EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2地质封存风险分析的多场耦合数值模拟技术综述

于恩毅,邸元,吴辉,曹小朋,张庆福,张传宝

downloadPDF
于恩毅, 邸元, 吴辉, 曹小朋, 张庆福, 张传宝. CO2地质封存风险分析的多场耦合数值模拟技术综述. 力学学报, 2023, 55(9): 2075-2090 doi: 10.6052/0459-1879-23-127
引用本文: 于恩毅, 邸元, 吴辉, 曹小朋, 张庆福, 张传宝. CO2地质封存风险分析的多场耦合数值模拟技术综述. 力学学报, 2023, 55(9): 2075-2090doi:10.6052/0459-1879-23-127
Yu Enyi, Di Yuan, Wu Hui, Cao Xiaopeng, Zhang Qingfu, Zhang Chuanbao. Numerical simulation on risk analysis of CO2 geological storage under multi-field coupling: a review. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2075-2090 doi: 10.6052/0459-1879-23-127
Citation: Yu Enyi, Di Yuan, Wu Hui, Cao Xiaopeng, Zhang Qingfu, Zhang Chuanbao. Numerical simulation on risk analysis of CO2geological storage under multi-field coupling: a review.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2075-2090doi:10.6052/0459-1879-23-127

CO2地质封存风险分析的多场耦合数值模拟技术综述

doi:10.6052/0459-1879-23-127
基金项目:中国石化胜利油田“揭榜挂帅”资助项目
详细信息
    通讯作者:

    邸元, 副教授, 主要研究方向为多孔介质多相流数值模拟和岩土力学. E-mail:dyzm@pku.edu.cn

  • 中图分类号:TU457

NUMERICAL SIMULATION ON RISK ANALYSIS OF CO2GEOLOGICAL STORAGE UNDER MULTI-FIELD COUPLING: A REVIEW

  • 摘要:二氧化碳捕集、利用和封存是现阶段被广泛认可的减少二氧化碳排放最有效的途径之一, 是助力我国实现2060年碳中和目标的重要措施. 在二氧化碳地质封存过程中, 储层−盖层系统多场耦合数值模拟是认识二氧化碳长期封存过程和论证封存安全性的核心技术. 文章对二氧化碳地质封存储层−盖层系统风险分析的流固热化多场耦合数值模拟技术进行了全面综述, 首先给出二氧化碳地质封存多场耦合问题的数学模型, 其基本控制方程包括应力平衡方程、质量和能量守恒方程、化学反应和本构关系等; 其次总结了全耦合、迭代耦合、弱耦合、显式耦合和拟耦合等常用的耦合问题数值解法; 然后介绍了CO 2泄漏、地表变形、断层活化和裂缝拓展等地质风险的分析方法; 最后针对当前我国二氧化碳地质封存数值模拟技术面临的主要问题, 对未来的研究方向给出了建议. 论文能够为CO 2地质封存场地尺度的相关研究提供有价值的参考.

  • 图 1CO2地质封存的途径[10]

    Figure 1.Approaches of CO2geological storage[10]

    图 2CO2地质封存多场耦合原理[13]

    Figure 2.Multi-field coupled principle of CO2geological storage[13]

    图 3常用的耦合问题数值解法

    Figure 3.Commonly used coupling solutions

    图 4CO2封存储层−盖层中的地质风险示意图[39]

    Figure 4.Geomechanical risks during CO2geological storage[39]

    图 5通过断层泄漏到地表的潜在途径[70]

    Figure 5.Potential CO2leakage path through a fault to ground surface[70]

    图 6裂缝对CO2运移的影响(CO2饱和度分布)[67]

    Figure 6.Effect of fractures on CO2migration (CO2saturation distribution)[67]

    图 7CO2扩散运移数值模拟结果[71]

    Figure 7.Numerical simulation of CO2diffusion[71]

    图 8In Salah KB-502井地面垂直位移的演化[72]

    Figure 8.Transient evolution of vertical ground displacement at the In Salah KB-502 well[72]

    图 9In Salah KB-502井2006年12月23日地表变形模拟结果[72]

    Figure 9.The simulation results of ground displacement at the In Salah KB-502 well on December 23, 2006[72]

    图 10Mohr-Coulomb强度失效准则[59]

    Figure 10.Mohr-Coulomb failure criterion[59]

    图 11应力状态耦合效应示意图[59]

