EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝粉/氢气/空气混合爆轰现象试验研究

张晓源,卢子寅,李进平,张仕忠,陆星宇,陈宏

downloadPDF
张晓源, 卢子寅, 李进平, 张仕忠, 陆星宇, 陈宏. 铝粉/氢气/空气混合爆轰现象试验研究. 力学学报, 2023, 55(11): 2693-2702 doi: 10.6052/0459-1879-23-290
引用本文: 张晓源, 卢子寅, 李进平, 张仕忠, 陆星宇, 陈宏. 铝粉/氢气/空气混合爆轰现象试验研究. 力学学报, 2023, 55(11): 2693-2702doi:10.6052/0459-1879-23-290
Zhang Xiaoyuan, Lu Ziyin, Li Jinping, Zhang Shizhong, Lu Xingyu, Chen Hong. Experimental study on hybrid detonation of hydrogen-air mixture with suspended metal particles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2693-2702 doi: 10.6052/0459-1879-23-290
Citation: Zhang Xiaoyuan, Lu Ziyin, Li Jinping, Zhang Shizhong, Lu Xingyu, Chen Hong. Experimental study on hybrid detonation of hydrogen-air mixture with suspended metal particles.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2693-2702doi:10.6052/0459-1879-23-290

铝粉/氢气/空气混合爆轰现象试验研究

doi:10.6052/0459-1879-23-290
基金项目:国家自然科学基金(11902328)和中国科学院院长基金(院基条字1702号)资助项目
详细信息
    通讯作者:

    张晓源, 助理研究员, 主要研究方向为流体力学. E-mail:zhangxiaoyuan@imech.ac.cn

  • 中图分类号:V235.21

EXPERIMENTAL STUDY ON HYBRID DETONATION OF HYDROGEN-AIR MIXTURE WITH SUSPENDED METAL PARTICLES

  • 摘要:混合爆轰现象既包含气相反应又包含两相反应, 具有复杂性和多样性. 爆轰推进技术在新领域的突破性应用与发展, 依赖对爆轰现象的深刻认识. 文章采用卧式爆轰管开展铝粉/氢气/空气混合爆轰试验, 将μm、nm级的球形铝粉与当量比的氢气和空气通过扬尘充分混合, 在长13 m和直径224 mm的管内直接起爆混合物. 试验中观测到不同种类的混合爆轰波, 包括双波面和单波面结构. 通过对爆轰燃气中铝粉点火燃烧特性的分析, 阐明了两相反应对铝粉/氢气/空气混合爆轰波结构的直接影响. 粒径100 nm和1 μm时, 混合爆轰呈现单波面结构, 对比气相爆轰爆速和压力峰值都有增加, 铝粉点火释热开始于声速面之前. 粒径20 μm和40 μm铝粉点火较慢, 混合爆轰呈现出双波面结构, 气相反应释热支持第一道波, 而铝粉燃烧支持第二道波. 粒径10 μm时, 测得爆轰波压力曲线是单波峰, 峰值压力有大幅提高, 但是爆速并没有增加. 其本质是两波面距离很近的双波面结构, 由于传感器空间辨识能力的不足而无法在压力曲线中区分. 混合爆轰试验结果充分解释了铝粉/氢气/空气混合爆轰现象, 反映了铝粉在复杂条件下的燃烧特性, 并且明确了铝粉的点火燃烧特性对混合爆轰现象的影响机理.

