EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于轻敲式原子力显微镜动力学系统中能量耗散的研究

刘国林,曾瑜,刘锦灏,魏征

downloadPDF
刘国林, 曾瑜, 刘锦灏, 魏征. 关于轻敲式原子力显微镜动力学系统中能量耗散的研究. 力学学报, 2023, 55(11): 2599-2613 doi: 10.6052/0459-1879-23-300
引用本文: 刘国林, 曾瑜, 刘锦灏, 魏征. 关于轻敲式原子力显微镜动力学系统中能量耗散的研究. 力学学报, 2023, 55(11): 2599-2613doi:10.6052/0459-1879-23-300
Liu Guolin, Zeng Yu, Liu Jinhao, Wei Zheng. Study on energy dissipation in the dynamic system of tapping mode atomic force microscope. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2599-2613 doi: 10.6052/0459-1879-23-300
Citation: Liu Guolin, Zeng Yu, Liu Jinhao, Wei Zheng. Study on energy dissipation in the dynamic system of tapping mode atomic force microscope.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2599-2613doi:10.6052/0459-1879-23-300

关于轻敲式原子力显微镜动力学系统中能量耗散的研究

doi:10.6052/0459-1879-23-300
基金项目:国家自然科学基金资助项目(11572031)
详细信息
    通讯作者:

    魏征, 副教授, 主要研究方向为微纳米力学. E-mail:weizheng@mail.buct.edu.cn

  • 中图分类号:O326

STUDY ON ENERGY DISSIPATION IN THE DYNAMIC SYSTEM OF TAPPING MODE ATOMIC FORCE MICROSCOPE

  • 摘要:原子力显微镜是一种典型的微纳谐振器, 其核心部件是一个对微弱力极敏感的微悬臂梁探针, 当它在不同的环境工作时, 存在着各种不同形式、不同性质的能量耗散, 这些能量耗散与系统的相位图像有着密切的联系. 在众多的耗散机制中, 只有针尖与样品的黏附接触耗散才能真正反映样品的性质, 其他耗散会降低黏附接触耗散在系统总耗散中的占比, 使得图像中的有效信息被削弱. 因而, 明确其他耗散对系统品质因数的量级贡献是十分重要的, 这有助于提高图像的品质. 为了研究这些耗散, 本文根据耗散机理产生的原因对不同的能量耗散进行了细致的分类, 系统总结了各种能量耗散的类型. 之后, 通过理论、实验和仿真的方法探究了在不同环境下、不同位置处微悬臂梁探针的能量耗散, 明确了不同耗散对系统品质因数的量级贡献. 然后, 对于不同流体环境下的能量耗散, 对比了它们的作用机理及量级大小. 最后, 对于在大气环境下工作的原子力显微镜探针, 研究了它在振动过程中从高于样品表面到下降并接触样品这一连续过程中不同阶段存在的能量耗散, 分析表明, 在这些能量耗散中对系统品质因数影响最大的是由空气引起的耗散, 包括空气黏性阻尼, 压膜阻尼及液桥耗散.

  • 图 1支撑损耗模型和仿真网格示意图

    Figure 1.Schematic diagram of support dissipation model and simulation grid

    图 2扫描电子显微镜下的探针

    Figure 2.The probe under scanning electron microscope

    图 3远距离的扫频曲线

    Figure 3.Sweeping curve at far distance

    图 4空气中相对位置与品质因数的关系

    Figure 4.Relationship between relative position and quality factor in air

    图 5探针靠近样品表面

    Figure 5.Probe close to sample surface

    图 6近距离的扫频曲线

    Figure 6.Sweep curve at close distance

    图 7理论、实验品质因数与探针位置的关系

    Figure 7.The relationship between the quality factor and position of the probe in theory and experiment