    Figure 11.Coupled effects on stress state[59]

    图 12胜利油田G89-1区块全地层模型

    Figure 12.The full synthetic field model of G89-1 block in Shengli oilfield

    图 13分区域网格划分示意图[54]

    Figure 13.Sub-regional grid division diagram[54]

    图 14胜利油田G89-1区块储层竖向有效应力模拟结果

    Figure 14.The simulation results of vertical effective stress at the Shengli oilfield G89-1 block

    表 1国外部分CO2封存储层的力学参数[59]

    Table 1.Stress state at several CO2injection sites abroad[59]

    Site Depth/m $ {\sigma }_{1} /{\rm{MPa}}$ $ {\sigma }_{2} /{\rm{MPa}}$ $ {\sigma }_{3} /{\rm{MPa}}$ $ P /{\rm{MPa}}$ $ \mathrm{tan}\varphi $
    In Salah, Algeria 1800 49.9 44.5 30.8 18.2 0.48
    Weyburn, Canada 1450 34.0 36.0 22.0 14.5 0.50
    Otway, Australia 2000 58.0 44.0 31.0 8.6 0.41
    Snøhvit, Norway 2683 65.0 60.6 43.0 29.0 0.49
    Tomakomai, Japan 2352 53.8 43.8 33.7 0.35
    St. Lawrence Lowland, Canada 1200 48.0 30.7 24.6 11.8 0.54
    Decatur, Illinois, USA 2130 98.0 50.6 21.9 0.51
    Pohang, South Korea 775 18.2 15.1 13.8 7.6 0.27
    Note: ${\sigma }_{1} $ is the maximum principal stress; ${\sigma }_{2} $ is the intermediate principal stress; ${\sigma }_{3} $ is the minimum principal stress.
    下载: 导出CSV

    表 2国外部分可用于CO2地质封存的数值模拟器

    Table 2.Overview of numerical simulators for CO2geological storage

    Simulator Main applications Numerical method Developers
    CODE-BRIGHT solution of the flow, heat and geomechanical model finite element method Universitat Politècnica de Catalunya
    COORES multi-component three-phase and 3D fluid flow in heterogeneous porous media finite volume method Insititut français du pétrole
    DUMUX multi-scale multi-physics toolbox for the simulation of flow and transport processes in porous media finite volume method University of Stuttgart
    ECLIPSE three-phase and 3D fluid flow in porous media with cubic EOS and pressure dependent permeability finite difference method Schlumberger
    GEOS high-performance computing complex fluid flow, thermal, and geomechanical issues in modeling carbon storage and other subsurface energy systems finite element method/ finite volume method Lawrence Livermore National Laboratory, Stanford University, TotalEnergies, and Chevron
    MIN3P multi-component reactive transport modelling in variably saturated porous media finite volume method University of Waterloo and University of British Columbia
    MUFTE isothermal and non-isothermal multi-phase flow problems including compositional effects finite volume method University of Stuttgart
    PFLOTRAN parallel 3D reservoir simulator for subsurface multi-phase, multi-component reactive flow and transport finite element method Pacific Northwest National Laboratory
    PHAST simulating groundwater flow, solute transport, and multi-component geochemical reactions finite difference method US Geological Survey
    ROCKFLOW multi-phase flow and solute transport processes in porous and fractured media finite element method Bundesanstalt für Geowissenschaften
    und Rohstofe and University of
    Hannover
    RTAFF2 2D/3D non-isothermal multi-phase and multi-component flow finite element method French Geological Survey
    TOUGH/TOUGH2 non-isothermal multi-phase flow in unfractured and fractured media finite difference method Lawrence Berkeley National Laboratory
    TOUGH-FLAC non-isothermal multi-phase flow in unfractured and fractured media with geomechanical coupling finite difference method Lawrence Berkeley National Laboratory and Itasca
    TOUGHREACT chemically reactive multi-component, multi-phase, non-isothermal flows in porous and fractured media finite difference method Lawrence Berkeley National Laboratory
    下载: 导出CSV
  • [1] Aminu MD, Nabavi SA, Rochelle CA, et al. A review of developments in carbon dioxide storage.Applied Energy, 2017, 208: 1389-1419doi:10.1016/j.apenergy.2017.09.015
    [2] Reck MG, Foroozesh J. Study of convective-diffusive flow during CO2sequestration in fractured heterogeneous saline aquifers.Journal of Natural Gas Science and Engineering, 2019, 69: 102926
    [3] Page B, Turan GAZ. Global Status of CCS Report: 2020. Global CCS Institute, 2020
    [4] Abidoye LK, Khudaida KJ, Das DB. Geological carbon sequestration in the context of two-phase flow in porous media: A review.Critical Reviews in Environmental Science and Technology, 2015, 45(11): 1105-1147doi:10.1080/10643389.2014.924184
    [5] 蔡博峰, 李琦, 张贤等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)——中国 CCUS 路径研究. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国 21 世纪议程管理中心, 2021

