EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种谐振式压电爬行机器人的设计与实验

何世界,吴医博,周生喜

downloadPDF
何世界, 吴医博, 周生喜. 一种谐振式压电爬行机器人的设计与实验. 力学学报, 2023, 55(9): 1983-1999 doi: 10.6052/0459-1879-23-225
引用本文: 何世界, 吴医博, 周生喜. 一种谐振式压电爬行机器人的设计与实验. 力学学报, 2023, 55(9): 1983-1999doi:10.6052/0459-1879-23-225
He Shijie, Wu Yibo, Zhou Shengxi. Design and experiment of a resonant piezoelectric crawling robot. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1983-1999 doi: 10.6052/0459-1879-23-225
Citation: He Shijie, Wu Yibo, Zhou Shengxi. Design and experiment of a resonant piezoelectric crawling robot.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1983-1999doi:10.6052/0459-1879-23-225

一种谐振式压电爬行机器人的设计与实验

doi:10.6052/0459-1879-23-225
基金项目:国家重点研发计划 (2020YFA0711700)和国家自然科学基金 (12072267)资助项目
详细信息
    通讯作者:

    周生喜, 教授, 主要研究方向为振动能量俘获、压电机器人等. E-mail:zhoushengxi@nwpu.edu.cn

  • 中图分类号:TP242

DESIGN AND EXPERIMENT OF A RESONANT PIEZOELECTRIC CRAWLING ROBOT

  • 摘要:微小型机器人是近年来智能机器人技术发展研究的重点方向, 基于其体积较小、灵敏度高、运动灵活等优点, 可以应用于灾后救援搜索、极端环境探测和医疗手术等诸多领域. 压电陶瓷是一种能够将机械能和电能互相转换的智能材料, 将压电陶瓷与爬行机器人结构相结合, 设计出压电驱动和执行结构一体化的机器人, 不仅能够使得机器人小型化, 传动效率提高, 而且能够让它的运动更加平稳可靠. 因此, 对于复杂环境下的作业, 利用逆压电效应和摩擦驱动以及黏滑运动原理设计出的各种新型结构的压电爬行机器人具有非常广的研究前景和实用价值. 文章基于逆压电效应设计了一种由双压电片驱动的足腿一体化四足爬行机器人, 并设计了几种不同类型摩擦力的驱动足. 利用理论力学方法对该机器人的一个单元体建立整体受力方程, 利用振动力学知识推导了其动力学模型, 将机器人压电驱动腿结构简化为变截面、变角度弯折梁, 再用欧拉−伯努利梁理论建立力学方程, 最后求解得到其固有频率. 制作了四足爬行机器人实物, 通过实验测试得到了不同驱动频率、不同负载、不同电压和不同驱动足对机器人单元节运动方向及运动速度的影响, 以及不同的接触面和不同的电压与频率信号对四足爬行机器人运动方向及运动速度的影响. 最后, 通过仿真控制软件连接半物理仿真平台Quancer板卡, 利用不同频率和幅值的驱动电压控制四足爬行机器人使其实现了左转、右转、绕圆心自转以及不加导轨的近似直线运动.

  • 图 1驱动足的结构

    Figure 1.The structure of the driving foot

    图 2机器人基体展开图及尺寸 (单位: mm)

    Figure 2.Unfolded drawing and dimensions of the robot substrate (unit: mm)

    图 3机器人在谐振频率下的变形

    Figure 3.Deformation of the robot at a resonant frequency

    图 4结构在正弦波激励下的变形

    Figure 4.Structural deformation under sinusoidal wave excitation

    图 5移动机理

    Figure 5.The movement mechanism

    图 6驱动腿的简化模型

    Figure 6.Simplified model of the driving leg

    图 7压电片的柱坐标系

    Figure 7.The cylindrical coordinate system of piezoelectric patch

    图 8一侧腿部的受力分析

    Figure 8.Force analysis of one leg

    图 9压电力作用时驱动足的位移

    Figure 9.Displacement of the driving foot under the piezoelectric force

    图 10高速摄像机拍摄足端振动

    Figure 10.High speed camera shooting foot end vibration

    图 11正弦波激励下机器人足部的振幅

    Figure 11.Amplitude of robot foot under sine wave excitation

    图 12机器人实验流程图

    Figure 12.Robot experiment flowchart

    图 133种驱动足下机器人的频率−速度图

    Figure 13.Frequency-velocity diagram of three types of robots driving feet

    图 14共振频率附近的频率−速度图

    Figure 14.Frequency-velocity diagram near resonance frequency

    图 15不同驱动足下机器人移动速度随电压的变化

    Figure 15.The variation of movement speed versus voltage for robots with different driving foots

