EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2D-C/SiC复合材料的高温非线性本构模型

杨成鹏,林江嵘,贾斐,王波

downloadPDF
杨成鹏, 林江嵘, 贾斐, 王波. 2D-C/SiC复合材料的高温非线性本构模型. 力学学报, 2023, 55(8): 1721-1731 doi: 10.6052/0459-1879-23-120
引用本文: 杨成鹏, 林江嵘, 贾斐, 王波. 2D-C/SiC复合材料的高温非线性本构模型. 力学学报, 2023, 55(8): 1721-1731doi:10.6052/0459-1879-23-120
Yang Chengpeng, Lin Jiangrong, Jia Fei, Wang Bo. Nonlinear constitutive model for 2D-C/SiC composites at elevated temperatures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1721-1731 doi: 10.6052/0459-1879-23-120
Citation: Yang Chengpeng, Lin Jiangrong, Jia Fei, Wang Bo. Nonlinear constitutive model for 2D-C/SiC composites at elevated temperatures.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1721-1731doi:10.6052/0459-1879-23-120

2D-C/SiC复合材料的高温非线性本构模型

doi:10.6052/0459-1879-23-120
基金项目:国家自然科学基金资助项目(12072274)
详细信息
    通讯作者:

    杨成鹏, 副教授, 主要研究方向为先进复合材料及其结构的力学行为. E-mail:yang@mail.nwpu.edu.cn

  • 中图分类号:O34, TB332

NONLINEAR CONSTITUTIVE MODEL FOR 2D-C/SiC COMPOSITES AT ELEVATED TEMPERATURES

  • 摘要:高温各向异性非线性本构关系对陶瓷基复合材料热结构设计具有重要科学和工程意义. 为了分析预测2D-C/SiC复合材料在高温平面应力下的应力−应变行为, 基于损伤解耦表征方法, 考虑材料的损伤耦合效应、非线性和正交各向异性, 建立了热力耦合损伤本构模型的理论框架. 基于应变分割法, 考虑热失配应力、基体开裂、界面脱黏、纤维桥连对卸载模量和残余应变的影响, 给出了材料的轴向拉伸和面内剪切应力−应变关系分析模型, 并进行了初步试验验证. 在材料基本性能表征的基础上, 对2D-C/SiC复合材料在不同偏轴角度(15°, 30°和45°)和不同环境温度(27 °C, 973 °C, 1273 °C和1473 °C)下的拉伸应力−应变行为进行了模拟预测. 结果表明, 2D-C/SiC复合材料的应变响应具有显著的温度相关性, 随着温度的升高材料的非线性程度降低, 而随着偏轴角度的增大材料的非线性增强, 不同偏轴角度下材料的表观模量均随着温度的升高有增大趋势; 所建立的理论模型可对2D-C/SiC复合材料的应力−应变行为进行合理预测, 模拟曲线与试验值具有较好一致性.

  • 图 1总应变的分割以及损伤模量的定义[4]

    Figure 1.Partition of total strain and definition of damaged modulus[4]

    图 2拉伸残余应变预测值

    Figure 2.Prediction of tensile residual strain

    图 3拉伸弹性应变预测值

    Figure 3.Prediction of tensile elastic strain

    图 42D-C/SiC复合材料在不同温度下的面内剪切卸载模量和残余应变

    Figure 4.Unloading modulus and residual strain of 2D-C/SiC composites under in-plane shear at elevated temperature

    图 52D-C/SiC复合材料在不同环境温度下的轴向拉伸应力−应变关系

    Figure 5.Axial tensile stress-strain relationship of 2D-C/SiC composites at elevated temperature

    图 62D-C/SiC在不同温度下的偏轴拉伸应力−应变关系

    Figure 6.Off-axis tensile stress-strain relationship of 2D-C/SiC composites at elevated temperature

