EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直振动激励下半球形液滴界面失稳特性分析

黎一锴,朱铭,席儒,王东方,杨子明,吴坤

downloadPDF
黎一锴, 朱铭, 席儒, 王东方, 杨子明, 吴坤. 竖直振动激励下半球形液滴界面失稳特性分析. 力学学报, 2023, 55(9): 1867-1879 doi: 10.6052/0459-1879-23-238
引用本文: 黎一锴, 朱铭, 席儒, 王东方, 杨子明, 吴坤. 竖直振动激励下半球形液滴界面失稳特性分析. 力学学报, 2023, 55(9): 1867-1879doi:10.6052/0459-1879-23-238
Li Yikai, Zhu Ming, Xi Ru, Wang Dongfang, Yang Ziming, Wu Kun. Analysis of the surface wave instability of a semi-spherical droplet under vertical excitation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1867-1879 doi: 10.6052/0459-1879-23-238
Citation: Li Yikai, Zhu Ming, Xi Ru, Wang Dongfang, Yang Ziming, Wu Kun. Analysis of the surface wave instability of a semi-spherical droplet under vertical excitation.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1867-1879doi:10.6052/0459-1879-23-238

竖直振动激励下半球形液滴界面失稳特性分析

doi:10.6052/0459-1879-23-238
基金项目:国家自然科学基金 (51976011), 北京市自然科学基金 (3212022) 和北京理工大学科技创新计划创新人才科技资助专项计划(2022CX01021)资助项目
详细信息
    通讯作者:

    吴坤, 副研究员, 主要研究方向为超声速湍流燃烧、液滴与喷雾动力学. E-mail:wukun@imech.ac.cn

  • 中图分类号:O351

ANALYSIS OF THE SURFACE WAVE INSTABILITY OF A SEMI-SPHERICAL DROPLET UNDER VERTICAL EXCITATION

  • 摘要:外部激励作用下液滴的表面失稳特性一直都是流体力学领域十分关注的问题. 在不同的振动激励参数下, 表面会产生不同形态的波形或破碎生成二次液滴. 本文对于液滴表面纬向波和经向波发展的动态特性和产生机理开展了研究. 首先建立激励振幅和频率可控的液滴振荡实验系统. 实验结果表明, 激励振幅的改变会影响液滴表面波形, 振幅较大时经向波才会产生, 演化频率为驱动频率的一半, 而纬向波一直存在, 其频率等于驱动频率. 驱动频率改变会引起失稳模式的转变, 驱动频率增加, 表面波模态数增加、波长减小. 驱动频率超过一定阈值, 波形会从只存在纬向波模式向纬向波叠加经向波模式转变. 同时, 基于三维数值模拟, 通过研究液滴的速度场与压力场, 结合液滴顶点位移与惯性力的相位关系, 阐明液滴形成纬向波的机理: 在惯性力和表面张力的共同作用下, 液滴表面波完成周期性的能量转化和传递. 通过对比分析竖直方向与沿液滴径向加速度下Faraday不稳定性主导的表面波特性, 发现液滴的几何特征使得接触线处产生法向的径向力, 当竖直惯性力增加使得径向力达到一定阈值, 液滴发生经向失稳, 相应经向波频率为驱动频率的一半.

  • 图 1液滴振动实验系统

    Figure 1.Schematic diagram of the experimental setup

    图 2不同频率下的激励振幅与激励电压的关系

    Figure 2.The relationship between forcing amplitude and excitation voltage of the plate under different frequencies

    图 3垂直惯性力和径向惯性力作用物理模型

    Figure 3.Physical model with vertical inertia force and radial inertia force

    图 4液滴顶端位移的仿真和实验结果对比

    Figure 4.Comparison between computational results of the droplet vertex with the experiment measurement

    图 5实验(工况E-A)和仿真(工况S-A)表面波形态的比较

    Figure 5.Comparison of surface wave morphology of experiment (case E-A) and simulation (case S-A)

    图 6不同激励振幅下表面波形态的时间演化

    Figure 6.Time evolution of surface wave morphology under different forcing amplitudes

    图 7不同驱动频率下表面波形态的时间演化

    Figure 7.Time evolution of surface wave morphology under different forcing frequencies

    图 8液滴纬向表面波平均波长随频率的变化

    Figure 8.Variation of the average wavelength of droplet latitudinal surface waves with frequency

    图 9液滴纬向表面波演化仿真结果(工况S-A)

    Figure 9.Simulation results of droplet latitudinal surface wave generation process (case S-A)

    图 10稳定循环周期液滴顶端位移和惯性力随时间的演变(工况S-A)

    Figure 10.Evolution of droplet vertex displacement and inertial force with time during the stabilization cycle (case S-A)

    图 11工况S-A在xoy截面上不同时刻的液滴压力场和速度矢量场

    Figure 11.Droplet pressure field and velocity vector field at different moments for case S-A in thexoycross section

    图 12液滴在x方向压力分布(工况S-A, $ t = 0 $)

    Figure 12.Pressure distribution from top to bottom surface of droplet(case S-A, $ t = 0 $)

    图 13顶端表面波和次级表面波作用下压力随时间的变化(工况S-A)