  • 图 1混合爆轰结构示意图

    Figure 1.Schematic diagram of hybrid detonation

    图 2混合爆轰管结构示意图

    Figure 2.Schematic diagram of the hybrid detonation tube

    图 3扬尘管结构示意图

    Figure 3.Schematic diagram of dispersion tube

    图 4扬尘效果试验视频截图

    Figure 4.Screenshot of dust effect test video

    图 5铝粉扫描电镜照与铝粉颗粒尺寸分布 (续)

    Figure 5.Aluminum powder scanning electron microscope photo and particle size distribution (continued)

    图 6压力曲线测量结果

    Figure 6.Pressure records of a hybrid detonation

    图 7压力曲线测量结果

    Figure 7.Pressure records of a hybrid detonation

    图 810 μm铝粉颗粒温度的计算结果

    Figure 8.Calculation result ofTAl(10 μm)

    图 9不同粒径铝粉颗粒的点火延迟

    Figure 9.Ignition delay of aluminum powder with different particle sizes

    表 1气相爆轰理论计算结果

    Table 1.Theoretical results of gas phase detonation

    mole ratio(H2/O2/N2) 2.0 : 1.0 : 4.3
    detonation velocity/(m·s−1) 1923
    C-J temperature/K 2845
    C-J pressure/Bar 14.87
    下载: 导出CSV

    表 2混合爆轰实验工况

    Table 2.Hybrid detonation test condition

    No. Initial pressure/Bar Nominal size/μm Powder concentration/(kg·m−3)
    1 1.0 40 0.3
    2 1.0 20 0.3
    3 1.0 10 0.3
    4 1.0 1 0.3
    5 1.0 0.1 0.15
    下载: 导出CSV

    表 3混合爆轰波测试结果汇总

    Table 3.Summary of hybrid detonation test results

    Nominal size/μm First wave velocity/(km·s−1) Second wave velocity/(km·s−1) Ignition delay before/after sonic surface Ⅰ
    40 1.87 1.68 after
    20 1.86 1.89
    10 1.84 /
    1 1.93 / before
    0.1 1.91 /
    下载: 导出CSV
  • [1] Strauss WA. Investigation of the detonation of aluminum powder-oxygen mixtures.AIAA Journal, 1968, 6(9): 1753-1756doi:10.2514/3.4855
    [2] Nettleton M A, Stirling R. Detonations in suspensions of coal dust in oxygen.Combustion and Flame, 1973, 21(3): 307-314doi:10.1016/S0010-2180(73)80053-7
    [3] Fedorov AV. Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen.Combustion,Explosion and Shock Waves, 1992, 28(3): 277-286doi:10.1007/BF00749644
    [4] Tatyana K, Sergey L. Detonation flows in aluminum particle gas suspensions, inhomogeneous in concentrations.Journal of Loss Prevention in the Process Industries, 2021, 72: 104522doi:10.1016/j.jlp.2021.104522
    [5] Zhang F. Detonation of Gas-particle Flow. Berlin, Heidelberg: Springer, 2009
    [6] Widener JF, Beckstead MW. Aluminum combustion modeling in solid propellant combustion products//34 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, U. S. A, 1998
    [7] 张建侃, 赵凤起, 秦钊等. 铝基合金燃料的研究及其在固体推进剂中的应用进展. 火炸药学报, 2023, 46(2): 101-116 (Zhang Jiankan, Zhao Fengqi, Qin Zhao, et al. Research progress of Al-based alloy fuels and perspectives for applications in solid propellants.Chinese Journal of Explosives&Propellants, 2023, 46(2): 101-116 (in Chinese)doi:10.14077/j.issn.1007-7812.202203029

    Zhang Jiankan, Zhao Fengqi, Qin Zhao, et al. Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants.Chinese Journal of Explosives & Propellants, 2023, 46(2): 101-116 (in Chinese)doi:10.14077/j.issn.1007-7812.202203029
    [8] Kailasanath K. Review of propulsion applications of detonation waves.AIAA Journal, 2000, 38(9): 1698-1708doi:10.2514/2.1156
    [9] 俞鸿儒. 探索发展激波风洞爆轰驱动技术. 力学学报, 2011, 43(6): 978-983 (Yu Hongru. Development study of detonation driving techniques for a shock tunnel.Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese)doi:10.6052/0459-1879-2011-6-lxxb2011-331