    图 8液膜厚度与相对湿度的关系

    Figure 8.Relationship between water film thickness and relative humidity

    图 9液桥模型示意图

    Figure 9.Schematic diagram of liquid bridge model

    图 10相对湿度与耗散能的关系

    Figure 10.Relationship between relative humidity and dissipation energy

    图 11不同相对湿度下品质因数的关系

    Figure 11.Relationship of quality factor under different relative humidity

    图 12微悬臂梁在液体中振动示意图

    Figure 12.Schematic diagram of vibration of micro-cantilever beam in liquid

    图 13典型轻敲式AFM探针品质因数量级分布图

    Figure 13.Order of magnitude distribution of quality factor for a typical tapping mode AFM probe

    表 1支撑损耗的理论及仿真结果

    Table 1.Theoretical and simulation results of support dissipation

    Parameter Value
    $l \times b \times h/{\text{μm} }$ 135 × 40 × 4
    $ {h}_{\text{s}}/\text{μm} $ 400
    material Si
    E/GPa 169
    theoryQ $35\;538.75$
    simulationQ $32\;294$
    下载: 导出CSV

    表 2探针各项参数值

    Table 2.Parameter values of the probe

    Parameter Value
    $l \times b \times h/{\text{μm}}$ 135 × 40 × 4
    tip height/μm 10
    material Si
    E/GPa 169
    ${m_{\text{e}}}$/kg $1.21 \times {10^{ - 11}}$
    ${\omega _{n} }/({ {\rm{rad} } }\cdot{ {\rm{s} } }^{-1})$ $1.69 \times {10^6}$
    ${c_{ {\text{e1} } } }/({{\rm{N}}} \cdot {{\rm{s}}} \cdot { {{\rm{m}}}^{ - 1} })$ $4.33 \times {10^{ - 8}}$
    下载: 导出CSV

    表 3液体中梁的参数及品质因数

    Table 3.Parameters and quality factor of beam in liquid

    Parameter Value
    $l \times b \times h/{\text{μm} }$ 135 × 40 × 4
    $ {\text{material}} $ Si
    $ E/\text{GPa} $ 169
    ${m_{{\text{liquid}}}}/{\text{kg}}$ $5.7 \times {10^{ - 11}}$
    ${f_{\text{n} } }/{{\rm{kHz}}}$ 150.5
    ${c_{ {\text{e} }3} }/({{\rm{N}}} \cdot {{\rm{s}}} \cdot { {{\rm{m}}}^{ - 1} })$ $5.67 \times {10^{ - 6}}$
    ${Q_{{\text{liquid}}}}$ 8.83
    下载: 导出CSV

    表 4不同环境条件下其他耗散类型及量级对比

    Table 4.Comparison of other dissipation types and magnitudes under different environmental conditions

