EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩纳米有机质孔隙中的润湿性研究

刘杰,陈银,章涛,孙树瑜

downloadPDF
刘杰, 陈银, 章涛, 孙树瑜. 页岩纳米有机质孔隙中的润湿性研究. 力学学报, 2023, 55(8): 1800-1808 doi: 10.6052/0459-1879-23-140
引用本文: 刘杰, 陈银, 章涛, 孙树瑜. 页岩纳米有机质孔隙中的润湿性研究. 力学学报, 2023, 55(8): 1800-1808doi:10.6052/0459-1879-23-140
Liu Jie, Chen Yin, Zhang Tao, Sun Shuyu. Wettability analysis in shale organic pores at the nanoscale. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1800-1808 doi: 10.6052/0459-1879-23-140
Citation: Liu Jie, Chen Yin, Zhang Tao, Sun Shuyu. Wettability analysis in shale organic pores at the nanoscale.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1800-1808doi:10.6052/0459-1879-23-140

页岩纳米有机质孔隙中的润湿性研究

doi:10.6052/0459-1879-23-140
基金项目:国家自然科学基金资助项目(51936001)
详细信息
    作者简介:

    章涛, 博士后, 主要研究方向为多组分多相流动的直接数值模拟. E-mail:tao.zhang.1@kaust.edu.sa

    孙树瑜, 教授, 主要研究方向为多孔介质渗流和对流扩散的数值模拟及相关算法的数值分析. E-mail:shuyu.sun@kaust.edu.sa

  • 中图分类号:TE312

WETTABILITY ANALYSIS IN SHALE ORGANIC PORES AT THE NANOSCALE

  • 摘要:针对页岩有机质分子模型不能真实表征储层孔隙属性, 纳米有机质孔隙中润湿性难以判别等问题, 进行页岩气藏纳米孔隙中基于真实干酪根有机质模型的微观润湿性研究. 利用分子动力学方法, 建立传统有机质模型以及真实干酪根有机质模型, 从模型可视化、空间密度分布特征以及势能机理等方面分析干酪根孔隙中页岩气与水的润湿行为特征, 同时考虑体系温度、孔隙尺寸以及水桥尺寸对润湿状态的影响. 结果表明, 传统有机质模型由于过于理想的假设, 难以对水在有机质中的润湿行为进行精确描述. 干酪根模型以其复杂的分子结构、多样的元素种类, 在有机质的润湿性刻画中有着更好的表现. 纳米有机质孔隙中的水相分为高密度区域与低密度区域, 其中低密度区域中的水分子分布在气液两相的界面处, 所以此部分水分子受到较弱的氢键相互作用, 使其更容易发生逸散并且更易被干酪根基质的相互作用所捕获, 从而在有机质表面进行吸附. 此行为进而表现为一种水分子亲和干酪根基质的润湿假相, 而水相的高密度区域部分却表现为非润湿的状态.

  • 图 1不同时刻下, 水相在光滑石墨烯壁面润湿性的可视化模型

    Figure 1.Snapshots of wetting conditions of water phase on smooth graphene walls at various times

    图 2不同时刻下, 水相在粗糙石墨烯壁面润湿性的可视化模型

    Figure 2.Snapshots of wetting conditions of water phase on rough graphene walls at various times

    图 3不同时刻下, 甲烷环境中, 水相粗糙石墨烯壁面润湿性的可视化模型

    Figure 3.Snapshots of wetting conditions of water phase and methane on rough graphene walls at various times

    图 4甲烷和水相在粗糙石墨烯壁面中的二维密度分布云图

    Figure 4.Two-dimensional density contours of water and methane phases in the rough graphene system

    图 5干酪根纳米通道中润湿体系的分子模型: 氧原子(红)、碳原子(青)、氢原子(白)、氮原子(蓝)、硫原子(黄)

    Figure 5.Molecular models of the kerogen channel (red) for the wetting study: oxygen (red), carbon (cyan), hydrogen (white), nitrogen (blue), and sulfur (yellow)

