EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆式摩擦发电机非线性机电耦合建模研究

韩勤锴 高帅 邵卿洋 褚福磊

韩勤锴, 高帅, 邵卿洋, 褚福磊. 摆式摩擦发电机非线性机电耦合建模研究. 力学学报, 2023, 55(10): 2178-2188 doi: 10.6052/0459-1879-23-197
引用本文: 韩勤锴, 高帅, 邵卿洋, 褚福磊. 摆式摩擦发电机非线性机电耦合建模研究. 力学学报, 2023, 55(10): 2178-2188 doi: 10.6052/0459-1879-23-197
Han Qinkai, Gao Shuai, Shao Qingyang, Chu Fulei. Nonlinear electromechanical modeling of pendulum-type triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2178-2188 doi: 10.6052/0459-1879-23-197
Citation: Han Qinkai, Gao Shuai, Shao Qingyang, Chu Fulei. Nonlinear electromechanical modeling of pendulum-type triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2178-2188 doi: 10.6052/0459-1879-23-197

摆式摩擦发电机非线性机电耦合建模研究

doi: 10.6052/0459-1879-23-197
基金项目: 国家自然科学基金资助项目(12272199)
详细信息
    通讯作者:

    韩勤锴, 副教授, 主要研究方向为智能零部件设计与转子动力学. E-mail: hanqinkai@mail.tsinghua.edu.cn

  • 中图分类号: O313.5

NONLINEAR ELECTROMECHANICAL MODELING OF PENDULUM-TYPE TRIBOELECTRIC NANOGENERATORS

  • 摘要: 面向摆式摩擦发电机结构优化设计需求, 开展非线性机电耦合建模与参数敏感性分析, 以推动其向工程实用化方向发展. 在摩擦发电机理分析的基础上, 构建等效电容拟合函数; 结合能量原理和等效电路法, 建立了考虑摆角非线性变化的机电耦合模型. 利用谐波平衡法, 解析求解摆式摩擦发电机的周期稳态输出, 并判断结果稳定性. 结合数值积分和动态测试两种手段, 验证谐波平衡分析的准确性. 与线性模型结果进行深入对比, 并考察了不同设计参数对摆式摩擦发电机输出特性的影响. 考虑非线性效应, 模型预估的工作带宽显著增加(相对增量83%). 文章提出的机电耦合模型能够有效避免线性模型对工作带宽的低估问题, 显著提升输出性能估计的准确性; 增加激励幅值、降低系统阻尼或减小电极夹角, 均有助于提升摆式摩擦发电机的输出表现; 在实际设计时, 需综合考虑间隙长度和摩擦力幅值, 以使摆式摩擦发电机输出表现处于较优状态; 构建多种拟合模型用于表征设计参数与输出性能的关系, 可作为摆式摩擦发电机输出性能设计的依据.

     

  • 图  1  P-TENG结构图

    Figure  1.  Structure of the P-TENG

    图  2  P-TENG的摩擦发电机理

    Figure  2.  Power generation mechanism of the P-TENG

    图  3  基于COMSOL的静电场仿真结果

    Figure  3.  Simulation results based on the COMSOL

    图  4  带负载的等效电路系统

    Figure  4.  Equivalent circuit system with external resistance

    图  5  等效电容仿真模型 (单位: mm)

    Figure  5.  The three-dimensional capacitance simulation model based on COMSOL (unit: mm)

    图  6  等效电容仿真结果

    Figure  6.  Capacitance simulation results

    图  7  单摆最大摆角随激励频率变化曲线

    Figure  7.  Pendulum angle vs. excitation frequency solved by HBM and NI

    图  8  P-TENG表面摩擦电荷随激励频率变化曲线

    Figure  8.  Surface charge vs. excitation frequency solved by HBM and NI

    图  9  基于直线电机的P-TENG动态测试平台

    Figure  9.  Dynamic test platform based on a linear motor

    图  10  HBM结果与试验结果的对比

    Figure  10.  Comparison of HBM results with test results

    图  11  考虑非线性效应与否对摆动角位移的影响

    Figure  11.  Comparison of the influence of the consideration of the nonlinear effect for pendulum angle response curves

    图  12  摆动角位移波形和频谱的对比

    Figure  12.  Comparison of the influence of the consideration of the nonlinear effect

    图  13  非线性效应对P-TENG输出特性的影响

    Figure  13.  Comparison of the influence of the consideration of the nonlinear effect

    图  14  激励幅值对输出电流均方根值影响的瀑布图

    Figure  14.  Waterfall map for the effect of excitation amplitude an on the output performance of the P-TENG