    Yu Hongru. Development study of detonation driving techniques for a shock tunnel.Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese)doi:10.6052/0459-1879-2011-6-lxxb2011-331
    [10] 李旭东, 王爱峰, 王春等. 脉冲爆轰发动机的系统性能分析. 力学学报, 2010, 42(3): 366-372 (Li Xudong, Wang Aifeng, Wang Chun, et al. System performance analysis of pulse detonation engines.Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 366-372 (in Chinese)doi:10.6052/0459-1879-2010-3-2008-635

    Li Xudong, Wang Aifeng, Wang Chun, et al. System performance analysis of pulse detonation engines.Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 366-372 (in Chinese)doi:10.6052/0459-1879-2010-3-2008-635
    [11] 杨鹏飞, 张子健, 杨瑞鑫等. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 (Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese)doi:10.6052/0459-1879-21-206

    Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese)doi:10.6052/0459-1879-21-206
    [12] Daniel AR, Mason T, Jonathan S, et al. Stabilized detonation for hypersonic propulsion.Proceedings of the National Academy of Sciences, 2021, 118(20): e2102244118doi:10.1073/pnas.2102244118
    [13] 丁陈伟, 翁春生, 武郁文等. 基于液体碳氢燃料的旋转爆轰燃烧特性研究. 爆炸与冲击, 2022, 42(2): 022101 (Ding Chenwei, Weng Chunsheng, Wu Yuwen, et al. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel.Explosion and Shock Waves, 2022, 42(2): 022101 (in Chinese)

    Ding Chenwei, Weng Chunsheng, Wu Yuwen, et al. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel.Explosion and Shock Waves, 2022, 42(2): 022101 (in Chinese)
    [14] Xu H, Ni XD, Su XJ, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor.Applied Thermal Engineering, 2022, 213: 118642doi:10.1016/j.applthermaleng.2022.118642
    [15] Wu WB, Wang YN, Han WB, et al. Experimental research on solid fuel pre-combustion rotating detonation engine.Acta Astronautica, 2023, 205: 258-266doi:10.1016/j.actaastro.2023.02.007
    [16] Wu WB, Wang YN, Wu KW, et al. Experimental evaluation of aluminum powder fuel in a hydrogen/oxygen detonation tube.International Journal of Hydrogen Energy, 2023, 03.078
    [17] Palaszewski B, Jurns J, Breisacher K, et al. Metallized gelled propellants combustion experiments in a pulse detonation engine//40 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, 2004
    [18] Liu QM, Li XD, Bai CH. Deflagration to detonation transition in aluminum dust–air mixture under weak ignition condition.Combustion and Flame, 2009, 156(4): 914-921
    [19] 李小东, 王晶禹, 刘庆明等. 大型水平爆轰管中悬浮铝粉爆炸过程的实验研究. 实验力学, 2009, 24(5): 395-400 (Li Xiaodong, Wang Jingyu, Liu Qingming, et al. Experimental study of suspended aluminum dust explosion in a large-size horizontal detonation tube.Journal of Experimental Mechanics, 2009, 24(5): 395-400 (in Chinese)

    Liu Qingming, Wang Jingyu, Li Xiaodong, et al. Experimental study of suspended aluminum dust explosion in a large-size horizontal detonation tube.Journal of Experimental Mechanics, 2009, 24(5): 395-400(in Chinese)
    [20] 刘晓利, 李鸿志, 叶经方等. 铝粉−空气混合物的爆轰管研究. 弹道学报, 1993, 16(2): 76-82 (Liu Xiaoli, Li Hongzhi, Ye Jingfang, et al. Detonation tube studies of aluminum powder-air mixture.Journal of Ballistics, 1993, 16(2): 76-82 (in Chinese)

    Liu Xiaoli, Li Hongzhi, Ye Jingfang, et al. Detonation tube studies of aluminum powder-air mixture.Journal of Ballistics, 1993, 16(2): 76-82(in Chinese)
    [21] 刘晓利, 李鸿志, 郭建国等. 铝粉−空气混合物燃烧转爆轰(DDT)过程的实验研究. 爆炸与冲击, 1995, 15(3): 217-228 (Liu Xiaoli, Li Hongzhi, Guo Jianguo, et al. An experimental investigation of deflagration to detonation transition (DDT) in aluminum dust-air mixture.Explosion and Shock Waves, 1995, 15(3): 217-228 (in Chinese)

