EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于翅片超表面钝体的流致振动俘能特性研究

张野 王军雷

张野, 王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报, 2023, 55(10): 2199-2216 doi: 10.6052/0459-1879-23-298
引用本文: 张野, 王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报, 2023, 55(10): 2199-2216 doi: 10.6052/0459-1879-23-298
Zhang Ye, Wang Junlei. Flow-induced vibration energy harvesting based on finned metasurface bluff body. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2199-2216 doi: 10.6052/0459-1879-23-298
Citation: Zhang Ye, Wang Junlei. Flow-induced vibration energy harvesting based on finned metasurface bluff body. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2199-2216 doi: 10.6052/0459-1879-23-298

基于翅片超表面钝体的流致振动俘能特性研究

doi: 10.6052/0459-1879-23-298
基金项目: 国家自然科学基金(52277227, 51977196)和河南省自然基金优秀青年基金(222300420076)资助项目
详细信息
    通讯作者:

    王军雷, 教授, 主要研究方向为环境能量俘获、流致振动抑制及应用. E-mail: jlwang@zzu.edu.cn

  • 中图分类号: TK89

FLOW-INDUCED VIBRATION ENERGY HARVESTING BASED ON FINNED METASURFACE BLUFF BODY

  • 摘要: 超表面结构对钝体气动力特性有显著影响. 为了增强普通圆柱的流致振动俘能特性, 在圆柱表面装配不同高度和不同数量的翅片超表面并研究其对流致振动俘能特性的影响. 搭建流致振动俘能实验平台并制作压电俘能器, 实验分析了不同俘能器的俘能特性. 基于Tamura和Shimada提出的涡驰耦合模型 (Tamura-Shimada模型), 推导单自由度 (single-degree-of-freedom, SDOF) 压电俘能器流−固−电耦合理论模型, 并研究了俘能器的气动力参数对其俘能特性的影响. 建立计算流体动力学 (computational fluid dynamics, CFD) 模型, 仿真分析了不同钝体的旋涡脱落模式和流场特性. 实验结果表明翅片超表面能够显著改变钝体的动力学响应: 抑制涡激振动从而降低俘能特性或从涡激振动转变为驰振从而显著增强俘能特性. 当风速超过相应驰振起振风速后, 俘能器出现驰振特征并表现为稳定的极限环振荡 (limit cycle oscillation, LCO). 理论模型能够较为准确地预测俘能器的电压响应. 通过仿真分析可知, 翅片超表面能够显著改变钝体后方的旋涡强度, 导致其动态响应发生变化, 最终影响其俘能特性. 此外, 研究了不同接口电路对压电俘能器输出功率的影响, 与标准直流 (direct current, DC) 电路相比, 自供能同步电荷提取 (self-powered synchronous charge extraction, SP-SCE) 电路不仅可以提升压电俘能器的输出功率同时也可以提供更加稳定的功率输出, 消除了阻抗匹配的要求, 保证了高性能压电俘能器在实际应用中的灵活性.

     

  • 图  1  带有超表面结构的压电俘能器示意图. (a) 结构示意图, (b), (c) 俯视图

    Figure  1.  Schematic of the proposed FIVEH with metasurface. (a) Sketch of structure, (b), (c) top view

    图  2  攻角与气动力示意图

    Figure  2.  Schematic of attack angle and aerodynamic forces

    图  3  单自由度等效模型

    Figure  3.  The equivalent SDOF model

    图  4  带有不同列数与不同高度的翅片超表面钝体

    Figure  4.  Finned metasurface bluff bodies with different rows and different heights

    图  5  实验布置

    Figure  5.  The experiment setup

    图  6  压电俘能器的固有频率与短路频率

    Figure  6.  The natural frequency and short circuit frequency of piezoelectric energy harvester