    图  15  工作带宽和最大电流随激励幅值变化曲线及拟合结果

    Figure  15.  Variation curves of operation bandwidth and maximum output current with excitation amplitude and fitting results

    图  16  阻尼比对输出电流均方根值影响的瀑布图

    Figure  16.  Waterfall map for the effect of damping ratio an on the output performance of the P-TENG

    图  17  工作带宽和最大电流随阻尼比变化曲线及拟合结果

    Figure  17.  Variation curves of operation bandwidth and maximum output current with damping ratio and fitting results

    图  18  间隙长度对输出电流均方根值影响的瀑布图

    Figure  18.  Waterfall map for the effect of gap length an on the output performance of the P-TENG

    图  19  工作带宽和最大电流随间隙长度变化曲线及拟合结果

    Figure  19.  Variation curves of operation bandwidth and maximum output current with gap length and fitting results

    图  20  电极夹角对输出电流均方根值影响的瀑布图

    Figure  20.  Waterfall map for the effect of electrode angle an on the output performance of the P-TENG

    图  21  工作带宽和最大电流随电极夹角变化曲线及拟合结果

    Figure  21.  Variation curves of operation bandwidth and maximum output current with electrode angle and fitting results

    表  1  电容仿真时P-TENG结构参数

    Table  1.   Structural parameters of the simulated P-TENG

    electrode outer diameter/mm60
    electrode inner diameter/mm10
    electrode thickness/mm0.050
    electrode angle/(°)0.95
    center angle of the pendulum/(°)46
    pendulum outer diameter/mm55
    pendulum thickness/mm5
    下载: 导出CSV
    Baidu
  • [1] 赵林川, 邹鸿翔, 刘丰瑞等. 压电与摩擦电复合型旋转能量采集动力学协同调控机制研究. 力学学报, 2021, 53(11): 2961-2971 (Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971 (in Chinese) doi: 10.6052/0459-1879-21-410

    Zhao Linchuan, Zou Hongxiang, Liu Fengrui, Wei Kexiang, Zhang Wenming. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971(in Chinese)) doi: 10.6052/0459-1879-21-410
    [2] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 (Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelctric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese)

    Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelctric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927(in Chinese))
    [3] 吴义鹏, 周圣鹏, 裘进浩等. 用于超低频振动能收集的压电弹簧摆结构设计与实现. 振动工程学报, 2019, 32(5): 750-756 (Wu Yipeng, Zhou Shengpeng, Qiu Jinhao, et al. Design and implementation of a piezoelectric spring pendulum structure applied in ultra-low frequency vibration energy harvesting. Journal of Vibration Engeineering, 2019, 32(5): 750-756 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2019.05.002

    Wu Yipeng, Zhou Shengpeng, Qiu Jinhao, Ji Hongli. Design and implementation of a piezoelectric spring pendulum structure applied in ultra-low frequency vibration energy harvesting. Journal of Vibration Engeineering, 2019, 32(05): 750-756(in Chinese)) doi: 10.16385/j.cnki.issn.1004-4523.2019.05.002
    [4] 陈伟, 项载毓, 钱泓桦等. 基于摩擦自激振动升频效应的超低频振动能量收集. 机械工程学报, 2021, 57(15): 160-167 (Chen Wei, Xiang Zaiyu, Qian Honghua, et al. The frequency-up-conversion effect driven by friction-induced vibration for ultra-low frequency vibration energy harvesting. Journal of Mechanical Engeineering, 2021, 57(15): 160-167 (in Chinese) doi: 10.3901/JME.2021.15.160

