EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阶理论的加筋复合材料夹芯结构屈曲有限元模型

张东健,郑锡涛,闫雷雷,路拓,徐建辉,张聪

downloadPDF
张东健, 郑锡涛, 闫雷雷, 路拓, 徐建辉, 张聪. 基于高阶理论的加筋复合材料夹芯结构屈曲有限元模型. 力学学报, 2023, 55(8): 1686-1698 doi: 10.6052/0459-1879-23-114
引用本文: 张东健, 郑锡涛, 闫雷雷, 路拓, 徐建辉, 张聪. 基于高阶理论的加筋复合材料夹芯结构屈曲有限元模型. 力学学报, 2023, 55(8): 1686-1698doi:10.6052/0459-1879-23-114
Zhang Dongjian, Zheng Xitao, Yan Leilei, Lu Tuo, Xu Jianhui, Zhang Cong. Finite element model for buckling of stiffened composite sandwich structures based on higher-order theory. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1686-1698 doi: 10.6052/0459-1879-23-114
Citation: Zhang Dongjian, Zheng Xitao, Yan Leilei, Lu Tuo, Xu Jianhui, Zhang Cong. Finite element model for buckling of stiffened composite sandwich structures based on higher-order theory.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1686-1698doi:10.6052/0459-1879-23-114

基于高阶理论的加筋复合材料夹芯结构屈曲有限元模型

doi:10.6052/0459-1879-23-114
基金项目:中央高校基本科研业务费资助项目(D5000220029)
详细信息
    通讯作者:

    郑锡涛, 教授, 主要研究方向为复合材料结构强度分析. E-mail:zhengxt@nwpu.edu.cn

  • 中图分类号:TB333

FINITE ELEMENT MODEL FOR BUCKLING OF STIFFENED COMPOSITE SANDWICH STRUCTURES BASED ON HIGHER-ORDER THEORY

  • 摘要:加筋复合材料夹芯结构由于面板与夹芯层的力学性能差异较大, 层间剪切变形明显, 层间剪切应力对结构的屈曲特性影响非常明显. 此外筋条与面板之间横向剪切变形也会显著地影响加筋夹芯结构的屈曲特性. 因此, 需要发展一种能准确计算面板与芯体之间、筋条与板之间横向剪切应力的模型来分析复合材料加筋夹芯结构的屈曲特性. 文章推导了正弦型整体−局部高阶剪切变形理论, 该理论满足面内位移、横向剪切应力连续条件和自由表面条件, 并且未知量个数独立于加筋夹芯板的层数. 基于此理论, 结合离散的Kirchhoff三角形单元(DKT单元)构造了正弦型整体−局部高阶三角形板单元(SGLT), 该单元满足面内位移在厚度方向的锯齿分布和横向剪切应力层间连续性条件, 并通过两个数值算例验证了模型的准确性. 随后评估了金属面板加筋夹芯板和复合材料面板格栅加筋夹芯板在各种几何、材料参数和边界条件下的屈曲特性. 数值分析结果表明, 建立的有限元模型能准确地预测加筋复合材料夹芯结构的屈曲行为. 并且相较于三维有限元模型, 建立的模型具有更高的计算效率.

  • 图 1三角形板元及节点参数

    Figure 1.Triangular element and node parameters

    图 211层复合材料夹芯方板的x-z平面的示意图

    Figure 2.x-zsection schematic diagram of eleven-ply composite sandwich plate

    图 3玻璃纤维面板帽形加筋夹芯板的示意图

    Figure 3.Schematic diagram of hat-stiffened sandwich plate with glass fiber panels

    图 4玻璃纤维面板帽形加筋夹芯板的一阶屈曲模态

    Figure 4.the first-order mode of hat-stiffened sandwich plate with glass fiber panels

    图 5金属面板单侧加筋夹芯板的几何构型

    Figure 5.Geometric data of the single stiffened sandwich plate with metal panels

    图 6不同模型计算的不同长宽比和宽厚比的临界屈曲载荷

    Figure 6.Critical buckling loads under different aspect and width-thickness ratios obtained from various models

    图 7固定筋条宽度和高度前提下, 由不同模型计算的临界屈曲载荷

    Figure 7.Critical buckling loads obtained from various models when the width and depth of stiffeners fixed

    图 8复合材料面板格栅加筋夹芯板的示意图

    Figure 8.Schematic diagram of grid-stiffened sandwich plate with composite panels