    Liu Xiaoli, Li Hongzhi, Guo Jianguo, et al. An experimental investigation of deflagration to detonation transition (DDT) in aluminum dust-air mixture.Explosion and Shock Waves, 1995, 15(3): 217-228(in Chinese)
    [22] Zhang F. Detonation in reactive solid particle-gas flow.Journal of Propulsion and Power, 2006, 22(6): 1289-1309doi:10.2514/1.18210
    [23] Zhang F, Gerrard K. Reaction mechanism of aluminum-particle-air detonation.Journal of Propulsion and Power, 2009, 25(4): 845-858doi:10.2514/1.41707
    [24] Veyssiere B. Detonation in gas-particle mixtures.Journal of Propulsion and Power, 2006, 22(6): 1269-1288doi:10.2514/1.18378
    [25] Veyssiere B, Khasainov BA. Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures.Shock Waves, 1994, 4(3): 171-186
    [26] Veyssiere B, Ingignoli W. Existence of the detonation cellular structure in two-phase hybrid mixtures.Shock Waves, 2003, 12: 291-299doi:10.1007/s00193-002-0168-8
    [27] Lee J. The Detonation Phenomenon. Cambridge: Cambridge University Press, 2008
    [28] 陆星宇, 李进平, 陈宏等. 用于爆轰驱动的射流起爆实验研究. 爆炸与冲击, 2019, 39(6): 062102 (Lu Xingyu, Li Jinping, Chen Hong, et al. Experimental study on jet initiation for detonation driver.Explosion And Shock Waves, 2019, 39(6): 062102 (in Chinese)doi:10.11883/bzycj-2018-0223

    LU Xingyu, LI Jinping, CHEN Hong, et al. Experimental study on jet initiation for detonation driver.Explosion And Shock Waves, 2019, 39(6): 062102 (in Chinese)doi:10.11883/bzycj-2018-0223
    [29] 童秉纲, 孔祥言, 邓国华. 气体动力学. 北京: 高等教育出版社. 1996

    Tong Bingang, Kong Xiangyan, Deng Guohua. Gas Dynamics. Beijing: Higher Education Press, 1996 (in Chinese)
    [30] 洪滔, 秦承森. 爆轰波管中铝粉尘爆轰的数值模拟. 爆炸与冲击, 2004, 24(3): 193-200 (Hong Tao, Qin Chengsen. Numerical simulation of dust detonation of aluminum powder in explosive tubes.Explosion and Shock Waves, 2004, 24(3): 193-200 (in Chinese)

    Hong Tao, Qin Chengsen. Numerical simulation of dust detonation of aluminum powder in explosive tubes.Explosion and Shock Waves, 2004, 24(3): 193-200(in Chinese)
    [31] Veyssiere B, Khasainov BA. A model for steady, plane, double-front detonation in gaseous explosive mixtures with aluminum particles in suspension.Combustion and Flame, 1991, 85: 241-253doi:10.1016/0010-2180(91)90191-D
    [32] Sichel M, Tonello NA, Oran E S, et al. A two-step kinetics model for numerical simulation of explosions and detonations in H2-O2mixtures.Proceedings of the Royal Society of London,Series A, 2002, 458: 49-82doi:10.1098/rspa.2001.0853
    [33] Sundaram DS, Yang V, Zarko VE. Combustion of nano aluminum particles (Review).Combustion,Explosion,and Shock Waves, 2015, 51(2): 173-196doi:10.1134/S0010508215020045
  • 加载中
图(9)/ 表(3)
计量
  • 文章访问数:78
  • HTML全文浏览量:40
  • PDF下载量:9
  • 被引次数:0
出版历程
  • 网络出版日期:2023-10-13

目录

    /

      返回文章
      返回
        Baidu
        map