    图 6体系中各组分的一维密度分布

    Figure 6.One-dimensional density profiles of different components

    图 7体系中流体的二维密度云图

    Figure 7.Two-dimensional density contours

    图 8体系中流体的二维势能云图

    Figure 8.Two-dimensional potential energy contours

    图 9在不同温度下的密度分布

    Figure 9.Mass density profiles at various temperatures

    图 10在不同孔隙宽度下的密度分布

    Figure 10.Mass density profiles methane at various pore sizes

    图 11(a)水和(b)甲烷在不同水桥宽度下的密度分布; (c)水桥宽度2 nm时, 甲烷和水整体的二维密度云图

    Figure 11.Mass density profiles of (a) water and (b) methane at various widths of the water bridge; (c) two-dimensional density contour of entire fluid for the 2 nm water bridge

    11(a)水和(b)甲烷在不同水桥宽度下的密度分布; (c)水桥宽度2 nm时, 甲烷和水整体的二维密度云图 (续)

    11.Mass density profiles of (a) water and (b) methane at various widths of the water bridge; (c) two-dimensional density contour of entire fluid for the 2 nm water bridge (continued)

    表 1流体分子相互作用参数

    Table 1.Interaction parameters of fluid molecules

    Species Charge ε/(kJ·mol−1) σ/nm
    O (water) −0.82 0.274 0.3608
    H (water) 0.41 0.013 1.098
    C (CH4) −0.212 0.054 4.01
    H (CH4) 0.053 0.02 2.995
    下载: 导出CSV
  • [1] 吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型. 石油学报, 2015, 36(7): 837-848 (Wu Keliu, Li Xiangfang, Chen Zhangxing. A model for gas transport through nanopores of shale gas reservoirs.Acta Petrolei Sinica, 2015, 36(7): 837-848 (in Chinese)

    Wu Keliu, Li Xiangfang, Chen Zhangxing. A model for gas transport through nanopores of shale gas reservoirs. Acta Petrolei Sinica, 2015, 36(7): 837-848. (in Chinese))
    [2] 姚军, 孙海, 樊冬艳等. 页岩气藏运移机制及数值模拟. 中国石油大学学报: 自然科学版, 2013, 1: 91-98 (Yao Jun, Sun Hai, Fan Dongyan, et al. Transport mechanisms and numerical simulation of shale gas reservoirs.Journal of China University of Petroleum(Natural Science), 2013, 1: 91-98 (in Chinese)

    Yao Jun, Sun Hai, Fan Dongyan, et al. Transport mechanisms and numerical simulation of shale gas reservoirs. Journal of China University of Petroleum (Natural Science), 2013, (1): 91-98. (in Chinese))
    [3] Sun S, Zhang T. Reservoir Simulations: Machine Learning and Modeling. Gulf Professional Publishing and Elsevier, 2020
    [4] Yang Y, Liu F, Yao J, et al. Multi-scale reconstruction of porous media from low-resolution core images using conditional generative adversarial networks.Gas Science and Engineering, 2022, 99: 104411
    [5] Yang Y, Yang H, Tao L, et al. Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning.Journal of Energy Resources Technology, 2019, 141(9): 092903
    [6] 蔡少斌, 杨永飞, 刘杰. 考虑热流固耦合作用的多孔介质孔隙尺度两相流动模拟. 力学学报, 2021, 53(8): 2225-2234 (Cai Shaobin, Yang Yongfei, Liu Jie. Pore-scale simulation of multiphase flow considering thermohydro-mechanical coupling effect in porous media.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2225-2234 (in Chinese)

    Cai Shaobin, Yang Yongfei, Liu Jie. Pore-scale simulation of multiphase flow considering thermohydro-mechanical coupling effect in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2225-2234. (in Chinese))
    [7] Feng X, Chen MH, Wu Y, et al. A fully explicit and unconditionally energy-stable scheme for Peng-Robinson VT flash calculation based on dynamic modeling.Journal of Computational Physics, 2022, 463: 111275doi:10.1016/j.jcp.2022.111275
    [8] Feng X, Qiao Z, Sun S, et al. An energy-stable smoothed particle hydrodynamics discretization of the Navier-Stokes-Cahn-Hilliard model for incompressible two-phase flows.Journal of Computational Physics, 2023, 479: 111997doi:10.1016/j.jcp.2023.111997
    [9] 何映颉, 杨洋, 张廷山等. 石墨狭缝吸附页岩气的分子模拟. 岩性油气藏, 2016, 28(6): 88-94 (He Yingjie, Yang Yang, Zhang Tingshan, et al. Molecular simulation of shale gas adsorption in graphite slit-pores.Lithologic Reservoirs, 2016, 28(6): 88-94 (in Chinese)