    图 93种边界条件下三维有限元(3D-FEM)与正弦型高阶模型计算的复合材料格栅加筋板的屈曲模态

    Figure 9.Displacement modes of the composite grid-stiffened plates obtained by the model 3D-FEM and SGLT under three boundary conditions

    表 1模型的边界条件

    Table 1.Boundary conditions in present model

    Simply-supported (S) Clamped (C)
    ${v_0} = {w_0} = {v^1_1} = {\theta _y} = \dfrac{ {\partial {w_0} } }{ {\partial y} } = 0$ ${v_0}{\text{ } } = {u^1_1} = {\theta _x} = \dfrac{ {\partial {w_0} } }{ {\partial x} } = 0$
    or and
    ${u_0} = {w_0} = {u^1_1} = {\theta _x} = \dfrac{ {\partial {w_0} } }{ {\partial y} } = 0$ ${w_0} = {v^1_1} = {\theta _y} = \dfrac{ {\partial {w_0} } }{ {\partial y} } = 0$
    下载: 导出CSV

    表 2各种模型计算的11层复合材料夹芯方板的无量纲临界屈曲载荷

    Table 2.Normalized critical buckling loads acquired by diverse models for the eleven-ply composite sandwich plate

    a/h Models tf/h
    0.025 0.050 0.075 0.1
    10 exact[23] 2.2081 3.7385 4.8307 5.6721
    CFS-LW[24] 2.2639 3.7649 4.8302 5.6255
    SGLT 2.2905 3.8330 4.9267 5.7625
    IGA[25] 2.3000 3.8560 4.9554 5.7859
    IGA[26] 2.2909 3.8335 4.9307 5.7786
    SPT[27] 2.3161 3.8846 4.9904 5.8237
    RHSDT[28] 2.3054 3.8573 4.9602 5.8111
    THSDT[29] 2.3182 3.8824 5.0015 5.8448
    KHSDT[30] 2.3121 3.8751 4.9797 5.8178
    FSDT 2.2976 3.8908 5.4079 6.6490
    20 exact[23] 2.5534 4.6460 6.4401 7.9352
    CFS-LW[24] 2.5660 4.6817 6.4428 7.9184
    SGLT 2.5579 4.6781 6.4461 7.9386
    IGA[25] 2.5619 4.6891 6.4624 7.9554
    IGA[26] 2.5591 4.6807 6.4518 7.9520
    SPT[27] 2.5757 4.7147 6.4968 7.9959
    RHSDT[28] 2.5757 4.7100 6.4913 7.9994
    THSDT[29] 2.6780 4.8374 6.6455 8.1693
    KHSDT[30] 2.5744 4.7112 6.4922 7.9931
    FSDT 2.6555 4.8584 6.7891 8.4964
    下载: 导出CSV

    表 3各种模型计算的玻璃纤维面板帽形加筋夹芯板临界屈曲载荷

    Table 3.Critical buckling loads (N) acquired by diverse models for the hat stiffened sandwich plate with glass fiber panels

    Models Load/(kN·m−1)
    B-s CPT FSM[31] 342.25
    B-s SDPT FSM[31] 337.29
    SGLT (840 elements) 335.58
    3D-FEM (148400 elements) 341.72
    SPT[27](840 elements) 333.90
    THSDT[29](840 elements) 332.60
    KHSDT[30](840 elements) 329.92
    BHSDT[32](840 elements) 331.44
    下载: 导出CSV

    表 4金属面板加筋夹芯板屈曲载荷的收敛率(b/a= 1,tst/tf= 2)

    Table 4.Convergence rate of buckling loads for the stiffened sandwich plate with metal panels (b/a= 1,tst/tf= 2)

    Models a/h
    5 10 20
    3D-FEM
    SGLT (240 elements)
    SGLT (312 elements)
    SGLT (480 elements)
    SGLT (800 elements)
    SGLT(1152 elements)
    0.02112
    0.01868
    0.01886
    0.01899
    0.01931
    0.01932
    0.05527
    0.04692
    0.04756
    0.04808
    0.04909
    0.04911
    0.18210
    0.15173
    0.15393
    0.15578
    0.15931
    0.15932
    下载: 导出CSV