    图 16在不同位置负载的机器人

    Figure 16.Robots loaded at different positions

    图 17不同负载位置下机器人的速度

    Figure 17.The speed of robots under different load positions

    图 18压电机器人的不同构型

    Figure 18.Experimental equipment for piezoelectric robots

    图 19压电驱动的四足爬行机器人实物图

    Figure 19.Manufactured prototype of the piezoelectric driven quadruped crawling robot

    图 20在560 Hz时机器人的电压−速度图

    Figure 20.Voltage-velocity diagram of the robot at 560 Hz

    图 21压电机器人的实验设备

    Figure 21.Experimental equipment for piezoelectric robots

    图 22不同接触面上的速度

    Figure 22.Velocity of the robot on different contact surfaces

    图 23两种机器人在轨道上的运动控制

    Figure 23.Motion control of two types of robots on orbits

    图 24通过Simulink搭建模型连接到板卡

    Figure 24.A Simulink model connected to the card

    图 25期望速度与经PID调整后的速度曲线

    Figure 25.Expected speed and PID adjusted speed curve

    表 1材料参数

    Table 1.Material parameters

    Parameter Value
    PZT-5 density/(kg·m−3) 7500
    PZT-5 Yang's modulus/GPa 63
    PZT-5 Poisson's ratio 0.3
    beryllium copper density/(kg·m−3) 8330
    beryllium copper Yang's modulus/GPa 128
    beryllium copper Poisson's ratio 0.3
    下载: 导出CSV

    表 2机器人一个单元节的参数

    Table 2.Parameters of a robot unit

    Parameter Value
    quality/g 10.8
    leg bend angle/(°) 45
    foot connection plate angle/(°) 45
    robot three-dimensional size/mm3 148 × 36 × 44
    driving leg size/mm3 45 × 12 × 0.2
    foot connection plate/mm3 20 × 20 × 0.2
    下载: 导出CSV
  • [1] Baisch AT, Heimlich C, Karpelson M, et al. HAMR3: An autonomous 1.7 g ambulatory robot//International Conference on Intelligent Robots and Systems. IEEE, 2011: 5073-5079
    [2] Hoffman KL, Wood RJ. Towards a multi-segment ambulatory microrobot//IEEE International Conference on Robotics and Automation. IEEE, 2010: 1196-1202
    [3] Christensen DL, Hawkes EW, Suresh SA, et al. μTugs: Enabling microrobots to deliver macro forces with controllable adhesives//International Conference on Robotics and Automation (ICRA). IEEE, 2015: 4048-4055
    [4] Hawkes EW, Christensen DL, Cutkosky MR. Vertical dry adhesive climbing with a 100 × bodyweight payload//International Conference on Robotics and Automation (ICRA). IEEE, 2015: 3762-3769
    [5] Baisch AT, Sreetharan PS, Wood RJ. Biologically-inspired locomotion of a 2 g hexapod robot//International Conference on Intelligent Robots and Systems. IEEE, 2010: 5360-5365
    [6] Baisch AT, Heimlich C, Karpelson M, et al. HAMR(3): an autonomous 1.7 g ambulatory robot//International Conference on Intelligent Robots and Systems. IEEE, 2011: 5073-5079
    [7] Baisch AT, Ozcan O, Goldberg B, et al. High speed locomotion for a quadrupedal microrobot.The International Journal of Robotics Research, 2014, 33(8): 1063-1082doi:10.1177/0278364914521473
    [8] 高煜斐, 周生喜. 一种压电驱动的三足爬行机器人. 力学学报, 2021, 53(12): 3354-3365 (Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3354-3365 (in Chinese)