    Cai Bofeng, Li Qi, Zhang Xian, et al. Annual report on carbon capture, utilization and storage ( CCUS ) in China ( 2021 )—Research on CCUS path in China. Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinses Academy of Sciences, The Administrative for China’s Agenda 21, 2021 (in Chinese)
    [6] Jr Orr FM. Onshore geologic storage of CO2.Science, 2009, 325(5948): 1656-1658doi:10.1126/science.1175677
    [7] Liu S, Ren B, Li H, et al. CO2storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies.Petroleum Science, 2022, 19(2): 594-607doi:10.1016/j.petsci.2021.12.009
    [8] Gou Y, Hou Z, Li M, et al. Coupled thermo-hydro-mechanical simulation of CO2enhanced gas recovery with an extended equation of state module for TOUGH2 MP-FLAC3D.Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 904-920doi:10.1016/j.jrmge.2016.08.002
    [9] Zhang K, Lau HC, Chen Z. CO2enhanced gas recovery and sequestration as CO2 hydrate in shallow gas fields in Alberta, Canada.Journal of Natural Gas Science and Engineering, 2022, 103: 104654
    [10] Metz B, Davidson O, Coninck HD, et al. IPCC Special Report on Carbon Dioxide Capture and Storage. New York: Cambridge University Press, 2005
    [11] Shukla R, Ranjith P, Haque A, et al. A review of studies on CO2sequestration and caprock integrity.Fuel, 2010, 89(10): 2651-2664doi:10.1016/j.fuel.2010.05.012
    [12] Yin S, Dusseault MB, Rothenburg L. Coupled THMC modeling of CO2injection by finite element methods.Journal of Petroleum Science and Engineering, 2011, 80(1): 53-60doi:10.1016/j.petrol.2011.10.008
    [13] 李小春, 袁维, 白冰. CO2地质封存力学问题的数值模拟方法综述. 岩土力学, 2016, 37(6): 1762-1772 (Li Xiaochun, Yuan Wei, Bai Bing. A review of numerical simulation methods for geomechanical problems induced by CO2geological storage.Rock and Soil Mechanics, 2016, 37(6): 1762-1772 (in Chinese)

    Li Xiaochun, Yuan Wei, Bai Bing. A review of numerical simulation methods for geomechanical problems induced by CO2geological storage. Rock and Soil Mechanics, 2016, 37(6): 1762-1772 (in Chinese)
    [14] 邸元, 吴大卫, Wu YS. 油藏渗流–应力耦合分析的FEM-FVM混合方法的改进. 岩石力学与工程学报, 2020, 39(S1): 2645-2654 (Di Yuan, Wu Dawei, Wu Yushu. Improvement of a mixed FEM-FVM method for reservoir simulation coupling fluid flow and mechanics.Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2645-2654 (in Chinese)doi:10.13722/j.cnki.jrme.2019.0714