    图  7  计算域与边界条件

    Figure  7.  Computational domain and boundary conditions

    图  8  计算域晶格示意图

    Figure  8.  Schematic of computational lattice

    图  9  对照组风洞实验结果

    Figure  9.  Wind tunnel test results of control group

    图  10  R1实验组风洞实验结果

    Figure  10.  Wind tunnel test results of R1 experimental group

    图  11  R2实验组风洞实验结果

    Figure  11.  Wind tunnel test results of R2 experimental group

    图  12  R3实验组风洞实验结果

    Figure  12.  Wind tunnel test results of R3 experimental group

    图  13  R4实验组风洞实验结果

    Figure  13.  Wind tunnel test results of R4 experimental group

    图  14  部分钝体振幅与电压随风速的分岔图

    Figure  14.  Bifurcation diagram of vibration amplitude and voltage of various bluff body versus wind speed

    图  15  圆柱与R3h1的气动力参数识别

    Figure  15.  Aerodynamic coefficient identification of cylinder and R3h1

    图  16  4组钝体的气动力系数拟合

    Figure  16.  Aerodynamic coefficient fitting of four bluff bodies

    图  17  对照组与R3实验组电压响应的实验结果与理论结果比较

    Figure  17.  Comparison of the experimental and theoretical results of the voltage responses, including control group and R3 experimental group

    图  18  标准直流接口电路

    Figure  18.  Standard DC interface circuit

    图  19  自供能同步电荷提取接口电路

    Figure  19.  Self-powered synchronous charge extraction (SP-SCE) interface circuit

    图  20  PZT-5与输出端RMS电压随负载的变化曲线

    Figure  20.  The variation of PZT-5 RMS voltage and output RMS voltage versus load resistance

    图  21  不同接口电路条件下负载的输出功率

    Figure  21.  The output power of the load resistance under different interface circuit conditions

    图  22  U = 1.687 m/s时圆柱和R3h1的位移时程曲线与涡量云图

    Figure  22.  Displacement time histories and vorticity contours of cylinder and R3h1 at U = 1.687 m/s

    图  23  U = 2.509 m/s时方柱和R3h5的位移时程曲线与涡量云图

    Figure  23.  Displacement time histories and vorticity contours of cuboid and R3h5 at U = 2.509 m/s

    表  1  晶格无关性验证结果

    Table  1.   Results of lattice independence verification

    LatticeNumberCDmeanCLrmsYmax
    L11 198 9131.750.330.28
    L21 381 4461.810.430.30
    (3.43%)(33.33%)(7.14%)
    L31 790 1291.830.460.29
    (1.11%)(6.98%)(−3.33%)
    下载: 导出CSV

    表  2  压电俘能器的等效参数

    Table  2.   Equivalent parameters of piezoelectric energy harvester

    PropertiesValuesUnits
    Meff5.75g
    fn9.86Hz
    ζ1.03 × 10−2
    Ceff7.32 × 10−3N/(m·s−1)
    Keff22.09N/m
    Cp1.79 × 10−8F
    Θ3.65 × 10−5N/V
    下载: 导出CSV

    表  3  对照组与R3实验组的气动力系数

    Table  3.   Aerodynamic coefficients of control group and R3 experimental group

    A1A3A5A7StCL0f
    cylinder00.1700.3021.900
    cuboid2.1−261.811770−1055690
    R3h100.1560.3490.042
    R3h31.1−70.41097−57780.1311.0420.013
    R3h52.2−45.1378−9090.0480.7940.405
    R3h71.9−155.64202−289370
    下载: 导出CSV