    Gao Yufei, Zhou Shengxi. A piezoelectric-driven three-legged crawling robot.Chinese Journal of Theoretical and Applied Mechanics,2021, 53(12): 3354-3365(in Chinese))
    [9] Takato M, Tatani M, Oku H, et al. A millimetre-sized robot realized by a piezoelectric impact-type rotary actuator and a hardware neuron model.International Journal of Advanced Robotic Systems, 2014, 11(7): 831-836
    [10] Rios SA, Fleming AJ, Yong YK. Monolithic piezoelectric insect with resonance walking.IEEE-ASME Transactions on Mechatronics, 2018, 23(2): 524-530doi:10.1109/TMECH.2018.2792618
    [11] Rios SA, Fleming AJ, Yong YK, et al. Design and characterization of a miniature monolithic piezoelectric hexapod robot//2016 IEEE International Conference on Advanced Intelligent Mechatronics . 2016: 982-986
    [12] Graule MA, Chirarattananon P, Fuller SB, et al. Perching and takeoff of a robotic insect on over hangs using switchable electrostatic adhesion.Science, 2016, 352(6288): 978-982doi:10.1126/science.aaf1092
    [13] Hariri HH, Soh GS, Foong SH, et al. Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion.IEEE Transactions on Robotic, 2017, 33(3): 742-747doi:10.1109/TRO.2017.2656902
    [14] Rios SA, Fleming AJ, Yong YK. Miniature resonant ambulatory robo.IEEE Robotics and Automation Letters, 2016, 2(1): 337-343
    [15] 蒋振宇, 李伟达, 祝宇虹. 一种谐振式微小型机器人移动机构. 压电与声光, 2010, 32(4): 625-628 (Jiang Zhenyu, Li Weida, Zhu Yuhong. A resonant micro-small robot moving mechanism.Piezoelectric and Acoustic Light, 2010, 32(4): 625-628 (in Chinese)

    Jiang Zhenyu, Li Weida, Zhu Yuhong. A resonant micro-small robot moving mechanism.Piezoelectric and Acoustic Light, 2010, 32 (04): 625-628(in Chinese)
    [16] 孙立宁, 李伟达, 蒋振宇等. 一种单构件双运动机理微小型机器人移动机构. 机器人, 2010, 32(1): 41-47 (Sun Lining, Li Weida, Jiang Zhenyu, et al. A single component dual motion mechanism micro robot moving mechanism.Robot, 2010, 32(1): 41-47 (in Chinese)doi:10.3724/SP.J.1218.2010.00041

    Sun Lining, Li Weida, Jiang Zhenyu, et al. A single component dual motion mechanism micro robot moving mechanism.Robot, 2010, 32(01): 41-47(in Chinese))doi:10.3724/SP.J.1218.2010.00041
    [17] 李魁, 徐鉴. 压电谐振驱动三足机器人的平面运动. 动力学与控制学报, 2015, 13(6): 454-461 (Li Kui, Xu Jian. Piezoelectric resonance drives the plane motion of a three-legged robot.Journal of Dynamics and Control, 2015, 13(6): 454-461 (in Chinese)

    Li Kui, Xu Jian. Piezoelectric resonance drives the plane motion of a three - legged robot.Journal of Dynamics and Control, 2015, 13(6): 454-461(in Chinese))
    [18] 郑龙龙, 李朝东. 压电双晶驱动器驱动八足机器人的研制. 工业控制计算机, 2018, 31(6): 146-147 (Zheng Longlong, Li Chaodong. Piezoelectric dual crystal drive drives the development of eight-legged robots.Industrial Control Computer, 2018, 31(6): 146-147 (in Chinese)

    Zheng Longlong, Li Chaodong. Piezoelectric dual crystal drive drives the development of eight-legged robots.Industrial Control Computer, 2018, 31(06): 146-147(in Chinese))
    [19] 郑龙龙, 李朝东. 压电仿生八足机器人的研究. 计量与测试技术, 2018, 45(5): 41-44 (Zheng Longlong, Li Chaodong. Research on piezo bionic octal robots.Measurement and Testing Technology, 2018, 45(5): 41-44 (in Chinese)

    Zheng Longlong, Li Chaodong. Research on piezo bionic octal robots.Measurement and Testing Technology, 2018, 45(5): 41-44(in Chinese))
    [20] 陈畅, 张卫平, 邹阳等. 压电驱动的六足爬行机器人的设计与制造. 压电与声光, 2018, 40(5): 700-703 (Chen Chang, Zhang Weiping, Zou Yang, et al. The design and manufacture of piezoelectrically driven six-legged crawling robots.Piezoelectric and Acoustic Light, 2018, 40(5): 700-703 (in Chinese)

    Chen Chang, Zhang Weiping, Zou Yang, et al. The design and manufacture of piezoelectrically driven six-legged crawling robots.Piezoelectric and Acoustic Light, 2018, 40(5): 700-703(in Chinese))
    [21] 陈畅. 基于压电驱动的微型六足爬行机器人的设计与制造. [硕士论文]. 上海: 上海交通大学大学, 2018

    Cheng Chang. Design and test of micro-resonant multi-footed piezoelectric robots. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese))
    [22] 李一帆, 张卫平, 邹阳等. 压电式微型仿生六足分节机器人结构设计与加工工艺研究. 机械设计与制造, 2017, 311(S1): 213-216 (Li Yifan, Zhang Weiping, Zou Yang, et al. Piezoelectric micro-bionic six-foot section robot structure design and processing process research.Mechanical Design and Manufacturing, 2017, 311(S1): 213-216 (in Chinese)