    Di Yuan, Wu Dawei, Wu Yu-Shu. Improvement of a mixed FEM-FVM method for reservoir simulation coupling fluid flow and mechanics. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2645-54 (in Chinese)doi:10.13722/j.cnki.jrme.2019.0714
    [15] Ma Y, Ge S, Yang H, et al. Coupled thermo-hydro-mechanical-chemical processes with reactive dissolution by non-equilibrium thermodynamics.Journal of the Mechanics and Physics of Solids, 2022, 169: 105065doi:10.1016/j.jmps.2022.105065
    [16] Song J, Zhang D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration.Environmental Science&Technology, 2013, 47(1): 9-22
    [17] Eichhubl P, Davatz NC, Beckers P. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah.AAPG Bulletin, 2009, 93(5): 653-681doi:10.1306/02180908080
    [18] Dockrill B, Shipton ZK. Structural controls on leakage from a natural CO2geologic storage site: Central Utah, USA.Journal of Structural Geology, 2010, 32(11): 1768-1782doi:10.1016/j.jsg.2010.01.007
    [19] Krevor S, Blunt MJ, Benson SM, et al. Capillary trapping for geologic carbon dioxide storage—From pore scale physics to field scale implications.International Journal of Greenhouse Gas Control, 2015, 40: 221-237doi:10.1016/j.ijggc.2015.04.006
    [20] Rani S, Padmanabhan E, Prusty BK. Review of gas adsorption in shales for enhanced methane recovery and CO2storage.Journal of Petroleum Science and Engineering, 2019, 175: 634-643doi:10.1016/j.petrol.2018.12.081
    [21] De Silva GPD, Ranjith PG, Perera MSA. Geochemical aspects of CO2sequestration in deep saline aquifers: A review.Fuel, 2015, 155: 128-143doi:10.1016/j.fuel.2015.03.045
    [22] Emami-meybodi H, Hassanzadeh H, Green CP, et al. Convective dissolution of CO2in saline aquifers: Progress in modeling and experiments.International Journal of Greenhouse Gas Control, 2015, 40: 238-266doi:10.1016/j.ijggc.2015.04.003
    [23] Xiong W, Wwlls RK, Menefee AH, et al. CO2mineral trapping in fractured basalt.International Journal of Greenhouse Gas Control, 2017, 66: 204-217doi:10.1016/j.ijggc.2017.10.003
    [24] Wu H, Jayne RS, Bodnar RJ, et al. Simulation of CO2mineral trapping and permeability alteration in fractured basalt: Implications for geologic carbon sequestration in mafic reservoirs.International Journal of Greenhouse Gas Control, 2021, 109: 103383
    [25] Class H, Ebigbo A, Helmig R, et al. A benchmark study on problems related to CO2storage in geologic formations.Computational Geosciences, 2009, 13(4): 409doi:10.1007/s10596-009-9146-x
    [26] Jiang X. A review of physical modelling and numerical simulation of long-term geological storage of CO2.Applied Energy, 2011, 88(11): 3557-3566doi:10.1016/j.apenergy.2011.05.004
    [27] Gupta PK, Yadav B. Leakage of CO2from geological storage and its impacts on fresh soil-water systems: a review.Environmental Science and Pollution Research, 2020, 27(12): 12995-13018doi:10.1007/s11356-020-08203-7
    [28] Zheng L, Apps JA, Zhang Y, et al. On mobilization of lead and arsenic in groundwater in response to CO2leakage from deep geological storage.Chemical Geology, 2009, 268(3): 281-297
    [29] Apps JA, Zheng L, Zhang Y, et al. Evaluation of potential changes in groundwater quality in response to CO2leakage from deep geologic storage.Transport in Porous Media, 2010, 82(1): 215-246doi:10.1007/s11242-009-9509-8
    [30] Keating EH, Fessenden J, Kanjorski N, et al. The impact of CO2on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration.Environmental Earth Sciences, 2010, 60(3): 521-536doi:10.1007/s12665-009-0192-4
    [31] Vasylkivska V, Dilmore R, Lackey G, et al. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management.Environmental Modelling&Software, 2021, 143: 105114
    [32] Ajayi T, Gomes JS, Bear A. A review of CO2storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches.Petroleum Science, 2019, 16(5): 1028-1063doi:10.1007/s12182-019-0340-8
    [33] Pan P, Wu Z, Feng X, et al. Geomechanical modeling of CO2geological storage: A review.Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 936-947doi:10.1016/j.jrmge.2016.10.002
    [34] Sorai M. Effects of Calcite Dissolution on Caprock’s Sealing Performance Under Geologic CO2Storage.Transport in Porous Media, 2021, 136(2): 569-585doi:10.1007/s11242-020-01525-7
    [35] Phillips T, Kampman N, Bisdom K, et al. Controls on the intrinsic flow properties of mudrock fractures: A review of their importance in subsurface storage.Earth-Science Reviews, 2020, 211: 103390doi:10.1016/j.earscirev.2020.103390
    [36] Espinoza DN, Santamarina JC. CO2breakthrough—Caprock sealing efficiency and integrity for carbon geological storage.International Journal of Greenhouse Gas Control, 2017, 66: 218-229doi:10.1016/j.ijggc.2017.09.019
    [37] Rutqvist J. The Geomechanics of CO2storage in deep sedimentary formations.Geotechnical and Geological Engineering, 2012, 30(3): 525-551doi:10.1007/s10706-011-9491-0
    [38] Martinez MJ, Newell P, Bishop JE, et al. Coupled multiphase flow and geomechanics model for analysis of joint reactivation during CO2sequestration operations.International Journal of Greenhouse Gas Control, 2013, 17: 148-160doi:10.1016/j.ijggc.2013.05.008
    [39] Ringrose PS, Mathieson AS, Wright IW, et al. The In Salah CO2storage project: lessons learned and knowledge transfer//Proceedings of the International Conference on Greenhouse Gas Technologies (GHGT), Kyoto, JAPAN, 2013
    [40] Bond CE, Wightman R, Ringrose PS. The influence of fracture anisotropy on CO2flow.Geophysical Research Letters, 2013, 40(7): 1284-1289doi:10.1002/grl.50313
    [41] Faulkner DR, Jackson CAL, Lunn RJ, et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones.Journal of Structural Geology, 2010, 32(11): 1557-1575doi:10.1016/j.jsg.2010.06.009
    [42] Cusini M, White JA, Castelletto N, et al. Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures.International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(5): 563-584doi:10.1002/nag.3168
    [43] Niessner J, Helmig R. Multi-scale modelling of two-phase–two-component processes in heterogeneous porous media.Numerical Linear Algebra with Applications, 2006, 13(9): 699-715doi:10.1002/nla.497
    [44] 胥蕊娜, 吉天成, 陆韬杰等. 二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展. 清华大学学报(自然科学版), 2022, 62(4): 634-654 (Xu Ruina, Ji Tiancheng, Lu Taojie, et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology.Journal of Tsinghua University(Science and Technology), 2022, 62(4): 634-654 (in Chinese)