    He Yingjie, Yang Yang, Zhang Tingshan, et al. Molecular simulation of shale gas adsorption in graphite slit-pores. Lithologic Reservoirs, 2016, 28(6): 88-94. (in Chinese))
    [10] Cui R, Hassanizadeh SM, Sun S. Pore-network modeling of flow in shale nanopores: Network structure, flow principles, and computational algorithms.Earth-Science Reviews, 2022, 234: 104203doi:10.1016/j.earscirev.2022.104203
    [11] 吴克柳, 李相方, 陈掌星等. 页岩气和致密砂岩气藏微裂缝气体传输特性. 力学学报, 2015, 47(6): 955-964 (Wu Keliu, Li Xiangfang, Chen Zhangxing, et al. Gas transport behavior through micro fractures of shale and tight gas reservoirs.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 955-964 (in Chinese)

    Wu Keliu, Li Xiangfang, Chen Zhangxing, et al. Gas transport behavior through micro fractures of shale and tight gas reservoirs. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 955-964. (in Chinese))
    [12] Iglauer S, Al-Yaseri A. Improving basalt wettability to de-risk CO2geo-storage in basaltic formations.Advances in Geo-Energy Research, 2021, 5(3): 347-350doi:10.46690/ager.2021.03.09
    [13] Li S, Hou S. A brief review of the correlation between electrical properties and wetting behaviour in porous media.Capillarity, 2019, 2(3): 53-56doi:10.26804/capi.2019.03.02
    [14] 王森, 冯其红, 查明等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟. 石油勘探与开发, 2015, 42(6): 772-778 (Wang Sen, Feng Qihong, Zha Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter.Petroleum Exploration and Development, 2015, 42(6): 772-778 (in Chinese)

    Wang Sen, Feng Qihong, Zha Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter. Petroleum Exploration and Development, 2015, 42(6): 772-778. (in Chinese))
    [15] 宋文辉, 姚军, 张凯. 页岩有机质纳米孔隙气体吸附与流动规律研究. 力学学报, 2021, 53(8): 2179-2192 (Song Wenhui, Yao Jun, Zhang Kai. Study on gas adsorption and transport behavior in shale organic nanopore.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2179-2192 (in Chinese)

    Song Wenhui, Yao Jun, Zhang Kai. Study on gas adsorption and transport behavior in shale organic nanopore. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2179-2192. (in Chinese))
    [16] 朱元强, 靳赛赛, 孙青青. N2在页岩干酪根上的吸附特征. 计算物理, 2021, 38(6): 707 (Zhu Yuanqiang, Jin Saisai, Sun Qingqing. Adsorption characteristics of N2on shale kerogen.Chinese Journal of Computational Physics, 2021, 38(6): 707 (in Chinese)

