EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹透镜实现亚波长聚焦的理论和实验研究

徐军,李鹏,尚闫,钱征华,马廷锋

downloadPDF
徐军, 李鹏, 尚闫, 钱征华, 马廷锋. 凹透镜实现亚波长聚焦的理论和实验研究. 力学学报, 2023, 55(8): 1742-1752 doi: 10.6052/0459-1879-23-148
引用本文: 徐军, 李鹏, 尚闫, 钱征华, 马廷锋. 凹透镜实现亚波长聚焦的理论和实验研究. 力学学报, 2023, 55(8): 1742-1752doi:10.6052/0459-1879-23-148
Xu Jun, Li Peng, Shang Yan, Qian Zhenghua, Ma Tingfeng. The theoretical analysis and experimental investigation of sub-wavelength focusing via concave lens. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1742-1752 doi: 10.6052/0459-1879-23-148
Citation: Xu Jun, Li Peng, Shang Yan, Qian Zhenghua, Ma Tingfeng. The theoretical analysis and experimental investigation of sub-wavelength focusing via concave lens.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1742-1752doi:10.6052/0459-1879-23-148

凹透镜实现亚波长聚焦的理论和实验研究

doi:10.6052/0459-1879-23-148
基金项目:国家自然科学基金(11972276, 12061131013, 12172171), 宁波大学冲击与安全工程教育部重点实验室开放基金(CJ202104), 中央高校基本科研业务费(NS2022011), 江苏省自然科学基金(BK20211176)和江苏省双创计划(JSSCBS20210166)资助项目
详细信息
    通讯作者:

    李鹏, 教授, 主要研究方向为声子晶体和声学超材料. E-mail:lipeng_mech@nuaa.edu.cn

    钱征华, 教授, 主要研究方向为智能材料与结构力学. E-mail:qianzh@nuaa.edu.cn

  • 中图分类号:O343.1

THE THEORETICAL ANALYSIS AND EXPERIMENTAL INVESTIGATION OF SUB-WAVELENGTH FOCUSING VIA CONCAVE LENS

  • 摘要:为了提升传统平面透镜的聚焦效果, 增加焦点处的能量, 缩小焦斑尺寸, 实现亚波长聚焦, 文章基于厚度变化设计了用于聚焦平面弯曲波的凹透镜. 首先, 基于Timoshenko梁理论求解了弯曲波在经历厚度变化后的透射系数及相位变化, 并基于此完成了凹透镜的结构设计; 其次, 应用有限元软件COMSOL Multiphysics的结构力学模块开展了该透镜频域内的工作性能分析, 包括聚焦位置及焦点处能量、焦斑尺寸等, 并与传统平面透镜的情况进行对比; 最后, 实验验证了凹透镜设计的合理性和正确性. 研究结果表明: 文章所设计的凹透镜使平面入射的弯曲波聚焦在预先设定位置, 且其性能优于传统的平面透镜, 焦点处的能量更高、焦斑尺寸更小; 凹透镜的焦斑尺寸小于工作波长的0.5倍, 属于亚波长聚焦; 此外, 该透镜还具有一定的工作频率带宽, 在结构参数不变的情况下能够在设计频率附近正常工作. 提出的透镜设计方法易于工程实现, 且聚焦性能优越, 设计思想也能为声波、光波等领域相关透镜的设计提供借鉴.

  • 图 1凹透镜的设计原理

    Figure 1.The design scheme of curving lens

    图 2弯曲波传播的路径示意图

    Figure 2.The propagation path of flexural waves

    图 3Timoshenko梁模型

    Figure 3.A Timoshenko beam

    图 4工作频率f= 20 kHz情况下相位、透射系数和反射系数随厚度的变化趋势

    Figure 4.Variations of phase and transmission coefficient versus thickness whenf= 20 kHz

    图 5透镜各通道的相位及厚度

    Figure 5.Phase and thickness values of individual elements of the curving lens designed

    图 620 kHz下透镜的有限元仿真结果

    Figure 6.The FEM results whenf= 20 kHz

    图 7弯曲波聚焦实验示意图

    Figure 7.Measurement system for focusing flexural wave

    图 8实验结果: (a) 凹透镜(左)和平面透镜(右)在焦点附近电压平方的云图; (b) 电压平方沿x轴(左)和y轴(右)的分布

    Figure 8.Results from experimental measurement: (a) The contour distributions of voltage square near the concave lens (left) and plane lens (right); (b) The distributions of voltage square alongx(left) andy(right) directions, respectively