    Xu Ruina, Ji Tiancheng, Lu Taojie, et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology.Journal of Tsinghua University (Science and Technology), 2022, 62(04): 634-54 (in Chinese)
    [45] Siriwardane HJ, Gondle RK, Bromhal GS. Coupled flow and deformation modeling of carbon dioxide migration in the presence of a caprock fracture during injection.Energy&Fuels, 2013, 27(8): 4232-4243
    [46] Yin S, Towler BF, Dusseault MB, et al. Fully coupled thmc modeling of wellbore stability with thermal and solute convection considered.Transport in Porous Media, 2010, 84(3): 773-798doi:10.1007/s11242-010-9540-9
    [47] Zhang R, Winterfeld PH, Yin X, et al. Sequentially coupled THMC model for CO2geological sequestration into a 2D heterogeneous saline aquifer.Journal of Natural Gas Science and Engineering, 2015, 27: 579-615doi:10.1016/j.jngse.2015.09.013
    [48] Winterfeld P, Wu YS. A novel fully coupled geomechanical model for CO2sequestration in fractured and porous brine aquifers//XIX International Conference on Water Resources CMWR, 2012: 17-22
    [49] Darcy H. Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau : ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tole et de bitume. Paris : Dalmont, 1856
    [50] 王建俊, 鞠斌山, 罗二辉. 低速非达西渗流动边界移动规律. 东北石油大学学报, 2016, 40(2): 71-77, 125-126 (Wang Jianjun, Ju Binshan, Luo Eehui. Movement characteristics of moving boundary in non-Darcy flow with low velosity.Journal of Northeast Petroleum University, 2016, 40(2): 71-77, 125-126 (in Chinese)

    Wang Jianjun, Ju Binshan, Luo Eehui. Movement characteristics of moving boundary in non-Darcyflow with low velosity.Journal of Northeast Petroleum University, 2016, 40(02): 71-7 + 125-6 (in Chinese)
    [51] 宋洪庆, 朱维耀, 王一兵等. 煤层气低速非达西渗流解析模型及分析. 中国矿业大学学报, 2013, 42(1): 93-99 (Song Hongqing, Zhu Weiyao, Wang Yibing, et al. Analytical model of flow-velocity non-Darcy flow of coalbed methane and its analisis.Journal of China University of Mining&Technology, 2013, 42(1): 93-99 (in Chinese)doi:10.13247/j.cnki.jcumt.2013.01.017