    表 5金属面板加筋夹芯板临界屈曲载荷对比

    Table 5.Critical buckling loads for the stiffened sandwich plate with metal panels

    b/a a/h 3D-FEM SGLT S4R SPT[27] RHSDT[28]
    0.5 5 0.04469 0.04468 0.01452 0.14528 0.17664
    10 0.07865 0.07282 0.05277 0.46467 0.57443
    20 0.21698 0.19382 0.19380 1.45112 1.72694
    1 5 0.02112 0.01931 0.01399 0.11996 0.14885
    10 0.05527 0.04909 0.05048 0.36611 0.43620
    20 0.18210 0.15931 0.17971 0.82386 0.90770
    1.5 5 0.01616 0.01446 0.01367 0.10639 0.13001
    10 0.04944 0.04346 0.04846 0.27664 0.31541
    20 0.15809 0.13722 0.15813 0.47792 0.50527
    2 5 0.01427 0.01266 0.01340 0.09364 0.11188
    10 0.04584 0.04009 0.04602 0.20616 0.22708
    20 0.13500 0.11651 0.13507 0.30052 0.31117
    2.5 5 0.01327 0.01171 0.01310 0.08144 0.09503
    10 0.04268 0.03720 0.04320 0.15517 0.16680
    20 0.11384 0.09776 0.11369 0.20281 0.20766
    下载: 导出CSV

    表 6固定筋条宽度前提下, 金属面板加筋夹芯板临界屈曲载荷(b/a= 1)

    Table 6.Critical buckling loads for the stiffened sandwich plate with metal panels when the width of stiffeners fixed (b/a= 1)

    hs/tf a/h 3D-FEM SGLT S4R SPT[27] RHSDT[28]
    2 5 0.02658 0.02457 0.01556 0.11801 0.14623
    10 0.06419 0.05668 0.05854 0.37099 0.44272
    20 0.19626 0.18904 0.20910 0.84441 0.93201
    3 5 0.03567 0.03958 0.01875 0.12562 0.16211
    10 0.07823 0.08205 0.06474 0.36859 0.45369
    20 0.21545 0.20988 0.22861 0.79294 0.88304
    4 5 0.04838 0.05290 0.02278 0.14942 0.15962
    10 0.09643 0.09213 0.07626 0.39321 0.47902
    20 0.24334 0.23456 0.24695 0.77341 0.85620
    下载: 导出CSV

    表 7固定筋条高度前提下, 金属面板加筋夹芯板临界屈曲载荷对比(b/a= 1)

    Table 7.Critical buckling loads for the stiffened sandwich plate with metal panels when the depth of stiffeners fixed (b/a= 1)

    tst/tf a/h 3D-FEM SGLT S4R SPT[27] RHSDT[28]
    2 5 0.02091 0.01908 0.01404 0.11996 0.14885
    10 0.06107 0.05174 0.05563 0.34906 0.42734
    20 0.20671 0.19349 0.20147 0.64167 0.71476
    3 5 0.022341 0.02012 0.01576 0.12361 0.15392
    10 0.06421 0.05669 0.05960 0.36859 0.45369
    20 0.21725 0.20354 0.21691 0.67501 0.74678
    4 5 0.02348 0.02113 0.01660 0.12781 0.15888
    10 0.06702 0.06050 0.06262 0.38704 0.47743
    20 0.22671 0.21967 0.23301 0.70405 0.77467
    下载: 导出CSV

    表 8不同筋条铺层序列的复合材料格栅加筋板在四边简支边界条件下(SSSS)的前3阶屈曲载荷

    Table 8.Buckling loads of first three mode for the composite grid-stiffened plate with various stiffened lay-up under four supported edges (SSSS)