    Ultrahigh vacuum Nitrogen environment Atmospheric environment Liquid environment
    dissipation types ${Q_{ {\text{in} } } }{ {\text{(intrinsic dissipation)} }^{\text{*} } }{\text{, } }{Q_{ {\text{sup} } } }$ $ {Q_{{\text{in}}}},{\text{ }}{Q_{{\text{sup}}}},{\text{ }}{Q_{{\text{vis}}}},{\text{ }}{Q_{{\text{squ}}}} $ $ {Q_{{\text{in}}}},{\text{ }}{Q_{{\text{sup}}}},{\text{ }}{Q_{{\text{vis}}}},{\text{ }}{Q_{{\text{squ}}}},{\text{ }}{Q_{{\text{liq}}}} $ $ {Q_{{\text{in}}}},{\text{ }}{Q_{{\text{sup}}}},{\text{ }}{Q_{{\text{liquid}}}} $
    magnitude $ Q \sim {10^4} $ $ Q \sim {10^2} $ $ {\text{ }}Q \sim {10^2} $ ${\text{ } }Q \sim (0 \sim 10)$
    *includes${Q_{{\text{the}}}},{\text{ }}{Q_{{\text{son}}}},{\text{ }}{Q_{{\text{sur}}}}{\text{, }}{Q_{{{\rm{int}}} }}$
    下载: 导出CSV
  • [1] Helena MG, Carlos A, Perez-Madrigal MM. Beyond biology: Alternative uses of cantilever-based technologies.Lab Chip, 2023, 23(5): 1128-1150doi:10.1039/D2LC00873D
    [2] Zhang WM, Hu KM, Peng ZK, et al. Tunable micro-and nanomechanical resonators.Sensors, 2015, 15: 26478-26566doi:10.3390/s151026478
    [3] Ghaemi N, Nikoobin A, Ashory M. A comprehensive categorization of micro/nanomechanical resonators and their practical applications from an engineering perspective: A review.Advanced Electronic Materials, 2022, 8: 2200229doi:10.1002/aelm.202200229
    [4] Zeng JW, Dong YJ, Zhang JR, et al. The trend of structured light-induced force microscopy: A review.Journal of Optics, 2023, 25: 023001doi:10.1088/2040-8986/acad8c
    [5] 魏征, 郑骁挺, 刘晶等. 轻敲模式下AFM动力学模型及能量耗散机理研究. 力学学报, 2020, 524: 1106-1119 (Wei Zheng, Zheng Xiaoting, Liu Jing, et al. Study on a dynamics model of tapping mode AFM and energy dissipation mechanism.Chinese Journal of Theoretical and Applied Mechanics, 2020, 524: 1106-1119 (in Chinese)doi:10.6052/0459-1879-20-099

    Wei Zheng, Zheng Xiaoting, Liu Jing, et al. Study on a dynamics model of tapping mode AFM and energy dissipation mechanism.Chinese Journal of Theoretical and Applied Mechanics, 2020, 524: 1106-1119(in Chinese))doi:10.6052/0459-1879-20-099
    [6] Cleveland JP, Anczykowski B, Schmid AE, et al. Energy dissipation in tapping-mode atomic force microscopy.Applied Physics Letters, 1998, 72(20): 2613-2615doi:10.1063/1.121434
    [7] Wei Z, Sun Y, Ding WX, et al. The formation of liquid bridge in different operating modes of AFM.Science China Physics Mechanics&Astronomy, 2016, 59(9): 694611
    [8] Chen XH, Li BW, Liao ZX, et al. Principles and applications of liquid-environment atomic force microscopy.Advanced Materials Interfaces, 2022, 9(35): 2201864doi:10.1002/admi.202201864
    [9] Zener C. Internal friction in solids I. Theory of internal friction in reeds.Physics Review, 1937, 52: 230-235
    [10] Hosaka H, Itao K, Kuroda S. Damping characteristics of beamshaped micro-oscillators.Sensors and Actuators A:Physical, 1995, 49(1-2): 87-95doi:10.1016/0924-4247(95)01003-J
    [11] Stoffels S, Autizi E, Van HR, et al. Physical loss mechanisms for resonant acoustical waves in boron doped Poly-SiGe deposited with hydrogen dilution.Journal of Applied Physics, 2010, 108: 084517doi:10.1063/1.3499319
    [12] Hao Z, Liao B. An analytical study on interfacial dissipation in piezoelectric rectangular block resonators with in-plane longitudinal-mode vibrations.Sensors&Actuators A Physical, 2010, 163(1): 401-409
    [13] Yang JL, Ono T, Esashi M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers.Journal of Microelectromechanical Systems, 2002, 11(6): 775-783doi:10.1109/JMEMS.2002.805208
    [14] Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems.Physics Reports, 2014, 534(3): 89-146
    [15] 张文明, 闫寒, 彭志科等. 微纳机械谐振器能量耗散机理研究进展. 科学通报, 2017, 62(19): 2077-2093 (Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators.Chinese Science Bulletin, 2017, 62(19): 2077-2093 (in Chinese)doi:10.1360/N972016-00463

    Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators.Chinese Science Bulletin, 2017, 62(19): 2077-2093 (in Chinese)doi:10.1360/N972016-00463
    [16] Wei Z, Liu J, Zheng XT, et al. Influence of squeeze film damping on quality factor in tapping mode atomic force microscope.Journal of Sound and Vibration, 2021, 491(23): 115720
    [17] Wei Z, Liu J, Wei RH, et al. Theoretical model and experimental study on environmental dissipation mechanism of tapping mode atomic force microscope.Journal of Microscopy, 2021, 283: 219-231doi:10.1111/jmi.13035
    [18] 魏征, 孙岩, 王再冉等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017, 49(6): 1301-1311 (Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode Atomic Force Microscope.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311 (in Chinese)doi:10.6052/0459-1879-17-223

    Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode Atomic Force Microscope.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311(in Chinese))doi:10.6052/0459-1879-17-223
    [19] Herruzo ET, Garcia R. Frequency response of an atomic force microscope in liquids and air: Magnetic versus acoustic excitation.Applied Physics Letters, 2007, 91(14): 143113doi:10.1063/1.2794426
    [20] Chen GY, Warmack RJ, Thundat T, et al. Resonance response of scanning force microscopy cantilevers.Review of Scientific Instruments, 1994, 65(8): 2532-2537doi:10.1063/1.1144647
    [21] Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems.Physical Review B, 2000, 61: 5600-5609
    [22] Ergincan O, Palasantzas G, Kool BJ. Influence of surface modification on the quality factor of microresonators.Physical Review B, 2012, 85: 1-5
    [23] Cleland AN. Foundations of Nanomechanics: From Solid-State Theory to Device Applications. Berlin: Springer-Verlag, 2003: 109-119
    [24] Ghaffari S, Chandorkar SA, Wang S, et al. Quantum limit of quality factor in silicon micro and nano mechanical resonators.Scientific Reports, 2013, 3: 3244doi:10.1038/srep03244
    [25] Yasumura KY, Stowe TD, Chow EM, et al. Quality factors in micron- and submicron-thick cantilevers.Journal of Microelectromechanical Systems, 2000, 9(1): 117-125doi:10.1109/84.825786
    [26] Jimbo Y, Itao K. Energy loss of a cantilever vibrator.Journal of the Horological Institute of Japan, 1968: 1-15
    [27] Photiadis DM, Judge JA. Attachment losses of highQoscillators.Applied Physics Letters, 2004, 85: 482-484doi:10.1063/1.1773928
    [28] Wang FY, Kong H, Zheng H. The numerical manifold method for harmonic wave propagation in unbounded domains.Engineering Analysis with Boundary Elements, 2022, 145(1): 310-320
    [29] Li YY, Wang R, Zhang, JM. A stepwise artificial boundary condition for wave propagation in elasto-plasticmedia.Soil Dynamics and Earthquake Engineering, 2023, 165: 107733doi:10.1016/j.soildyn.2022.107733
    [30] Du Y, Zhang JW. Numerical solutions for nonlocal wave equations by perfectly matched layers II: The two-dimensional case.Journal of Computational Physics, 2023, 488: 112209doi:10.1016/j.jcp.2023.112209
    [31] Savidis S, Bergmann M, Schepers W, et al. Wave propagation in inhomogeneous media via FE/PML method.Geotechnik, 2022, 45: 98-107doi:10.1002/gete.202100028
    [32] Bindel DS, Govindjee S. Elastic pmls for resonator anchor loss simulation.Journal for Numerical Methods in Engineering, 2005, 64(6): 789-818doi:10.1002/nme.1394
    [33] Li P, Ou JY, Yan J. Method for optimising the performance of PML in anchor-loss limited model via COMSOL.IET Science,Measurement&Technology, 2022, 16: 327-336
    [34] Landau LD, Lifshitz EM. 流体动力学. 李值译. 第五版. 北京: 高等教育出版社, 2013: 51-104