    Song Hongqing, Zhu Weiyao, Wang Yibing, et al. Analytical model of flow-velocity non-Darcy flow of coalbed methane and its analisis.Journal of China University of Mining & Technology, 2013, 42(01): 93-9 (in Chinese)doi:10.13247/j.cnki.jcumt.2013.01.017
    [52] Wilson RK, Aifantis EC. On the theory of consolidation with double porosity.International Journal of Engineering Science, 1982, 20(9): 1009-1035doi:10.1016/0020-7225(82)90036-2
    [53] 吴大卫. 基于整体嵌入式离散裂缝模型的油藏流固耦合数值模拟. [博士论文]. 北京: 北京大学, 2022

    Wu Dawei. Coupled simulation of flow and geomechanics for fractured reservoirs using the integrally embedded discrete fracture model. [PhD Thesis]. Beijing: Peking University, 2022 (in Chinese)
    [54] Goodman RE, Taylor RL, Brekke TL. A model for the mechanics of jointed rock.Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637-659doi:10.1061/JSFEAQ.0001133
    [55] Bandis SC, Lumsden AC, Barton NR. Fundamentals of rock joint deformation.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, 1983, 20(6): 249-268
    [56] 邸元, 吴玉树, 鞠斌山. 裂缝性油藏二氧化碳驱的多组分数值计算模型. 西南石油大学学报(自然科学版), 2015, 37(2): 93-100 (Di Yuan, Wu Yushu, Ju Binshan. Numerical model formulation for compositional simulation of CO2flooding in fractured petroleum Reservoirs.Journal of Southwest Petroleum University(Science&Technology Edition), 2015, 37(2): 93-100 (in Chinese)

    Di Yuan, Wu Yu-shu, Ju Binshan. Numerical model formulation for compositional simulation of CO2flooding in fractured petroleum Reservoirs.Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(2): 93-100 (in Chinese)
    [57] Longuemare P, Mainguy M, Lemonnier P, et al. Geomechanics in reservoir simulation: Overview of coupling methods and field case study.Oil&Gas Science and Technology-revue De L Institut Francais Du Petrole, 2002, 57: 471-483
    [58] Zheng F, Jha B, Jafarpour B. Optimization of CO2storage and leakage through caprock fracturing using coupled flow-geomechanics-fracturing simulation//Proceedings of the ECMOR 2022. European Association of Geoscientists & Engineers, 2022
    [59] Vilarrasa V, Carrera J, Olivella S, et al. Induced seismicity in geologic carbon storage.Solid Earth, 2019, 10(3): 871-892doi:10.5194/se-10-871-2019
    [60] Kettlety T, Verdon JP, Werner MJ, et al. Stress transfer from opening hydraulic fractures controls the distribution of induced seismicity.Journal of Geophysical Research-Solid Earth, 2020, 125(1): e2019JB018794
    [61] Wei X, Li Q, Li X, et al. Impact indicators for caprock integrity and induced seismicity in CO2geosequestration: insights from uncertainty analyses.Natural Hazards, 2016, 81(1): 1-21doi:10.1007/s11069-015-2063-5
    [62] Busch A, Amann-hildenbrand A. Predicting capillarity of mudrocks.Marine and Petroleum Geology, 2013, 45: 208-223doi:10.1016/j.marpetgeo.2013.05.005
    [63] Busch A, Alles S, Gensterblum Y, et al. Carbon dioxide storage potential of shales.International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308doi:10.1016/j.ijggc.2008.03.003
    [64] Miocic JM, Gilfillan SMV, Roberts JJ, et al. Controls on CO2storage security in natural reservoirs and implications for CO2storage site selection.International Journal of Greenhouse Gas Control, 2016, 51: 118-125doi:10.1016/j.ijggc.2016.05.019
    [65] Wang HD, Chen Y, Ma GW. Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media.Energy, 2020, 190: 116445
    [66] Gierzynski AO, Pollyea RM. Three-phase CO2flow in a basalt fracture network.Water Resources Research, 2017, 53(11): 8980-8998doi:10.1002/2017WR021126
    [67] Ren F, Ma G, Wang Y, et al. Two-phase flow pipe network method for simulation of CO2sequestration in fractured saline aquifers.International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 39-53doi:10.1016/j.ijrmms.2017.07.010
    [68] Wang X, Liao X, Dong P, et al. Influence of heterogeneous caprock on the safety of carbon sequestration and carbon displacement.Processes, 2022, 10(7): 1415doi:10.3390/pr10071415
    [69] Kwichlis EM, Healy RW. Numerical investigation of steady liquid water flow in a variably saturated fracture network.Water Resources Research, 1993, 29(12): 4091-4102doi:10.1029/93WR02348
    [70] Busch A, Kampman N. Migration and leakage of CO2from deep geological storage sites//Geological Carbon Storage, 2018: 283-303
    [71] Wang JG, Peng Y. Numerical modeling for the combined effects of two-phase flow, deformation, gas diffusion and CO2sorption on caprock sealing efficiency.Journal of Geochemical Exploration, 2014, 144: 154-167doi:10.1016/j.gexplo.2013.12.011
    [72] Rinaldi AP, Rutqvist J. Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2injection well, In Salah, Algeria.International Journal of Greenhouse Gas Control, 2013, 12: 155-167doi:10.1016/j.ijggc.2012.10.017
    [73] Rinaldi AP, Rutqvist J. Modeling ground surface uplift during CO2sequestration: the case of In Salah, Algeria//Proceedings of the 13th International Conference on Greenhouse Gas Control Technologies (GHGT), Lausanne, Switzerland, Nov 14-18, 2017
    [74] Rinaldi AP, Rutqvist J, Finsterle S, et al. Inverse modeling of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: The case of CO2injection at In Salah, Algeria.Computers&Geosciences, 2017, 108: 98-109
    [75] Fjaer E, Holt RM, Horsrud P, et al. Petroleum Related Rock Mechanics. Elsevier, 2008
    [76] Xu Z, Fang Y, Scheibe TD, et al. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide.Computers&Geosciences, 2012, 46: 31-37
    [77] Selvadurai APS. Heave of a surficial rock layer due to pressures generated by injected fluids.Geophysical Research Letters, 2009, 36(14): L14302
    [78] 郝术仁, 张延军, 李晓光等. CO2地质储存过程中的地表变形数值模拟研究. 工程地质学报, 2015, 23(s1): 320 (Hao Shuren, Zhang Yanjun, Li Xiaoguang, et al. Numerical modeling of ground surface deformation in the process of CO2geological storage.Journal of Engineering Geology, 2015, 23(s1): 320 (in Chinese)