    表 1材料和模型参数

    Table 1.Parameters of material and model

    Parameter Value
    fabrication temperatureTP/°C 1000[8,35]
    thickness of half layerh/μm 100[8]
    initial matrix crack spacing ${{L} }_{0}$/μm 1000[10]
    ultimate matrix crack spacing ${{L} }_{\mathrm{u} }$/μm 150[10,22]
    modulus of SiC matrix ${ {E} }_{{\rm{m}}}$/GPa 350[5,9,22]
    Poisson ratio of SiC matrixνm 0.2[9,10,35]
    CTE of matrix $ {\alpha }_{\mathrm{m}} $/$ {\mathrm{K}}^{-1} $ 4.6 × 10−6[5]
    radius of carbon fiberRf/μm 3.5[5,10]
    Poisson ratio of carbon fiberν23f 0.4[9]
    Poisson ratio of carbon fiberν13f 0.2[10]
    Poisson ratio of carbon fiberν12f 0.2[10]
    axial CTE of fiber $ {\alpha }_{\mathrm{f}1} $/$ {\mathrm{K}}^{-1} $ 0[5]
    transverse CTE of fiber $ {\alpha }_{\mathrm{f}2} $/$ {\mathrm{K}}^{-1} $ 8.8 × 10−6[20]
    shear modulus of fiberG12f/ GPa 15[36]
    shear modulus of fiberG13f/ GPa 15[36]
    axial modulus of fiber ${{E} }_{\mathrm{f}1}$/GPa 230[5,10]
    transverse modulus of fiber ${{E} }_{\mathrm{f}2}$/GPa 15[30,36]
    reference cracking stress $ {\sigma }_{\mathrm{R}} $/MPa 45 (identified)
    minimum cracking stress $ {\sigma }^{*} $/MPa 130[10]
    matrix cracking exponent $ n $ 3.1[10]
    friction-like scale coefficient $ \mu $ 0.15 (identified)
    modification coefficient $\eta _{1}$ 65% (identified)
    interface debond energy ${ { \varGamma } }_{\mathrm{i} }$/(J·m−2) 0.1[35]
    scaling factor $\eta _{2}$ 10% (identified)
    下载: 导出CSV
  • [1] 张曦挚, 崔红, 胡杨等. 低成本PIP工艺制备陶瓷基复合材料研究进展. 航空制造技术, 2022, 65(13): 110-116 (Zhang Xizhi, Cui Hong, Hu Yang, et al. Research development on low-cost ceramic-matrix composites by polymer infiltration pyrolysis.Aeronautical Manufacturing Technology, 2022, 65(13): 110-116 (in Chinese)

    Zhang Xizhi, Cui Hong, Hu Yang, et al. Research development on low-cost ceramic-matrix composites by polymer infiltration pyrolysis.Aeronautical Manufacturing Technology, 2022, 65(13): 110-116 (in Chinese))
    [2] 张孟华, 庞梓玄, 贾云祥等. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势. 航空材料学报, 2021, 41(5): 14-27 (Zhang Menghua, Pang Zixuan, Jia Yunxiang, et al. Research progress and development trend of fiber reinforced ceramic matrix composites.Journal of Aeronautical Materials, 2021, 41(5): 14-27 (in Chinese)

    Zhang Menghua, Pang Zixuan, Jia Yunxiang, et al. Research progress and development trend of fiber reinforced ceramic matrix composites.Journal of Aeronautical Materials, 2021, 41(5): 14-27 (in Chinese))
    [3] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战. 材料工程, 2019, 47(2): 1-10 (Liu Qiaomu, Huang Shunzhou, He Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine.Journal of Materials Engineering, 2019, 47(2): 1-10 (in Chinese)

    Liu Qiaomu, Huang Shunzhou, He Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine.Journal of Materials Engineering, 2019, 47(2): 1-10 (in Chinese)
    [4] Li J, Jiao GQ, Wang B, et al. Damage characteristics and constitutive modeling of the 2D-C/SiC composite: Part I—Experiment and analysis.Chinese Journal of Aeronautics, 2014, 27(6): 1586-1597doi:10.1016/j.cja.2014.10.026
    [5] 张歌, 张程煜, 乔生儒等. 2D-C/SiC高温弹性模量的预测. 机械强度, 2013, 35(1): 94-99 (Zhang Ge, Zhang Chengyu, Qiao Shengru, et al. Prediction of elastic modulus at elevated temperature for 2D-C/SiC.Journal of Mechanical Strength, 2013, 35(1): 94-99 (in Chinese)

    Zhang Ge, Zhang Chengyu, Qiao Shengru, et al. Prediction of elastic modulus at elevated temperature for 2 D-C/SiC.Journal of Mechanical Strength, 2013, 35(1): 94-99 (in Chinese)
    [6] 甄文强, 王波, 李潘等. 平纹编织C/SiC复合材料层合板偏轴拉伸性能研究. 机械强度, 2014, 36(6): 856-861 (Zhen Wenqiang, Wang Bo, Li Pan, et al. Study of off-axis tensile properties of plain-woven C/SiC composites.Journal of Mechanical Strength, 2014, 36(6): 856-861 (in Chinese)