    a/h Layers
    (X/Y)
    m= 1 m= 2 m= 3
    3D-FEM SGLT 3D-FEM SGLT 3D-FEM SGLT
    5 (0°/0°)s 0.51061 0.56992
    (11.61)
    0.87912 0.89460
    (1.76)
    1.28376 1.33718
    (4.16)
    (0°/90°)s 0.47306 0.52839
    (11.69)
    0.86642 0.91369
    (5.45)
    1.10996 1.18809
    (7.04)
    (30°/60°)s 0.43841 0.48872(11.48) 0.63842 0.66204
    (3.70)
    0.99288 1.09667(10.45)
    (45°/45°)s 0.40250 0.44542(10.66) 0.56123 0.61829(10.17) 0.89816 1.01054(12.51)
    (90°/0°)s 0.44234 0.49029
    (10.83)
    0.49816 0.53150
    (6.69)
    0.76805 0.78496
    (2.20)
    (90°/90°)s 0.35773 0.40619
    (13.55)
    0.46637 0.52477
    (12.52)
    0.73938 0.80863
    (9.36)
    10 (0°/0°)s 1.21182 1.24706
    (2.91)
    1.32953 1.34096
    (0.86)
    1.93061 1.98763
    (2.95)
    (0°/90°)s 1.05391 1.17401
    (11.39)
    1.29857 1.36911
    (5.43)
    1.92566 2.07335
    (7.67)
    (30°/60°)s 1.03563 1.09172
    (5.42)
    1.15368 1.14767
    (0.52)
    1.37657 1.50243
    (9.14)
    (45°/45°)s 0.96818 1.02261(5.62) 1.05107 1.21091(15.21) 1.27063 1.42167(11.89)
    (90°/0°)s 0.93238 0.95370
    (2.28)
    1.10387 1.16005
    (5.09)
    1.19905 1.19784
    (0.10)
    (90°/90°)s 0.87974 0.95486
    (8.54)
    0.91353 1.06189
    (16.24)
    1.12642 1.22889
    (9.09)
    20 (0°/0°)s 3.29477 2.96677
    (9.95)
    3.45361 3.43780
    (0.45)
    3.88449 3.54107
    (8.84)
    (0°/90°)s 3.07062 2.99975
    (2.31)
    3.29081 3.32838
    (1.14)
    3.97298 3.56543
    (10.25)
    (30°/60°)s 3.10604 2.73718
    (11.87)
    3.40152 3.03193
    (10.86)
    3.60782 3.41138
    (5.44)
    (45°/45°)s 2.95776 2.84034(3.97) 3.17860 3.22310(1.39) 3.38709 3.53572(4.39)
    (90°/0°)s 2.92260 2.51364
    (13.99)
    2.97922 2.56561
    (13.88)
    3.27399 2.87182
    (12.28)
    (90°/90°)s 2.82265 2.50446
    (11.27)
    2.85318 2.61268
    (8.42)
    3.13770 2.96936
    (5.36)
    Note: Numbers in brackets are the absolute value of percentage errors from selected elements with respect to 3D-FEM.
    下载: 导出CSV

    表 9复合材料格栅加筋板在不同边界条件下临界屈曲载荷

    Table 9.Critical buckling loads for the composite grid-stiffened plate under various boundary conditions

    Layers Boundary conditions
    SCSC SFSF
    3D-FEM
    (256800
    elements)
    SGLT
    (1152
    elements)
    THSDT[29]
    (1152
    elements)
    KHSDT[30]
    (1152
    elements)
    3D-FEM
    (256800
    elements)
    SGLT
    (1152
    element)
    THSDT[29]
    (1152
    elements)
    KHSDT[30]
    (1152
    elements)
    [0°/0°] 1.4667 1.5202 7.2374 9.2387 0.6492 0.5741 4.6792 5.8497
    [0°/90°] 1.2603 1.3461 6.3949 7.9208 0.6513 0.5908 4.9295 6.1641
    [30°/60°] 1.1521 1.2374 6.2984 7.8750 0.5722 0.5107 4.2576 5.2949
    [45°/45°] 1.0850 1.1660 6.7362 8.5231 0.5562 0.5388 4.4306 5.5231
    [90°/0°] 1.0675 1.1231 6.2803 8.3828 0.5270 0.4658 3.8626 4.7862
    [90°/90°] 1.1090 1.0681 5.6764 6.9881 0.5328 0.4759 4.0570 5.0324
    下载: 导出CSV
  • [1] 熊健, 李志彬, 刘惠彬等. 航空航天轻质复合材料壳体结构研究进展. 复合材料学报, 2021, 38(6): 1629-1650 (Xiong Jian, Li Zhibin, Liu Huibin, et al. Advances in aerospace lightweight composite shell structure.Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650 (in Chinese)

    Xiong Jian, Li Zhibin, Liu Huibin, et al. Advances in aerospace lightweight composite shell structure. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650(in Chinese))
    [2] Li Y, Zhang L, He RJ, et al. Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure.Aerospace Science and Technology, 2019, 91: 607-616doi:10.1016/j.ast.2019.05.048
    [3] Giusto G, Totaro G, Spena P, et al. Composite grid structure technology for space applications.Materials Today: Proceedings, 2021, 34: 332-340
    [4] 时圣波, 唐硕, 梁军. 临近空间飞行器防隔热/承载一体化热结构设计及力/热行为. 装备环境工程, 2020, 17(1): 36-42 (Shi Shengbo, Tang Shuo, Liang Jun. Design and thermomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles.Equipment Environmental Engineering, 2020, 17(1): 36-42 (in Chinese)