    Hao Shuren, Zhang Yanjun, Li Xiaoguang, et al. Numerical modeling of ground surface deformation in the process of CO2geological storage. Journal of Engineering Geology, 2015, 23(s1): 320 (in Chinese)
    [79] Nwachukwu A, Min B, Sriniyasan S. Model selection for CO2sequestration using surface deformation and injection data.International Journal of Greenhouse Gas Control, 2017, 56: 67-92doi:10.1016/j.ijggc.2016.11.019
    [80] Vilarrasa V, Carrera J, Olivella S. Two-phase flow effects on the CO2injection pressure evolution and implications for the caprock geomechanical stability//Proceedings of the 3rd European Conference on Unsaturated Soils (E-UNSAT), Paris, Sep 12-14, 2016
    [81] Meguerdijian S, Jha B. Quantification of fault leakage dynamics based on leakage magnitude and dip angle.International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(16): 2303-2320doi:10.1002/nag.3267
    [82] Meguerdijian S, Pawar RJ, Harp DR, et al. Thermal and solubility effects on fault leakage during geologic carbon storage.International Journal of Greenhouse Gas Control, 2022, 116: 103633doi:10.1016/j.ijggc.2022.103633
    [83] Saffer DM, Marone C. Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts.Earth and Planetary Science Letters, 2003, 215(1): 219-235
    [84] Zareidarmiyan A, Salarirad H, Vilarrasa V, et al. Geomechanical response of fractured reservoirs.Fluids, 2018, 3(4): 70doi:10.3390/fluids3040070
    [85] Paluszny A, Graham CC, Daniels KA, et al. Caprock integrity and public perception studies of carbon storage in depleted hydrocarbon reservoirs.International Journal of Greenhouse Gas Control, 2020, 98: 103057
    [86] Thompson N, Andrews JS, Bjornara TI. Assessing potential thermo-mechanical impacts on caprock due to CO2injection-a case study from northern lights CCS.Energies, 2021, 14(16): 5054
    [87] Khazaei C, Chalaturnyk R. A reservoir-geomechanical model to study the likelihood of tensile and shear failure in the caprock of weyburn CCS project with regard to interpretation of microseismic data.Geotechnical and Geological Engineering, 2017, 35(6): 2571-2595doi:10.1007/s10706-017-0262-4
    [88] Wang L, Yao B, Xie H, et al. CO2injection-induced fracturing in naturally fractured shale rocks.Energy, 2017, 139: 1094-1110doi:10.1016/j.energy.2017.08.031
    [89] Rutqvist J, Birkholzer JT, Tsang CF. Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2injection in multilayered reservoir-caprock systems.International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 132-143doi:10.1016/j.ijrmms.2007.04.006
    [90] Fu P, Settgast RR, Hao Y, et al. The influence of hydraulic fracturing on carbon storage performance.Journal of Geophysical Research-Solid Earth, 2017, 122(12): 9931-9949doi:10.1002/2017JB014942
    [91] Vilarrasa V, Laloui L. Potential fracture propagation into the caprock induced by cold CO2injection in normal faulting stress regimes.Geomechanics for Energy and the Environment, 2015, 2: 22-31doi:10.1016/j.gete.2015.05.001
    [92] Hawkes CD, Mclellan PJ, Bachu S. Geomechanical factors affecting geological storage of CO2in depleted oil and gas reservoirs.Journal of Canadian Petroleum Technology, 2005, 44(10): 52-61
    [93] Fu P, Ju X, Huang J, et al. Thermo-poroelastic responses of a pressure-driven fracture in a carbon storage reservoir and the implications for injectivity and caprock integrity.International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(6): 719-737doi:10.1002/nag.3165
    [94] Nordbotton JM, Fernø MA, Flemisch B, et al. The 11th society of petroleum engineers comparative solution project.https://spe.org/en/csp/.2023
    [95] Chen Q, Liu G, Li X, et al. A corner-point-grid-based voxelization method for the complex geological structure model with folds.Journal of Visualization, 2017, 19(3): 1-14
    [96] Tian YP, Xiong L, Xing LI. Finite element method of 3-D numerical simulation on tectonic stress field.Earth Science, 2011, 36(2): 375-380
    [97] 刘钰洋, 刘诗琦, 潘懋等. 基于三维角点网格模型的现今地应力有限元模拟. 北京大学学报(自然科学版), 2019, 55(4): 643-653 (Liu Yuyang, Liu Shiqi, Pan Mao, et al. Research of crustal stress simulation using finite element analysis based on corner point grid.Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(4): 643-653 (in Chinese)

