}$,$ \zeta = 0.055 $, $ \rho = 2 $,$ \theta = 0.21 $)

    Figure  6.  Influence of excitation amplitude on displacement and output voltage ($\gamma = 1.56{\text{2 5}}$,$ \zeta = 0.055 $, $ \rho = 2 $,$ \theta = 0.21 $)

    图  7  实验设备装置图

    Figure  7.  Picture of experiment setup

    图  8  不同激励幅值下绝对位移响应与峰值电压的输出结果

    Figure  8.  Output results of absolute displacement response and peak voltage under different excitation amplitudes

    图  9  在2.5 Hz时, 不同激励幅值的位移时域响应曲线

    Figure  9.  The displacement time-domain response curve with different excitation amplitude at 2.5 Hz

    表  1  模型的相关物理参数

    Table  1.   Relevant parameters of the prototype

    ItemSymbolValue
    thickness of the beambp10 mm
    thickness of the filmhp0.1 mm
    weight of proof massm200 g
    elastic moduli of the beamYs196 GPa
    elastic moduli of the filmYp3 GPa
    permittivity constant of the filmh33106 mF/m
    piezoelectric stress constante3165 mC/m2
    下载: 导出CSV
    Baidu
  • [1] 赵翔, 李思谊, 李映辉. 基于压电振动能量俘获的弯曲结构损伤监测研究. 力学学报, 2021, 53(11): 3035-3044 (Zhao Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044 (in Chinese) doi: 10.6052/0459-1879-21-452

    Zhao Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035–3044(in Chinese) doi: 10.6052/0459-1879-21-452
    [2] Jiao P, Egbe KI, Xie Y, et al. Piezoelectric sensing techniques in structural health monitoring : A state-of-the-art review. Sensors, 2020, 20: 3730 doi: 10.3390/s20133730
    [3] Baptista FG, Budoya DE, De Almeida VAD, et al. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors, 2014, 14(1): 1208-1227
    [4] Liu Z, Cao Y, Sha A, et al. Energy harvesting array materials with thin piezoelectric plates for traffic data monitoring. Construction and Building Materials, 2021, 302: 124147 doi: 10.1016/j.conbuildmat.2021.124147
    [5] Covaci C, Gontean A. Piezoelectric energy harvesting solutions: A review. Sensors, 2020, 20: 3512
    [6] Kim HS, Kim JH, Kim J. A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 2011, 12: 1129-1141 doi: 10.1007/s12541-011-0151-3
    [7] 王凯, 周加喜, 蔡昌琦等. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694 (Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694 (in Chinese) doi: 10.6052/0459-1879-22-108

    Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678–2694 (in Chinese) doi: 10.6052/0459-1879-22-108
    [8] 陈楠, 刘京睿, 魏廷存. 面向压电振动能量俘获的电能管理电路综述. 力学学报, 2021, 53(11): 2928-2940 (Chen Nan, Liu Jingrui, Wei Tingcun. Review of energy management circuits for piezoelectric vibration energy harvesters. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2928-2940 (in Chinese) doi: 10.6052/0459-1879-21-440

    Chen Nan, Liu Jingrui, Wei Tingcun. Review of energy management circuits for piezoelectric vibration energy harvesters. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2928–2940(in Chinese)) doi: 10.6052/0459-1879-21-440
    [9] Sezer N, Koç M. Nano energy a comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 2021, 80: 105567 doi: 10.1016/j.nanoen.2020.105567
    [10] Su Y, Liu Y, Li W, et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Materials Horizons, 2023, 10: 842-851 doi: 10.1039/D2MH01466A
    [11] Han M, Chan YC, Liu W, et al. Low frequency PVDF piezoelectric energy harvester with combined d31 and d33 operating modes//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2013: 440-443
    [12] Sun R, Zhou S, Cheng L. Ultra-low frequency vibration energy harvesting: Mechanisms, enhancement techniques, and scaling laws. Energy Conversion and Management, 2023, 276: 116585 doi: 10.1016/j.enconman.2022.116585
    [13] Aboulfotoh NA, Arafa MH, Megahed SM. A self-tuning resonator for vibration energy harvesting. Sensors and Actuators A: Physical, 2013, 201: 328-334 doi: 10.1016/j.sna.2013.07.030
    [14] Mansour MO, Arafa MH, Megahed SM. Resonator with magnetically adjustable natural frequency for vibration energy harvesting. Sensors and Actuators A: Physical, 2010, 163: 297-303 doi: 10.1016/j.sna.2010.07.001
    [15] Ou Q, Chen XQ, Gutschmidt S, et al. A two-mass cantilever beam model for vibration energy harvesting applications//IEEE International Conference on Automation Science and Engineering, 2010: 301-306
    [16] Toyabur RM, Salauddin M, Park JY. Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Ceramics International, 2017, 43: S675-S681 doi: 10.1016/j.ceramint.2017.05.257
    [17] Huang X, Zhang C, Dai K. A multi-mode broadband vibration energy harvester composed of symmetrically distributed u-shaped cantilever beams. Micromachines, 2021, 12: 203 doi: 10.3390/mi12020203
    [18] Lin Z, Zhang Y. Dynamics of a mechanical frequency up-converted device for wave energy harvesting. Journal of Sound and Vibration, 2016, 367: 170-184 doi: 10.1016/j.jsv.2015.12.048
    [19] Zou HX, Zhao LC, Gao QH, et al. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Applied Energy, 2019, 255: 113871 doi: 10.1016/j.apenergy.2019.113871
    [20] Liao B, Zhao R, Yu K, et al. Theoretical and experimental investigation of a bi-stable piezoelectric energy harvester incorporating fluid-induced vibration. Energy Conversion and Management, 2022, 255: 115307 doi: 10.1016/j.enconman.2022.115307
    [21] Qian F, Hajj MR, Zuo L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 2020, 222: 113174 doi: 10.1016/j.enconman.2020.113174
    [22] Wang Z, Li T, Du Y, et al. Nonlinear broadband piezoelectric vibration energy harvesting enhanced by inter-well modulation. Energy Conversion and Management, 2021, 246: 114661 doi: 10.1016/j.enconman.2021.114661
    [23] Zhou J, Zhao X, Wang K, et al. Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation. Energy, 2021, 228: 120595 doi: 10.1016/j.energy.2021.120595
    [24] Fang S, Zhou S, Yurchenko D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mechanical Systems and Signal Processing, 2022, 166: 108419 doi: 10.1016/j.ymssp.2021.108419
    [25] Zhou S, Zuo L. Commun nonlinear sci numer simulat nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284 doi: 10.1016/j.cnsns.2018.02.017
    [26] 聂欣, 张婷婷, 靳艳飞. 窄带随机激励下三稳态压电俘能器的动力学特性与实验研究. 动力学与控制学报, 2023, 21(3): 53-62 (Nie Xin, Zhang Tingting, Jin Yanfei. Dynamical behaviors and experimental analysis of tri-stable piezoelectric energy harvester under narrow-band random excitations. Journal of Dynamics and Control, 2023, 21(3): 53-62 (in Chinese)