    Chen Wei, Xiang Zaiyu, Qian Honghua, Mo Jiliang. The frequency-up-conversion effect driven by friction-induced vibration for ultra-low frequency vibration energy harvesting. Journal of Mechanical Engeineering, 2021, 57(15): 160-167(in Chinese)) doi: 10.3901/JME.2021.15.160
    [5] Wu Y, Qiu J, Zhou S, et al. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Applied Energy, 2018, 231: 600-614 doi: 10.1016/j.apenergy.2018.09.082
    [6] Kecik K. Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mechanical Systems and Signal Processing, 2018, 106: 198-209 doi: 10.1016/j.ymssp.2017.12.028
    [7] Kumar R, Gupta S, Ali S. Energy harvesting from chaos in base excited double pendulum. Mechanical Systems and Signal Processing, 2019, 124: 49-64 doi: 10.1016/j.ymssp.2019.01.037
    [8] Lee S, Lee Y, Kim D, et al. Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy, 2013, 2(6): 1113-1120 doi: 10.1016/j.nanoen.2013.08.007
    [9] He C, Chen B, Jiang T, et al. Radial-grating pendulum-structured triboelectric nanogenerator for energy harvesting and tilting-angle sensing. Advanced Materials Technologies, 2018, 3(4): 1700251 doi: 10.1002/admt.201700251
    [10] Lin Z, Zhang B, Guo H, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908 doi: 10.1016/j.nanoen.2019.103908
    [11] Yang H, Deng M, Tang Q, et al. A nonencapsulative pendulum-like paper-based hybrid nanogenerator for energy harvesting. Advanced Energy Materials, 2019, 9(33): 1901149 doi: 10.1002/aenm.201901149
    [12] Niu S, Liu Y, Chen X, et al. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12: 760-774 doi: 10.1016/j.nanoen.2015.01.013
    [13] Niu S, Liu Y, Wang S, et al. Theory of sliding-mode triboelectric nanogenerators. Advanced Materials, 2013, 25: 6184-6193 doi: 10.1002/adma.201302808
    [14] Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 2014, 24(22): 3332-3340 doi: 10.1002/adfm.201303799
    [15] Niu S, Wang S, Liu Y, et al. A theoretical study of grating structured triboelectric nanogenerators. Energy & Environmental Science, 2014, 7(7): 2339-2349
    [16] Zhou Y, Li S, Niu S, et al. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Research, 2016, 9(12): 3705-3713 doi: 10.1007/s12274-016-1241-4
    [17] Xu C, Zi Y, Wang A, et al. On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 2018, 30(15): 1706790 doi: 10.1002/adma.201706790
    [18] Dharmasena R, Jayawardena K, Mills C, et al. Triboelectric nanogenerators: providing a fundamental framework. Energy & Environmental Science, 2017, 10(8): 1801-1811
    [19] Ghaffarinejad A, Hasani J. Modeling of triboelectric charge accumulation dynamics at the metal–insulator interface for variable capacitive structures: application to triboelectric nanogenerators. Applied Physics A, 2019, 125(4): 259.1-259.14
    [20] Hinchet R, Ghaffarinejad A, Lu YX et al. Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy, 2018, 47: 401-409 doi: 10.1016/j.nanoen.2018.02.030
    [21] Wu Z, Bi M, Cao Z, et al. Largely enhanced electrostatic generator based on a bipolar electret charged by patterned contact micro-discharge and optimized substrates. Nano Energy, 2020, 71: 104602
    [22] Bi M, Wu Z, Wang S, et al. Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting. Nano Energy, 2020, 75: 104968 doi: 10.1016/j.nanoen.2020.104968
    [23] Cao Z, Chu Y, Wang S, et al. Theoretical analysis of sensor properties of contact-separation mode nanogenerator-based sensors. Nano Energy, 2021, 79: 105450 doi: 10.1016/j.nanoen.2020.105450
    [24] Chu Y, Cao Z, Xu J, et al. Theoretical study of nanogenerator with resistive load and its sensing performance as a motion sensor. Nano Energy, 2021, 81: 105628 doi: 10.1016/j.nanoen.2020.105628
    [25] Sun W, Jiang Z, Xu X, et al. Electromechanical coupling modeling and analysis of contact-separation mode triboelectric nanogenerators. International Journal of Non-Linear Mechanics, 2021, 136: 103773 doi: 10.1016/j.ijnonlinmec.2021.103773
    [26] Sun W, Jiang Z, Xu X, et al. Harmonic balance analysis of output characteristics of free-standing mode triboelectric nanogenerators. International Journal of Mechanical Sciences, 2021, 207: 106668 doi: 10.1016/j.ijmecsci.2021.106668
    [27] Qi Y, Liu G, Gao Y, et al. Frequency band characteristics of a triboelectric nanogenerator and ultra-wide-band vibrational energy harvesting. ACS Applied Materials & Interfaces, 2021, 13(22): 26084-26092
    [28] Groll G, Ewins D. The HBM with arc-length continuation in rotor stator contact problems. Journal of Sound and Vibration, 2001, 241(2): 223-233 doi: 10.1006/jsvi.2000.3298
    [29] Cameron T, Griffin J. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. Journal of Applied Mechanics, 1989, 56(1): 149-154 doi: 10.1115/1.3176036
    [30] Fafard M, Massicotte B. Geometrical interpretation of the arc-length method. Computers and Structures, 1993, 46(4): 603-615 doi: 10.1016/0045-7949(93)90389-U
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  76
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 录用日期:  2023-06-20
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-10-18

目录

    /

    返回文章
    返回
    Baidu
    map