    Zhen Wenqiang, Wang Bo, Li Pan, et al. Study of off-axis tensile properties of plain-woven C/SiC composites.Journal of Mechanical Strength, 2014, 36(6): 856-861 (in Chinese)
    [7] Li LB, Guo XJ, Liu YF. Characterization of cyclic loading/unloading damage behavior in fiber-reinforced ceramic-matrix composites using inverse tangent modulus.Journal of the European Ceramic Society, 2022, 42(5): 1912-1927doi:10.1016/j.jeurceramsoc.2021.12.060
    [8] 陶永强, 李晶, 矫桂琼等. 双向等轴拉伸载荷下二维编织陶瓷基复合材料的应力-应变行为预测. 材料科学与工程学报, 2016, 34(1): 75-79 (Tao Yongqiang, Li Jing, Jiao Guiqiong, et al. Prediction of stress-strain behavior in 2D weave ceramic matrix composite under 1: 1 planar biaxial tensile loading.Journal of Materials Science and Engineering, 2016, 34(1): 75-79 (in Chinese)

    Tao Yongqiang, Li Jing, Jiao Guiqiong, et al. Prediction of stress-strain behavior in 2 D weave ceramic matrix composite under 1: 1 planar biaxial tensile loading.Journal of Materials Science and Engineering, 2016, 34(1): 75-79 (in Chinese))
    [9] 王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测. 复合材料学报, 2018, 35(12): 3423-3432 (Wang Qizhi, Lin Huixing, Xu Yunquan. Mechanical properties prediction of 2D braided ceramic matrix composite.Acta Materiae Compositae Sinica, 2018, 35(12): 3423-3432 (in Chinese)

    Wang Qizhi, Lin Huixing, Xu Yunquan. Mechanical properties prediction of 2 D braided ceramic matrix composite.Acta Materiae Compositae Sinica, 2018, 35(12): 3423-3432 (in Chinese))
    [10] Yang CP, Zhang L, Wang B, et al. Tensile behavior of 2D-C/SiC composites at elevated temperatures: Experiment and modeling.Journal of the European Ceramic Society, 2017, 37: 1281-1290doi:10.1016/j.jeurceramsoc.2016.11.011
    [11] Deng Y, Li WG, Wang XR, et al. Temperature-dependent tensile strength model for 2D woven fiber reinforced ceramic matrix composites.Journal of the American Ceramic Society, 2018, 101(11): 5157-5165doi:10.1111/jace.15765
    [12] 曹英斌, 张长瑞, 周新贵等. UD-Cf/SiC陶瓷基复合材料的高温拉伸性能. 复合材料学报, 2001, 18(3): 81-84 (Cao Yingbin, Zhang Changrui, Zhou Xingui, et al. Tensile properties of UD-Cf/SiC ceramic matrix composites at elevated temperature.Acta Materiae Compositae Sinica, 2001, 18(3): 81-84 (in Chinese)

    Cao Yingbin, Zhang Changrui, Zhou Xingui, et al. Tensile properties of UD-Cf/SiC ceramic matrix composites at elevated temperature.Acta Materiae Compositae Sinica, 2001, 18(3): 81-84 (in Chinese)
    [13] 张伟, 吕胜利, 吕毅等. 二维编织C/SiC复合材料高温拉伸性能研究. 强度与环境, 2009, 36(1): 22-26 (Zhang Wei, Lü Shengli, Lü Yi, et al. Research of tensile performance of 2D weave C/SiC composites at high temperature.Structure&Environment Engineering, 2009, 36(1): 22-26 (in Chinese)

    Zhang Wei, Lv Shengli, Lv Yi, et al. Research of tensile performance of 2 D weave C/SiC composites at high temperature.Structure & Environment Engineering, 2009, 36(1): 22-26 (in Chinese)
    [14] 索涛, 李玉龙, 刘明爽. 二维C/SiC复合材料高温压缩力学行为研究. 兵工学报, 2010, 31(4): 516-520 (Suo Tao, Li Yulong, Liu Mingshuang. Research on mechanical behavior of 2D C/SiC composites at elevated temperature under uniaxial compression.Acta Armamentarii, 2010, 31(4): 516-520 (in Chinese)