    Figure 13.The variation of pressure with time under the top surface wave and secondary surface wave (case S-A)

    图 14液滴的表面波演化(工况S-B)

    Figure 14.Surface wave evolution of liquid droplets (case S-B)

    图 15经向波波形和表面压力分布(工况S-B, $ t = 23.35 T $)

    Figure 15.Longitudinal wave form and surface pressure distribution(case S-B,$ t = 23.35 T $)

    图 16液滴底部的压力场和速度矢量场的轮廓(工况S-B,y= 0)

    Figure 16.Contour of the pressure field and velocity vector field at the bottom of the droplet (case S-B,y= 0)

    图 17径向加速度下Faraday不稳定性引起的液滴界面不稳定性(工况S-B)

    Figure 17.Droplet interface instability dominated by Faraday instability under radial acceleration (case S-B)

    表 1水滴在室温、标准大气压下的物理特性

    Table 1.Physical properties of water at atmospheric temperature and pressure

    Diameter/mm Density/ (kg·m−3) Dynamic viscosity/ (mPa∙s) Surface tension coefficient/(mN·m−1)
    7.5 ± 0.02 998 1.01 72.7
    下载: 导出CSV

    表 2实验工况: 激励振幅的影响 (300 Hz)

    Table 2.Experimental condition: influence of forcing amplitude (300 Hz)

    Cases E-A E-B E-C
    Amplitude/μm 40 160 200
    下载: 导出CSV

    表 3实验工况: 激励频率的影响

    Table 3.Experimental condition: influence of forcing frequency

    Variables Values
    frequency/Hz 200, 250, 300, 350, 400, 450, 500, 800, 1000, 4000
    voltage/V 5 ~ 30
    下载: 导出CSV

    表 4仿真工况设置

    Table 4.Simulation operating condition parameters

    Cases $ Re $ $ We $ ${\varDelta }_{D}$
    S-A 16875 520 0.211
    S-B 16875 520 0.421
    下载: 导出CSV

    表 5不同加速度形式下经向波的物理特征值

    Table 5.Physical characteristic values of longitudinal surface waves in different acceleration forms

    Wavelength diameter
    ratio ($\varLambda /D)$
    Amplitude diameter
    ratio ($ a/D $)
    radial acceleration 0.398 0.080
    vertical acceleration 0.402 0.064
    linear analysis 0.418
    下载: 导出CSV
  • [1] Samantha AM, Susmita D, Sami K, et al. Evaporative crystallization of spirals.Langmui, 2019, 35: 10484-10490
    [2] 侯晓松, 刘晨星, 任爱玲等. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气. 化工学报, 2022, 73(10): 4692-4706 (Hou Xiaosong, Liu Chenxing, Ren Ailing, et al. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing.CIESC Journal, 2022, 73(10): 4692-4706 (in Chinese)

    Hou Xiaosong, Liu Chenxing, Ren Ailing, Guo Bin, Guo Yuanming. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing.CIESC Journal, 2022, 73(10): 4692-4706 (in Chinese))
    [3] Li J, Li X. Numerical study of the impact of contact line with hysteresis on the Faraday instability.Physics of Fluids, 2022, 34(7): 072108doi:10.1063/5.0101956
    [4] 魏卓, 姚井淳, 石小鑫等. 低频振动对超疏水电热除冰方法的增益效果探究. 航空科学技术, 2022, 33(11): 70-75 (Wei Zhuo, Yao Jingchun, Shi Xiaoxin, et al. Study on gain effect of low frequency vibration on superhydrophobic electrothermal de-icing method.Aeronautical Science & Technology, 2022, 33(11): 70-75 (in Chinese)

    Wei Zhuo, Yao Jingchun, Shi Xiaoxin, Chen Zenggui, Tang Yalin, Lyu Xianglian, He Yang. Study on Gain Effect of Low Frequency Vibration on Superhydrophobic Electrothermal De-icing Method. Aeronautical Science & Technology. 2022, 33(11): 70-75. (in Chinese))
    [5] Awada A, Younes R, Ilinca A. Optimization of wind turbine performance by vibration control and deicing,Journal of Wind Engineering & Industrial Aerodynamics, 2022, 229: 105143
    [6] Shen L, Fang G, Wang S, et al. Numerical study of the secondary atomization characteristics and droplet distribution of pressure swirl atomizers.Fuel, 2022, 324: 124643
    [7] Binks D, Water W. Nonlinear pattern formation of Faraday waves.Physical Review Letters, 1997, 78: 4043-4046
    [8] James AJ, Smith MK, Glezer A, et al. Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection.Journal of Fluid Mechanics, 2003, 476: 29-62
    [9] James A, Vukasinovic B, Smith M, et al. Vibration-induced drop atomization and bursting.Journal of Fluid Mechanics, 2003, 476: 1-28
    [10] Chang CT, Bostwick JB, Steen PH, et al. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.Physical Review E, 2013, 88 : 023015
    [11] Singla T, Verma DK, Tovar JF, et al. Dynamics of a vertically vibrating mercury drop.AIP Advances, 2019, 9: 045204
    [12] 王凯宇, 庞祥龙, 李晓光等. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, 2021, 70(7): 282-290 (Wang Kaiyu, Pang Xianglong, Li Xiaoguang, et al. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume.Acta Physica Sinica, 2021, 70(7): 282-290 (in Chinese)