    表  4  接口电路使用的元件参数

    Table  4.   The device parameters of interface circuit

    DeviceParameter
    D1 ~ D81N4007
    C02.2 nF
    C110 μF
    C24.7 μF
    T12N2904
    T22N2222
    L130 mH
    下载: 导出CSV
    Baidu
  • [1] Li G, Li M, Taylor R, et al. Solar energy utilisation: Current status and roll-out potential. Applied Thermal Engineering, 2022, 209: 118285
    [2] Li G, Zhu WD. Tidal current energy harvesting technologies: A review of current status and life cycle assessment. Renewable & Sustainable Energy Reviews, 2023, 179: 113269
    [3] Lebrouhi BE, Djoupo JJ, Lamrani B, et al. Global hydrogen development—A technological and geopolitical overview. International Journal of Hydrogen Energy, 2022, 47(11): 7016-7048
    [4] An S, Shi B, Jiang M, et al. Biological and bioinspired thermal energy regulation and utilization. Chemical Reviews, 2023, 123(11): 7081-7118
    [5] Rhee KN, Kim KW. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Building and Environment, 2015, 91: 166-190
    [6] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)

    Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)
    [7] 李海涛, 曹帆, 任和等. 流致振动能量收集的钝头体几何设计研究. 力学学报, 2021, 53(11): 3007-3015 (Li Haitao, Cao Fan, Ren He, et al. The effect of geometric feature of bluff body on flow-induced vibration energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3007-3015 (in Chinese)

    Li Haitao, Cao Fan, Ren He, et al. The effect of geometric feature of bluff body on flow-induced vibration energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3007-3015 (in Chinese)
    [8] 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)

    Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration, Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)
    [9] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望. 南水北调与水利科技, 2018, 16(1): 176-188 (Lian Jijian, Yan Xiang, Liu Fang. Development and prospect of study on the energy harness of flow-induced motion. South-to-North Water Transfers and Water Science &Technology, 2018, 16(1): 176-188 (in Chinese)

    Lian Jijian, Yan Xiang, Liu Fang. Development and prospect of study on the energy harness of flow-induced motion. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 176-188 (in Chinese)
    [10] Sharma S, Kiran R, Azad P, et al. A review of piezoelectric energy harvesting tiles: Available designs and future perspective. Energy Conversion and Management, 2022, 254: 115272
    [11] Zhang YW, Zhang KJ, Shi YJ, et al. Electromagnetic energy harvesters based on natural leaves for constructing self-powered systems. Materials Today Energy, 2022, 29: 101131
    [12] Zhang RY, Hummelgard M, Ortegren J, et al. Utilising the triboelectricity of the human body for human-computer interactions. Nano Energy, 2022, 100: 107503
    [13] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 (Li Shengfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese)

    Li Shengfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese)
    [14] Chirathalattu AT, Santhosh B, Bose C, et al. Passive suppression of vortex-induced vibrations using a nonlinear energy sink—numerical and analytical perspective. Mechanical Systems and Signal Processing, 2023, 182: 109556
    [15] Abdelkefi A, Hajj MR, Nayfeh AH. Power harvesting from transverse galloping of square cylinder. Nonlinear Dynamics, 2012, 70(2): 1355-1363
    [16] 田海港, 单小彪, 张居彬等. 翼型颤振压电俘能器的输出特性研究. 力学学报, 2021, 53(11): 3016-3024 (Tian Haigang, Shan Xiaobiao, Zhang Jubin, et al. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese)

    Tian Haigang, Shan Xiaobiao, Zhang Jubin, et al. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese)
    [17] 王巍, 杨智春, 张新平. 扰流激励下垂尾抖振响应主模态控制风洞试验研究. 振动与冲击, 2012, 31(16): 18-21 (Wang Wei, Yang Zhichun, Zhang Xinping. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method. Journal of Vibration and Shock, 2012, 31(16): 18-21 (in Chinese)