    Nie Xin, Zhang Tingting, Jin Yanfei. Dynamical behaviors and experimental analysis of tri-stable piezoelectric energy harvester under narrow-band random excitations. Journal of Dynamics and Control, 2023, 21(03): 53–62 (in Chinese))
    [27] Chen L, Liao X, Sun B, et al. A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect. Applied Energy, 2022, 317: 119161 doi: 10.1016/j.apenergy.2022.119161
    [28] 郑友成, 朱强国, 赵泽翔等. 基于线性放大与非线性磁力复合增强的三稳态压电振动能量俘获机理与动力学特性研究. 机械工程学报, 2022, 58(23): 138-150 (Zheng Youcheng, Zhu Qiangguo, Zhao Zexiang, et al. Vibration energy harvesting mechanism and dynamic characteristics of a compound tri-stable piezoelectric vibratory energy harvester combining a linear amplifying mechanism and nonlinear magnetic force. Journal of Mechanical Engineerin, 2022, 58(23): 138-150 (in Chinese) doi: 10.3901/JME.2022.23.138

    Zheng Youcheng, Zhu Qiangguo, Zhao Zexiang, et al. Vibration Energy Harvesting Mechanism and Dynamic Characteristics of a Compound Tri-stable Piezoelectric Vibratory Energy Harvester Combining a Linear Amplifying Mechanism and Nonlinear Magnetic Force. Journal of Mechanical Engineerin, 2022, 58(23): 138–150 (in Chinese)) doi: 10.3901/JME.2022.23.138
    [29] Museros P, Moliner E. Free vibrations of simply-supported beam bridges under moving loads : Maximum resonance, cancellation and resonant vertical acceleration. Journal of Sound and Vibration, 2013, 332: 326-345 doi: 10.1016/j.jsv.2012.08.008
    [30] 张孝存, 茅鸣, 李玉顺. 预应力钢-竹组合梁受弯挠度计算方法与试验研究. 工程力学, 2023, 40(1): 201-211, 228 (Zhang Xiaocun, Mao Ming, Li Ynshun. Calculation method and experimental study on bending deflection of prestressed steel-bamboo composite beams. Engineering Mechanics, 2023, 40(1): 201-211, 228 (in Chinese)

    Zhang Xiaocun, Mao Ming, Li Ynshun. Calculation method and experimental study on bending deflection of prestressed steel-bamboo composite beams. Engineering Mechanics, 2023, 40(01): 201–211 + 228 (in Chinese))
    [31] Erturk A, Inman DJ. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 2008, 17: 065016
    [32] Su Y, Dagdeviren C, Li R. Measured output voltages of piezoelectric devices depend on the resistance of voltmeter. Advanced Functional Materials, 2015, 25: 5320-5325 doi: 10.1002/adfm.201502280
    [33] Su Y, Li S, Huan Y, et al. The universal and easy-to-use standard of voltage measurement for quantifying the performance of piezoelectric devices. Extreme Mechanics Letters, 2017, 15: 10-16 doi: 10.1016/j.eml.2017.03.002
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  57
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 录用日期:  2023-08-16
  • 网络出版日期:  2023-08-17
  • 刊出日期:  2023-10-18

目录

    /

    返回文章
    返回
    Baidu
    map