    (Liu Yuyang, Liu Shiqi, P Mao, et al. Research of crustal stress simulation using finite element analysis based on corner point grid.Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(04): 643-653. (in Chinese)
    [98] Wu D, Di Y, Wu Y. A new projection-based integrally embedded discrete fracture model and its application in coupled flow and geomechanical simulation for fractured reservoirs.Geofluids, 2022, 2022: 7531948
    [99] Raziperchikolaee S, Pasumarti A. The impact of the depth-dependence of in-situ stresses on the effectiveness of stacked caprock reservoir systems for CO2storage.Journal of Natural Gas Science and Engineering, 2020, 79: 103361
    [100] Castelletto N, Gambolati G, Teatini P. Geological CO2sequestration in multi-compartment reservoirs: Geomechanical challenges.Journal of Geophysical Research-Solid Earth, 2013, 118(5): 2417-2428doi:10.1002/jgrb.50180
    [101] Xie J, Zhang K, Hu L, et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China.Hydrogeology Journal, 2015, 23(7): 1465-1480doi:10.1007/s10040-015-1267-9
    [102] Wei X, Li W, Tian H, et al. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media.Computers&Geosciences, 2015, 80: 26-37
    [103] Settgast RR, Fu P, Walsh SDC, et al. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions.International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(5): 627-653doi:10.1002/nag.2557
    [104] 迟学斌, 王彦棢, 王珏等. 并行计算与实现技术. 北京: 科学出版社, 2015

    Chi Xuebin, Wang Yanwang, Wang Yu, et al. Parallel Computing and Implementation Technology. Beijing: Science Press, 2015 (in Chinese)
  • 加载中
图(14)/ 表(2)
计量
  • 文章访问数:506
  • HTML全文浏览量:210
  • PDF下载量:121
  • 被引次数:0
出版历程
  • 收稿日期:2023-04-04
  • 录用日期:2023-07-17
  • 网络出版日期:2023-07-18
  • 刊出日期:2023-09-13

目录

    /

      返回文章
      返回
        Baidu
        map