    Wang Wei, Yang Zhichun, Zhang Xinping. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method. Journal of Vibration and Shock, 2012, 31(16): 18-21 (in Chinese)
    [18] Xu P, Jia SS, Li DA, et al. Optimization study of marine energy harvesting from vortex-induced vibration using a response-surface method. Journal of Marine Science and Engineering, 2023, 11(3): 668
    [19] Lu D, Li Z, Hu G, et al. Two-degree-of-freedom piezoelectric energy harvesting from vortex-induced vibration. Micromachines (Basel), 2022, 13(11): 1936
    [20] Badhurshah R, Bhardwaj R, Bhattacharya A. Energy extraction via vortex-induced vibrations: The effect of spring bistability. Journal of Fluids and Structures, 2022, 114: 103708
    [21] Li HT, Ren H, Cao F, et al. Improving the galloping energy harvesting performance with magnetic coupling. International Journal of Mechanical Sciences, 2023, 237: 107785
    [22] Wang LZ, Tan T, Yan ZM, et al. Tapered galloping energy harvester for power enhancement and vibration reduction. Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2853-2869
    [23] Hasegawa M, Sakaue H. Microfiber coating for drag reduction on a cylinder. Journal of Fluids and Structures, 2021, 103: 103287
    [24] Zhu HJ, Gao Y. Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips. Energy, 2018, 165: 1259-1281
    [25] Hu G, Tse KT, Kwok KCS. Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism. Applied Physics Letters, 2016, 108(12): 123901
    [26] Wang W, Song BW, Mao ZY, et al. Numerical investigation on VIV suppression of the cylinder with the bionic surface inspired by giant cactus. Ocean Engineering, 2020, 214: 107775
    [27] Sun WP, Liu CH, Hu S, et al. Enhancing/diminishing piezoelectric energy harvesting by adjusting the attachment height. Ocean Engineering, 2023, 269: 113700
    [28] Zhao KY, Zhang QC, Wang W. Optimization of galloping piezoelectric energy harvester with V-shaped groove in low wind speed. Energies, 2019, 12(24): 4619
    [29] Zhao DL, Hu XY, Tan T, et al. Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design. Energy Conversion and Management, 2020, 222: 113260
    [30] Yang K, Su KW, Wang JL, et al. Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: comprehensive parametric study and optimization. Smart Materials and Structures, 2020, 29(7): 075035
    [31] Chen C, Mannini C, Bartoli G, et al. Wake oscillator modeling the combined instability of vortex induced vibration and galloping for a 2: 1 rectangular cylinder. Journal of Fluids and Structures, 2022, 110: 103530
    [32] Mannini C, Massai T, Marra AM, et al. Interference of vortex-induced vibration and galloping: experiments and mathematical modelling. Procedia Engineering, 2017, 199: 3133-3138
    [33] Mannini C, Massai T, Marra AM. Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism. Journal of Sound and Vibration, 2018, 419: 493-509
    [34] Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101
    [35] Zhu H, Zhong J, Liu B. Fluid–thermal–structure interaction of three heated circular cylinders in tandem at a low Reynolds number of 150. Physics of Fluids, 2022, 34(8): 083605
    [36] Blevins RD, Scanlan RH. Flow-induced vibration. Journal of Applied Mechanics, 1977, 44(4): 802
    [37] Lee CM, Paik KJ, Kim ES, et al. A fluid-structure interaction simulation on the wake-induced vibration of tandem cylinders with pivoted rotational motion. Physics of Fluids, 2021, 33(4): 045107
    [38] Zafar F, Alam MM. Flow structure around and heat transfer from cylinders modified from square to circular. Physics of Fluids, 2019, 31(8): 083604
    [39] 毕继红, 余化军, 任洪鹏. 静止方柱和圆柱绕流的二维数值分析. 三峡大学学报(自然科学版), 2012, 34(1): 41-45 (Bi Jihong, Yu Huajun, Ren Hongpeng. Two dimensional numerical simulation of flow over a static square cylinder and a static circular cylinder. Journal of China Three Gorges University (Natural Sciences), 2012, 34(1): 41-45 (in Chinese)

    Bi Jihong, Yu Huajun, Ren Hongpeng. Two dimensional numerical simulation of flow over a static square cylinder and a static circular cylinder. Journal of China Three Gorges University (Natural Sciences), 2012, 34(1): 41-45 (in Chinese)
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  1017
  • HTML全文浏览量:  194
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-09
  • 录用日期:  2023-09-07
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回
    Baidu
    map