    Wang KaiYu, Pang XiangLong, Li Xiao Guang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume. ActaPhysica Sinica, 2021, 70(07): 282-290. (in Chinese))
    [13] Noblin X, Buguin A, Brochard-Wyart F, et al. Vibrated sessile drops: Transition between pinned and mobile contact line oscillations.The European Physical Journal E, 2004, 14: 395-404
    [14] Shao X, Wilson P, Saylor JR, et al. Surface wave pattern formation in a cylindrical container.Journal of Fluid Mechanics, 2021, 915: A19
    [15] Faraday M. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces//Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, 1837, 3: 49-51
    [16] Kumar K. Linear theory of Faraday instability in viscous liquids.Mathematical,Physical and Engineering Sciences, 1996, 452: 1113-1126doi:10.1098/rspa.1996.0056
    [17] Adou AE, Tuckerman LS. Faraday instability on a sphere: Floquet analysis.Journal of Fluid Mechanics, 2016, 805: 591-610
    [18] Bronfort A, Caps H. Faraday instability at foam-water interface.Physical Review E, 2012, 86: 066313
    [19] Chen P. Nonlinear wave dynamics in Faraday instabilities.Physical Review E, 2002, 65: 036308
    [20] Li Y, Zhang M, Wu K, et al. Three-dimensional simulation of ligament formation and breakup caused by external vibration.Physics of Fluids, 2020, 32(8): 083605doi:10.1063/5.0006817
    [21] Dinesh B, Livesay J, Ignatius IB, et al. Pattern formation in Faraday instability—experimental validation of theoretical models.Philosophical Transactions of the Royal Society A, 2023, 381(2245): 20220081doi:10.1098/rsta.2022.0081
    [22] Yuan S, Zhang Y, Gao Y. Faraday instability of a liquid layer in ultrasonic atomization.Physical Review Fluids, 2022, 7(3): 033902doi:10.1103/PhysRevFluids.7.033902
    [23] Bestehorn M, Sharma D, Borcia R, et al. Faraday instability of binary miscible/immiscible fluids with phase field approach.Physical Review Fluids, 2021, 6(6): 064002doi:10.1103/PhysRevFluids.6.064002
    [24] Dong J, Liu Y, Xu Q, et al. Surface parametric instability of star-shaped oscillating liquid drops.Physics of Fluids, 2019, 31(8): 087104doi:10.1063/1.5112007
    [25] Kumar K, Tuckerman LS. Parametric instability of the interface between two fluids.Journal of Fluid Mechanics, 1994, 279: 49-68
    [26] 姚慕伟, 富庆飞, 杨立军等. 受径向振荡激励的黏弹性液滴稳定性分析. 力学学报, 2021, 53(9): 2468-2476 (Yao Muwei, Fu Qingfei, Yang Lijun, et al. Stability analysis of viscoelastic liquid droplets excited by radial oscillations.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2468-2476 (in Chinese)

    Yao Muwei, Fu Qingfei, Yang Lijun. Stability analysis of viscoelastic liquid droplets excited by radial oscillations. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(09): 2468-2476(in Chinese)
    [27] 康宁. Faraday不稳定性下液滴雾化的特性和机理研究. [博士论文]. 北京: 北京理工大学, 2019

    Kang Ning. Study on the characteristics and mechanisms of droplet atomization under Faraday instability. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2019 (in Chinese)
    [28] Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows.Journal of Computational Physics, 2000, 162: 301-337
    [29] Daryaei A, Hanafizadeh P, Akhavan-Behabadi MA, et al. Three-dimensional numerical investigation of a single bubble behavior against non-linear forced vibration in a microgravity environment.International Journal of Multiphase Flow, 2018, 109: 84-97
    [30] Duan G, Koshizuka S, Chen B, et al. A contoured continuum surface force model for particle methods.Journal of Computational Physics, 2015, 298: 280-304
    [31] Chorin AJ. On the convergence of discrete approximations to the Navier-Stokes equations.Mathematics of Computation, 1969, 23: 341-353
    [32] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries.Journal of Computational Physics, 2003, 190: 572-600
    [33] Pang X, Duan M, Liu H, et al. Oscillation-Induced mixing advances the functionality of liquid marble microreactors.ACS Applied Materials&Interfaces, 2022, 14(9): 11999-12009
    [34] Vukasinovic B, Smith MK, Glezer A, et al. Dynamics of a sessile drop in forced vibration.Journal of Fluid Mechanics, 2007, 587: 395-423
  • 加载中
图(17)/ 表(5)
计量
  • 文章访问数:443
  • HTML全文浏览量:136
  • PDF下载量:235
  • 被引次数:0
出版历程
  • 收稿日期:2023-06-12
  • 录用日期:2023-08-02
  • 网络出版日期:2023-08-03
  • 刊出日期:2023-09-13

目录

    /

      返回文章
      返回
        Baidu
        map