    Shi Shengbo, Tang Shuo, Liang Jun. Design and thermomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles. Equipment Environmental Engineering, 2020, 17(1): 36-42(in Chinese))
    [5] 刘建良, 梅志远, 张焱冰等. 浮力材料和橡胶格栅夹层板振动响应试验对比研究. 中国舰船研究, 2019, 14(4): 1-6,13 (Liu Jianliang, Mei Zhiyuan, Zhang Yanbing, et al. Comparative study on vibration response test of buoyancy-core and rubber-core grid sandwich panels.Chinese Journal of Ship Research, 2019, 14(4): 1-6,13 (in Chinese)

    Liu Jianliang, Mei Zhiyuan, Zhang Yanbing, et al. Comparative study on vibration response test of buoyancy-core and rubber-core grid sandwich panels. Chinese Journal of Ship Research, 2019, 14(4): 1-6, 13(in Chinese))
    [6] 李华东, 周振龙, 陈国涛. 基于高阶剪切理论的复合材料格栅夹层板弯曲特性. 复合材料学报, 2019, 36(12): 2745-2755 (Li Huadong, Zhou Zhenlong, Chen Guotao. Bending characteristic of composite grid sandwich plate based on high-order shear theory.Acta Materiae Composite Sinica, 2019, 36(12): 2745-2755 (in Chinese)

    Li Huadong, Zhou Zhenlong, Chen Guotao. Bending characteristic of composite grid sandwich plate based on high-order shear theory. Acta Materiae Composite Sinica, 2019, 36(12): 2745-2755(in Chinese))
    [7] 徐世南, 吴催生. 导弹结构热防护一体化设计与优化. 国防科技大学学报, 2020, 42(2): 78-84 (Xu Shinan, Wu Cuisheng. Design and optimization of structure-thermal protection intergrated for missile.Journal of National University of Defense Technology, 2020, 42(2): 78-84 (in Chinese)

    Xu Shinan, Wu Cuisheng. Design and optimization of structure-thermal protection intergrated for missile. Journal of National University of Defense Technology, 2020, 42(2): 78-84(in Chinese))
    [8] Zangana S, Epaarachchi J, Ferdous W, et al. A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres-investigation under low-velocity impact.International Journal of Impact Engineering, 2020, 137: 103430
    [9] 中国航空研究院. 复合材料结构稳定性分析指南. 北京: 航空工业出版社, 2002

    Chinese Aeronautics Researeh Institute. Instruction for Stability Analysis of Composite Structures. Beijing: Aviation Industry Press, 2002 (in Chinese)
    [10] Guo MW, Harik IE, Ren WX. Buckling behavior of stiffened laminated plates.International Journal of Solids and Structures, 2002, 39: 3039-3055doi:10.1016/S0020-7683(02)00232-9
    [11] Qing G, Qiu J, Liu Y. Free vibration analysis of stiffened laminated plates.International Journal of Solids and Structures, 2006, 43: 1357-1371doi:10.1016/j.ijsolstr.2005.03.012
    [12] 吴德财, 徐元铭, 贺天鹏. 新的复合材料格栅加筋板的平铺等效刚度法. 力学学报, 2007, 39(4): 495-501 (Wu Decai, Xu Yuanming, He Tianpeng. A new smeared stiffener theory for grid-stiffened composite panels.Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 495-501 (in Chinese)

    Wu Decai, Xu Yuanming, He Tianpeng. A new smeared stiffener theory for grid-stiffened composite panels. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 495-501(in Chinese))
    [13] Bhar A, Phoenix SS, Satsangi SK. Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective.Composite Structures, 2010, 92(2): 312-321doi:10.1016/j.compstruct.2009.08.002
    [14] Stamatelos DG, Labeas GN, Tserpes KI. Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels.Thin-Walled Structures, 2011, 49(3): 422-430doi:10.1016/j.tws.2010.11.008
    [15] Shi P, Kapania RK, Dong CY. Vibration and buckling analysis of curvilinearly stiffened plates using finite element method.AIAA Journal, 2015, 53(5): 1-17
    [16] Qiao P, Huang S. A novel semi-analytical method for buckling analysis of stiffened laminated composite plates.Thin-Walled Structures, 2020, 148: 106575doi:10.1016/j.tws.2019.106575
    [17] Alaimo A, Orlando C, Valvano S. An alternative approach for modal analysis of stiffened thin-walled structures with advanced plate elements.European Journal of Mechanics-A/Solids, 2019, 77: 103820doi:10.1016/j.euromechsol.2019.103820
    [18] 朱秀杰, 郑坚, 熊超等. 基于精确板理论的复合材料格栅/波纹夹芯结构屈曲特性. 复合材料学报, 2022, 39(1): 399-411 (Zhu Xiujie, Zheng Jian, Xiong Chao, et al. Buckling characteristics of composite grid/corrugated sandwich structure based on refined plate theory.Acta Materiae Compositae Sinica, 2022, 39(1): 399-411 (in Chinese)