    Landau LD, Lifshitz EM. Fliuid Mechanics. Li Zhi, Trans. Fifth Edition. Beijing: Higher Education Press, 2013: 51-104 (in Chinese)
    [35] Newell W. Miniaturization of tuning forks.Science, 1968, 161: 1320-1326doi:10.1126/science.161.3848.1320
    [36] Bao M, Yang H. Squeeze film air damping in MEMS.Sensors and Actuators A-Physical, 2007, 136(1): 3-27doi:10.1016/j.sna.2007.01.008
    [37] Garcia R. Dynamic atomic force microscopy methods.Surface Science Reports, 2002, 47(6-8): 197-301doi:10.1016/S0167-5729(02)00077-8
    [38] Wei Z, Zhao YP. Growth of liquid bridge in AFM.Journal of Physics D. Applied Physics, 2007, 40(14): 4368-4375doi:10.1088/0022-3727/40/14/036
    [39] Asay DB, Kim SH. Evolution of the adsorbed water layer structure on silicon oxide at room temperature.The Journal of Physical Chemistry B, 2005, 109: 16760-16763doi:10.1021/jp053042o
    [40] Beaglehole D, Christenson HK. Vapor adsorption on mica and silicon: Entropy effects, layering, and surface forces.Journal of Physical Chemistry, 1992, 96: 3395-3403doi:10.1021/j100187a040
    [41] 魏征, 赵爽, 陈少勇等. 原子力显微镜中液桥生成机理探讨. 应用数学和力学, 2015, 36(1): 87-98 (Wei Zheng, Zhao Shuang, Chen Shaoyong, et al. Study of growth mechanisms for the liquid bridge in atomic force microscopes.Applied Mathematics and Mechanics, 2015, 36(1): 87-98 (in Chinese)doi:10.3879/j.issn.1000-0887.2015.01.008

    Wei Zheng, Zhao Shuang, Chen Shaoyong, et al. Study of Growth Mechanisms for the Liquid Bridge in Atomic Force Microscopes.Applied Mathematics and Mechanics, 2015, 36(1): 87-98(in Chinese))doi:10.3879/j.issn.1000-0887.2015.01.008
    [42] 魏征, 陈少勇, 赵爽等. 原子力显微镜中等容液桥的毛细力分析. 应用数学和力学, 2014, 35(4): 364-376 (Wei Zheng, Chen Shaoyong, Zhao Shuang, et al. Capillary force analysis of medium liquid bridge in atomic force microscopy.Applied Mathematics and Mechanics, 2014, 35(4): 364-376 (in Chinese)doi:10.3879/j.issn.1000-0887.2014.04.003

    Wei Zheng, Chen Shaoyong, Zhao Shuang, et al. Capillary force analysis of medium liquid bridge in atomic force microscopy.Applied Mathematics and Mechanics, 2014, 35(4): 364-376(in Chinese))doi:10.3879/j.issn.1000-0887.2014.04.003
    [43] García R. 振幅调制原子力显微术. 程志海, 裘晓辉译. 第一版. 北京: 科学出版社, 2016: 95-99

    García R. Amplitude Modulated Atomic Force Microscopy. Cheng Zhihai, Qiu Xiaohui, Trans. First Edition. Beijing: Science Press, 2016: 95-99 (in Chinese)
    [44] Greenspon J. Vibrations of cross-stiffened and sandwich plates with application to underwater sound radiators.Journal of the Acoustical Society of America, 1961, 33(11): 1485-1497doi:10.1121/1.1908480
    [45] Butt HJ, Siedle P, Seifert K, et al. Scan speed limit in atomic force microscopy.Journal of Microscopy, 1993, 169: 75-84doi:10.1111/j.1365-2818.1993.tb03280.x
  • 加载中
图(13)/ 表(4)
计量
  • 文章访问数:76
  • HTML全文浏览量:32
  • PDF下载量:17
  • 被引次数:0
出版历程
  • 收稿日期:2023-07-09
  • 录用日期:2023-10-05
  • 网络出版日期:2023-10-06

目录

    /

      返回文章
      返回
        Baidu
        map