    Li Yifan, Zhang Weiping, Zou Yang, et al. Piezoelectric micro-bionic six-foot section robot structure design and processing process research.Mechanical Design and Manufacturing, 2017 (S1): 213-216(in Chinese))
    [23] 李京. 微小型谐振式多足压电机器人设计及试验. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Li Jing. Design and test of micro-resonant multi-footed piezoelectric robots. [Master Thesis]. Harbin: Harbin University of Technology, 2020 (in Chinese))
    [24] Peng H, Yang J, Lu X, et al. A lightweight surface milli-walker based on piezoelectric actuation.IEEE Transactions on Industrial Electronics, 2018, 66(10): 7852-7860
    [25] 卢鹏辉. 一种小型无倾翻失效压电爬行机器人系统的研究. [硕士论文]. 南京: 南京航空航天大学, 2020

    Lu Penghui. Research on a small piezoelectric crawling robot system without tipping failure. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese))
    [26] Li J, Deng J, Zhang S, et al. Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolution.International Journal of Mechanical Sciences, 2023, 250: 108276doi:10.1016/j.ijmecsci.2023.108276
    [27] Deng J, Yang CL, Liu YX, et al. Design and experiments of a small resonant inchworm piezoelectric robot.Science China Technological Sciences, 2023, 66(3): 821-829doi:10.1007/s11431-022-2223-1
    [28] Chen E, Yang Y, Li M, et al. Bio-mimic, fast-moving, and flippable soft piezoelectric robots.Advanced Science, 2023, 10(20): 2300673
    [29] 曾祥莉. 压电材料驱动柔性行走机构的理论与试验研究. [硕士论文]. 吉林: 吉林大学, 2020

    Zheng Xiangli. Theoretical and experimental research on flexible walking mechanism driven by piezoelectric materials. [Master Thesis]. Jilin: Jinlin University, 2020 (in Chinese))
    [30] Hu Y, Wang R, Wen J, et al. A low-frequency structure-control-type inertial actuator using miniaturized bimorph piezoelectric vibrators.IEEE Transactions on Industrial Electronics, 2018, 66(8): 6179-6188
    [31] 苟文选. 材料力学(第三版). 北京: 科学出版社, 2017: 125-126

    Gou Wenxuan. Materials Mechanics (Third Edition). Beijing: Science Press, 2017: 125-126 (in Chinese))
    [32] Nader Jalili. 基于压电材料的振动控制——从宏观系统到微纳米系统. 赵丹, 刘少刚, 冯立锋译. 北京: 国防工业出版社, 2017: 152-162

    Nader Jalili. Piezoelectric-Based Vibration Control—From Macro to Micro/Nano Scale Systems. Zhao Dan, Liu Shaogang, Feng Lifeng, translated. Beijing: National Defense Industry Press, 2017: 152-162 (in Chinese)
    [33] 刘延柱, 陈立群, 陈文良. 振动力学 (第三版). 北京: 高等教育出版社, 2019: 258-260

    Liu Yanzhu, Chen Liqun, Chen Wenliang. Vibration Mechanics (Third Edition). Beijing: Higher Education Press, 2019: 258-260 (in Chinese))
    [34] 徐芝纶. 弹性力学 (第五版). 北京: 高等教育出版社, 2016: 120-122

    Xu Zhilun. Elastic Mechanics (Fifth Edition). Beijing: Higher Education Press, 2016: 120-122 (in Chinese))
    [35] 李伟达. 基于碰撞与黏滑复合驱动的微小型机器人移动机构研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2011: 50-55

    Li Weida. Research on the moving mechanism of micro robot based on collision and stick-slip composite drive. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2011: 37-42 (in Chinese))
    [36] 梁婷婷. 基于Quanser半实物仿真实验平台的控制系统研究与实现. [硕士论文]. 沈阳: 东北大学, 2016: 1-2

    Li Weida. Research and implementation of control system based on Quanser semi physical simulation experimental platform. [Master Thesis]. Shenyang: Northeastern University, 2011: 37-42 (in Chinese))
  • 加载中
图(25)/ 表(2)
计量
  • 文章访问数:670
  • HTML全文浏览量:256
  • PDF下载量:126
  • 被引次数:0
出版历程
  • 收稿日期:2023-06-05
  • 录用日期:2023-08-05
  • 网络出版日期:2023-08-06
  • 刊出日期:2023-09-18

目录

    /

      返回文章
      返回
        Baidu
        map