    Suo Tao, Li Yulong, Liu Mingshuang. Research on mechanical behavior of 2 D C/SiC composites at elevated temperature under uniaxial compression.Acta Armamentarii, 2010, 31(4): 516-520 (in Chinese)
    [15] 王琨, 陈刘定, 郑翔. 平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为. 航空材料学报, 2010, 30(1): 78-84 (Wang Kun, Chen Liuding, Zheng Xiang. Comparison of tensile behavior of plain woven carbon/ silicon carbide composites at room temperature and high temperature.Journal of Aeronautical Materials, 2010, 30(1): 78-84 (in Chinese)

    Wang Kun, Chen Liuding, Zheng Xiang. Comparison of tensile behavior of plain woven carbon/ silicon carbide composites at room temperature and high temperature.Journal of Aeronautical Materials, 2010, 30(1): 78-84 (in Chinese)
    [16] 牛学宝, 张程煜, 乔生儒等. 2D-C/SiC复合材料在空气中的高温压缩强度研究. 航空材料学报, 2011, 31(6): 92-95 (Niu Xuebao, Zhang Chengyu, Qiao Shengru, et al. Compression strength of 2D-C/SiC composite at high temperature in air.Journal of Aeronautical Materials, 2011, 31(6): 92-95 (in Chinese)

    Niu Xuebao, Zhang Chengyu, Qiao Shengru, et al. Compression strength of 2 D-C/SiC composite at high temperature in air.Journal of Aeronautical Materials, 2011, 31(6): 92-95 (in Chinese)
    [17] Yan KF, Zhang CY, Qiao SR, et al. Failure and strength of 2D-C/SiC composite under in-plane shear loading at elevated temperatures.Materials and Design, 2011, 32: 3504-3508doi:10.1016/j.matdes.2011.02.054
    [18] Wang HL, Zhang CY, Liu YS, et al. Temperature dependency of interlaminar shear strength of 2D-C/SiC composite.Materials and Design, 2012, 36: 172-176doi:10.1016/j.matdes.2011.10.048
    [19] Suo T, Fan XL, Hu GL, et al. Compressive behavior of C/SiC composites over a wide range of strain rates and temperatures.Carbon, 2013, 62: 481-492doi:10.1016/j.carbon.2013.06.044
    [20] Zhang CY, Wang HL, Liu YS, et al. Interlaminar shear damage mechanisms of a 2D-C/SiC composite at elevated temperature in vacuum.Vacuum, 2014, 105: 63-68doi:10.1016/j.vacuum.2014.02.017
    [21] Chen X, Li YL, Shi CS, et al. The dynamic tensile properties of 2D-C/SiC composites at elevated temperatures.International Journal of Impact Engineering, 2015, 79: 75-82doi:10.1016/j.ijimpeng.2014.10.006
    [22] Zhang Y, Zhang LT, Liu YS, et al. Oxidation effects on in-plane and interlaminar shear strengths of two dimensional carbon fiber reinforced silicon carbide composites.Carbon, 2016, 98: 144-156doi:10.1016/j.carbon.2015.10.091
    [23] Li LH, Zhang CY, Zhang C, et al. Compressive strength and damage mechanisms of 2D-C/SiC composites at high temperatures.Ceramics International, 2018, 44: 14026-14031doi:10.1016/j.ceramint.2018.04.255
    [24] Cheng TB, Wang XR, Zhang RB, et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300 °C.Journal of the European Ceramic Society, 2020, 40: 630-635doi:10.1016/j.jeurceramsoc.2019.10.030
    [25] 曹明月, 张启, 吴建国等. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报, 2020, 52(4): 1095-1105 (Cao Mingyue, Zhang Qi, Wu Jianguo, et al. Study on nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1095-1105 (in Chinese)

    Cao Mingyue, Zhang Qi, Wu Jianguo, et al. Study on nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1095-1105 (in Chinese)
    [26] Yang CP, Jiao GQ, Wang B, et al. Damage-based failure theory and its application to 2D-C/SiC composites.Composites:Part A, 2015, 77: 181-187doi:10.1016/j.compositesa.2015.07.003
    [27] Yang Q, Han XX, Xu CH, et al. Development and validation of an anisotropic damage constitutive model for C/SiC composite.Ceramics International, 2018, 44: 22880-22889doi:10.1016/j.ceramint.2018.09.081
    [28] 杨正茂, 刘晖, 杨俊杰. 含热冲击损伤的陶瓷基复合材料损伤本构模型. 力学学报, 2019, 51(6): 1797-1809 (Yang Zhengmao, Liu Hui, Yang Junjie. Damage constitutive model for thermal shocked ceramic matrix composite.Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809 (in Chinese)