    图 9不同频率下透镜的聚焦效果

    Figure 9.Working performance of the concave lens designed whenfvaries

    图 10透镜的性能指标随频率的变化规律

    Figure 10.Performance indices of the concave lens designed versus frequency

  • [1] 姜恒, 黄国良. 弹性波与力学超材料设计与应用专题序. 力学学报, 2022, 54(10): 2676-2677 (Jiang Heng, Huang Guoliang. Preface of theme articles on design and application of elastic wave and mechanical metamaterials.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2676-2677 (in Chinese)doi:10.6052/0459-1879-22-481

    Jiang Heng, Huang Guoliang. Preface of theme articles on design and application of elastic wave and mechanical metamaterials.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2676-2677 (in Chinese)doi:10.6052/0459-1879-22-481
    [2] 夏建平, 葛勇, 孙宏祥等. 基于近零折射率材料的声非对称聚焦透镜. 声学学报, 2019, 44(4): 765-771 (Xia Jianping, Ge Yong, Sun Hongxiang, et al. Acoustic asymmetric focusing lens by near-zero refractive index material.Acta Acustica, 2019, 44(4): 765-771 (in Chinese)doi:10.15949/j.cnki.0371-0025.2019.04.038

    Xia Jianping, Ge Yong, Sun Hongxiang, et al. Acoustic asymmetric focusing lens by near-zero refractive index material.Acta Acustica, 2019, 44(4): 765-771 (in Chinese)doi:10.15949/j.cnki.0371-0025.2019.04.038
    [3] 王丹凤, 任致远, 庄国志. 梯度折射率超材料透镜. 科学通报, 2022, 67(12): 1279-1289 (Wang Danfeng, Ren Zhiyuan, Zhuang Guozhi. A review of gradient index metamaterials lenses.Chinese Science Bulletin, 2022, 67(12): 1279-1289 (in Chinese)doi:10.1360/TB-2021-0523

    Wang Danfeng, Ren Zhiyuan, Zhuang Guozhi. A review of gradient index metamaterials lenses.Chinese Science Bulletin, 2022, 67(12): 1279-1289 (in Chinese)doi:10.1360/TB-2021-0523
    [4] Hu CJ, Xue SW, Yin YH, et al. Acoustic super-resolution imaging based on solid immersion 3D Maxwell's fish-eye lens.Applied Physics Letters, 2022, 120: 192202doi:10.1063/5.0093339
    [5] Zhao LX, Lai CQ, Yu M. Modified structural Luneburg lens for broadband focusing and collimation.Mechanical Systems and Signal Processing, 2020, 144: 106868doi:10.1016/j.ymssp.2020.106868
    [6] Zhao LX, Horiuchi T, Yu M. Broadband acoustic collimation and focusing using reduced aberration acoustic Luneburg lens.Journal of Applied Physics, 2021, 130: 214901doi:10.1063/5.0064571
    [7] Ma TX, Li ZY, Zhang CZ, et al. Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens.International Journal of Mechanical Sciences, 2022, 227: 107435doi:10.1016/j.ijmecsci.2022.107435
    [8] Zhu HF, Semperlotti F. Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces.Physcial Review Letters, 2016, 117: 034302doi:10.1103/PhysRevLett.117.034302
    [9] Climente A, Torrent D, Sánchez-Dehesa J. Gradient index lenses for flexural waves based on thickness variations.Applied Physics Letters, 2014, 105: 064101doi:10.1063/1.4893153
    [10] 史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报, 2020, 52(6): 1719-1729 (Shi Huiqi, Wang Huiming. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729 (in Chinese)doi:10.6052/0459-1879-20-212