    Zhu Yuanqiang, Jin Saisai, Sun Qingqing. Adsorption characteristics of N2on shale kerogen. Chinese Journal of Computational Physics, 2021, 38(6): 707. (in Chinese))
    [17] Wang S, Yao X, Feng Q, et al. Molecular insights into carbon dioxide enhanced multi-component shale gas recovery and its sequestration in realistic kerogen.Chemical Engineering Journal, 2021, 425: 130292doi:10.1016/j.cej.2021.130292
    [18] Wood DA, Hazra B. Pyrolysis S2-peak characteristics of Raniganj shales (India) reflect complex combinations of kerogen kinetics and other processes related to different levels of thermal maturity.Advances in Geo-Energy Research, 2018, 2(4): 343-368doi:10.26804/ager.2018.04.01
    [19] Ungerer P, Collell J, Yiannourakou M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity.Energy&Fuels, 2015, 29(1): 91-105
    [20] Yang Y, Liu J, Yao J, et al. Adsorption behaviors of shale oil in kerogen slit by molecular simulation.Chemical Engineering Journal, 2020, 387: 124054doi:10.1016/j.cej.2020.124054
    [21] Liu J, Zhao Y, Yang Y, et al. Multicomponent shale oil flow in real kerogen structures via molecular dynamic simulation.Energies, 2020, 13(15): 3815doi:10.3390/en13153815
    [22] Liu J, Yang Y, Sun S, et al. Flow behaviors of shale oil in kerogen slit by molecular dynamics simulation.Chemical Engineering Journal, 2022, 434: 134682doi:10.1016/j.cej.2022.134682
    [23] Liu J, Tang Q, Kou J, et al. A quantitative study on the approximation error and speed-up of the multi-scale MCMC (Monte Carlo Markov chain) method for molecular dynamics.Journal of Computational Physics, 2022, 469: 111491doi:10.1016/j.jcp.2022.111491
    [24] Felipe P, Deepak D. Spatial distribution of reservoir fluids in mature kerogen using molecular simulations.Fuel, 2019, 235: 448-459doi:10.1016/j.fuel.2018.08.024
    [25] Jagadisan A, Heidari Z. Molecular dynamic simulation of the impact of thermal maturity and reservoir temperature on the contact angle and wettability of kerogen.Fuel, 2022, 309: 122039doi:10.1016/j.fuel.2021.122039
    [26] Hu Y, Devegowda D, Sigal R. A microscopic characterization of wettability in shale kerogen with varying maturity levels.Gas Science and Engineering, 2016, 33: 1078-1086
    [27] Zhou J, Zhang J, Yang J, et al. Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2sequestration.Chemical Engineering Journal, 2022, 428: 132020doi:10.1016/j.cej.2021.132020
    [28] 曹仁义, 黄涛, 程林松等. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟. 计算物理, 2021, 38(5): 595-602 (Cao Renyi, Huang Tao, Cheng Linsong, et al. Influence of polar substance of crude oil on adsorption and wettability in water flooding reservoir: Molecular simulation.Chinese Journal of Computational Physics, 2021, 38(5): 595-602 (in Chinese)

    Cao Renyi, Huang Tao, Cheng Linsong, et al. Influence of Polar Substance of Crude Oil on Adsorption and Wettability in Water Flooding Reservoir: Molecular Simulation. Chinese Journal of Computational Physics, 2021, 38(5): 595-602. (in Chinese))
    [29] Tesson SP, Firoozabadi A. Methane adsorption and self-diffusion in shale kerogen and slit nanopores by molecular simulations.The Journal of Physical Chemistry C, 2018, 122(41): 23528-23542doi:10.1021/acs.jpcc.8b07123
    [30] Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics.Journal of Molecular Graphics, 1996, 14(1): 33-38doi:10.1016/0263-7855(96)00018-5
    [31] Collell J, Ungerer P, Galliero G, et al. Molecular simulation of bulk organic matter in type II shales in the middle of the oil formation window.Energy&Fuels, 2014, 28(12): 7457-7466
    [32] Waldman M, Hagler AT. New combining rules for rare gas van der Waals parameters.Journal of Computational Chemistry, 1993, 14(9): 1077-1084doi:10.1002/jcc.540140909
    [33] Srinivasan SG, Ashok I, Jônsson H, et al. Parallel short-range molecular dynamics using the Ādhāra runtime system.Computer Physics Communications, 1997, 102(1-3): 28-43
    [34] Rullkötter J, Michaelis W. The structure of kerogen and related materials. A review of recent progress and future trends.Organic Geochemistry, 1990, 16(4-6): 829-852
    [35] Hu Y, Devegowda D, Sigal R. A microscopic characterization of wettability in shale kerogen with varying maturity levels.Journal of Natural Gas Science and Engineering, 2016, 33: 1078-1086doi:10.1016/j.jngse.2016.06.014
    [36] Hu Y, Devegowda D, Striolo A. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability.SPE Journal, 2015, 20(1): 112-124doi:10.2118/167234-PA
    [37] Zhao T, Li X, Zhao H, et al. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content.Fuel, 2017, 190: 198-207doi:10.1016/j.fuel.2016.11.027
    [38] Liu J, Zhang T, Sun S. Stability analysis of the water bridge in organic shale nanopores: A molecular dynamic study.Capillarity, 2022, 5(4): 75-82doi:10.46690/capi.2022.04.02
  • 加载中
图(12)/ 表(1)
计量
  • 文章访问数:466
  • HTML全文浏览量:144
  • PDF下载量:98
  • 被引次数:0
出版历程
  • 收稿日期:2023-04-11
  • 录用日期:2023-06-16
  • 网络出版日期:2023-06-17
  • 刊出日期:2023-08-18

目录

    /

      返回文章
      返回
        Baidu
        map