    Yang Zhengmao, Liu Hui, Yang Junjie. Damage constitutive model for thermal shocked ceramic matrix composite.Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809 (in Chinese))
    [29] Chang YJ, Jiao GQ, Zhang KS, et al. Application and theoretical analysis of C/SiC composites based on continuum damage mechanics.Acta Mechanica Solida Sinica, 2013, 26(5): 491-499doi:10.1016/S0894-9166(13)60044-0
    [30] Gao XG, Li L, Song YD. A temperature-dependent constitutive model for fiber-reinforced ceramic matrix composites and structural stress analysis.International Journal of Damage Mechanics, 2014, 23(4): 507-522doi:10.1177/1056789513500296
    [31] 王翔, 王波, 矫桂琼等. 平纹编织C/SiC材料复杂应力状态的力学行为试验研究. 机械强度, 2010, 32(1): 35-39 (Wang Xiang, Wang Bo, Jiao Guiqiong, et al. Experimental investigation on plain woven C/SiC composites under complex stress states.Journal of Mechanical Strength, 2010, 32(1): 35-39 (in Chinese)doi:10.16579/j.issn.1001.9669.2010.01.009

    Wang Xiang, Wang Bo, Jiao Guiqiong, et al. Experimental investigation on plain woven C/SiC composites under complex stress states.Journal of Mechanical Strength, 2010, 32(1): 35-39 (in Chinese)doi:10.16579/j.issn.1001.9669.2010.01.009
    [32] He ZB, Zhang LT, Chen B, et al. Static response and failure behavior of 2D C/SiC cantilever channel beam.Applied Composite Materials, 2015, 22: 525-541doi:10.1007/s10443-014-9421-4
    [33] 杨成鹏, 贾斐, 矫桂琼. 陶瓷基复合材料三维有效应力强度失效模型. 复合材料学报, 2019, 36(12): 2912-2919 (Yang CP, Jia F, Jiao GQ. Effective stress based three-dimensional strength failure model for ceramic matrix composites.Acta Materiae Compositae Sinica, 2019, 36(12): 2912-2919 (in Chinese)

    Yang CP, Jia F, Jiao GQ. Effective stress based three-dimensional strength failure model for ceramic matrix composites.Acta Materiae Compositae Sinica, 2019, 36(12): 2912-2919 (in Chinese)
    [34] Fang DN, Li WG, Cheng TB, et al. Review on mechanics of ultra-high-temperature materials.Acta Mechanica Sinica, 2021, 37(9): 1347-1370doi:10.1007/s10409-021-01146-3
    [35] Yang CP, Jia F. Crack opening model for unidirectional ceramic matrix composites at elevated temperature.Ceramics International, 2018, 44: 17167-17173doi:10.1016/j.ceramint.2018.06.172
    [36] Soden PD, Hinton MJ, Kaddour AS. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates.Composites Science and Technology, 1998, 58(7): 1011-1022doi:10.1016/S0266-3538(98)00078-5
    [37] Tsai CL, Daniel IM. The behavior of cracked cross-ply composite laminates under shear loading.International Journal of Solids and Structures, 1992, 29(24): 3251-3267doi:10.1016/0020-7683(92)90039-V
    [38] 张宜焱. 2D-C/SiC复合材料高温面内力学行为研究. [硕士论文]. 西安: 西北工业大学, 2015

    Zhang Yiyan. Study on the in-plane mechanical behaviors of 2D-C/SiC composites at elevated temperature. [Master Thesis]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese)
  • 加载中
图(6)/ 表(1)
计量
  • 文章访问数:367
  • HTML全文浏览量:139
  • PDF下载量:76
  • 被引次数:0
出版历程
  • 收稿日期:2023-04-01
  • 录用日期:2023-06-26
  • 网络出版日期:2023-06-27
  • 刊出日期:2023-08-18

目录

    /

      返回文章
      返回
        Baidu
        map