    Shi Huiqi, Wang Huiming. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729 (in Chinese)doi:10.6052/0459-1879-20-212
    [11] Wang ZY, Zhang P, Nie XF, et al. Focusing of liquid surface waves by gradient index lens.Europhysics Letters, 2014, 108: 24003doi:10.1209/0295-5075/108/24003
    [12] Darabi A, Leamy MJ. Analysis and experimental validation of an optimized gradient-index phononic-crystal lens.Physical Review Applied, 2018, 10: 024045doi:10.1103/PhysRevApplied.10.024045
    [13] Jin YB, Djafari-Rouhani B, Torrent D. Gradient index phononic crystals and metamaterials.Nanophonics, 2019, 8: 685-701
    [14] Yu NF, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science, 2011, 334: 333-337doi:10.1126/science.1210713
    [15] Li Y, Liang B, Gu ZM, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces.Scientific Reports, 2013, 3: 2546doi:10.1038/srep02546
    [16] Zhang H, Xiao Y, Wen JH, et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation.Applied Physics Letters, 2016, 108: 141902doi:10.1063/1.4945664
    [17] Wang YF, Wang Y, Wu B, et al. Tunable and active phononic crystals and metamaterials.Applied Mechanics Reviews, 2020, 72: 040801doi:10.1115/1.4046222
    [18] Mei J, Wu Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface.New Journal of Physics, 2014, 16: 123007doi:10.1088/1367-2630/16/12/123007
    [19] Zhang J, Su XS, Liu YL, et al. Metasurface constituted by thin composite beams to steer flexural waves in thin plates.International Journal of Solids and Structures, 2019, 162: 14-20doi:10.1016/j.ijsolstr.2018.11.025
    [20] Cao LY, Yang ZC, Xu YL, et al. Pillared elastic metasurface with constructive interference for flexural wave manipulation.Mechanical Systems and Signal Processing, 2021, 146: 107035doi:10.1016/j.ymssp.2020.107035
    [21] Shen C, Xie YB, Sui N, et al. Broadband acoustic hyperbolic metamaterial.Physical Review Letters, 2015, 115: 254301doi:10.1103/PhysRevLett.115.254301
    [22] Jia H, Ke MZ, Hao R, et al. Subwavelength imaging by a simple planar acoustic superlens.Applied Physics Letters, 2010, 97: 173507doi:10.1063/1.3507893
    [23] Liu AP, Zhou XM, Huang GL, et al. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.The Journal of the Acoustical Society of America, 2012, 132: 2800-2806doi:10.1121/1.4744932
    [24] Qi SB, Li Y, Assouar B. Acoustic focusing and energy confinement based on multilateral metasurfaces.Physical Review Applied, 2017, 7: 054006doi:10.1103/PhysRevApplied.7.054006
    [25] 宋世超, 王彬, 李鹏等. A0模态Lamb波聚焦透镜的结构设计及实验研究. 声学学报, 2023, 48(1): 154-161 (Song Shichao, Wang Bin, Li Peng, et al. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves.Acta Acustica, 2023, 48(1): 154-161 (in Chinese)

    Song Shichao, Wang Bin, Li Peng, et al. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves.Acta Acustica, 2023, 48(1): 154-161 (in Chinese)
    [26] Liu L, Hussein MI. Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance.Journal of Applied Mechanics, 2012, 79: 011003doi:10.1115/1.4004592
    [27] Geng Q, Wang T, Wu L, et al. Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments.Journal of Physics D:Applied Physics, 2021, 54(22): 225501doi:10.1088/1361-6463/abe1e7
    [28] Li P, Qian Z, Dong B, et al. A novel method for sub-wavelength focusing of flexural waves.International Journal of Mechanical Sciences, 2023, 248: 108206doi:10.1016/j.ijmecsci.2023.108206
    [29] Xu YL, Cao LY, Yang ZC. Deflecting incident flexural waves by nonresonant single-phase meta-slab with subunits of graded thicknesses.Journal of Sound and Vibration, 2019, 454: 51-62doi:10.1016/j.jsv.2019.04.028
    [30] Belanger P, Boivin G. Development of a low frequency omnidirectional piezoelectric shear horizontal wave transducer.Smart Materials and Structures, 2016, 25: 045024doi:10.1088/0964-1726/25/4/045024
    [31] Huan Q, Miao HC, Li FX. Generation and reception of shear horizontal waves using the synthetic face-shear mode of a thickness-poled piezoelectric wafer.Ultrasonics, 2018, 86: 20-27doi:10.1016/j.ultras.2018.01.009
    [32] Raghavan A, Cesnik CES. Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring.Smart Materials and Structures, 2005, 14(6): 1448-1461doi:10.1088/0964-1726/14/6/037
    [33] Koduru JP, Rose JL. Transducer arrays for omnidirectional guided wave mode control in plate like structures.Smart Materials and Structures, 2012, 22(1): 15010
    [34] Li P, Qian Z, Zhang YH, et al. The energy focusing of reflected flexural waves via two adjacent phase-modulation-based lenses.Energy, 2023, 267: 126523doi:10.1016/j.energy.2022.126523
  • 加载中
图(10)
计量
  • 文章访问数:422
  • HTML全文浏览量:161
  • PDF下载量:89
  • 被引次数:0
出版历程
  • 收稿日期:2023-04-16
  • 录用日期:2023-07-03
  • 网络出版日期:2023-07-04
  • 刊出日期:2023-08-18

目录

    /

      返回文章
      返回
        Baidu
        map