    Zhu Xiujie, Zheng Jian, Xiong Chao, et al. Buckling characteristics of composite grid/corrugated sandwich structure based on refined plate theory. Acta Materiae Compositae Sinica, 2022, 39(1): 399-411(in Chinese))
    [19] 刘璟泽, 姜东, 韩晓林等. 曲线加筋Kirchhoff-Mindlin板自由振动分析. 力学学报, 2017, 49(4): 929-939 (Liu Jingze, Jiang Dong, Han Xiaolin, et al. Free vibration analysis of curvilinearly stiffened Kirchhoff-Mindlin plates.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 929-939 (in Chinese)

    Liu Jingze, Jiang Dong, Han Xiaolin, et al. Free vibration analysis of curvilinearly stiffened Kirchhoff-Mindlin plates. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 929-939(in Chinese))
    [20] Li XY, Liu DS. Generalized laminate theories based on double superposition hypothesis.International Journal for Numerical Methods in Engineering, 1997, 40: 1197-1212doi:10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B
    [21] Bazeley GP, Cheung YK, Irons BM, et al. Triangular elements in bending-conforming and nonconforming solutions//Proceeding of the Conference on Matrix Methods in Structural Mechanics. Dayton Ohio: right Patterson Air Force Base, 1965, 7(3): 547-576
    [22] Kant T, Babu CS. Two shear deformable finite element models for buckling analysis of skew fibre-reinforced composite and sandwich panels.Composite Structures, 1999, 49(1): 77-85
    [23] Noor AK, Peters JM, Burton WS. Three-dimensional solutions for initially stressed structural sandwiches.Journal of Engineering Mechanics, 1994, 120: 284-303
    [24] Cetkovic M, Vuksanovic D. Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model.Composite Structures, 2009, 88: 219-227doi:10.1016/j.compstruct.2008.03.039
    [25] Arya H, Shimpi RP, Naik NK. A zigzag model for laminated composite beams.Composite Structures, 2002, 56: 21-24doi:10.1016/S0263-8223(01)00178-7
    [26] Soldatos KP. A transverse shear deformation theory for homogenous monoclinic plates.Acta Mechanica, 1992, 94: 195-220doi:10.1007/BF01176650
    [27] Touratier M. An efficient standard plate theory.International Journal of Engineering Science, 1991, 29(8): 901-916doi:10.1016/0020-7225(91)90165-Y
    [28] Reddy JN. A simple higher-order theory for laminated composite plates.Journal of Applied Mechanics, 1984, 51(12): 745-752
    [29] Thai CH, Ferreira AJM, Bordas SPA, et al. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory.European Journal of Mechanics-A/Solids, 2014, 43(1): 89-108
    [30] Kumar R, Lal A, Singh BN, et al. New transverse shear deformation theory for bending analysis of FGM plate under patch load.Composite Structures, 2019, 208: 91-100doi:10.1016/j.compstruct.2018.10.014
    [31] Yuan WX, Dawe DJ. Free vibration and stability analysis of stiffened sandwich plates.Composite Structures, 2004, 63(1): 123-137doi:10.1016/S0263-8223(03)00139-9
    [32] Babu RT, Verma S, Singh BN, et al. Dynamic analysis of flat and folded laminated composite plates under hygrothermal environment using a nonpolynomial shear deformation theory.Composite Structures, 2021, 274: 114327doi:10.1016/j.compstruct.2021.114327
  • 加载中
图(9)/ 表(9)
计量
  • 文章访问数:540
  • HTML全文浏览量:222
  • PDF下载量:152
  • 被引次数:0
出版历程
  • 收稿日期:2023-03-30
  • 录用日期:2023-06-13
  • 网络出版日期:2023-06-14
  • 刊出日期:2023-08-18

目录

    /

      返回文章
      返回
        Baidu
        map