EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态实验的单滑板受电弓全柔模型修正方法

许向红,罗羿,张颢辰,周睿,吴孟臻,黄思俊

downloadPDF
许向红, 罗羿, 张颢辰, 周睿, 吴孟臻, 黄思俊. 基于模态实验的单滑板受电弓全柔模型修正方法. 力学学报, 2023, 55(8): 1753-1760 doi: 10.6052/0459-1879-23-063
引用本文: 许向红, 罗羿, 张颢辰, 周睿, 吴孟臻, 黄思俊. 基于模态实验的单滑板受电弓全柔模型修正方法. 力学学报, 2023, 55(8): 1753-1760doi:10.6052/0459-1879-23-063
Xu Xianghong, Luo Yi, Zhang Haochen, Zhou Rui, Wu Mengzhen, Huang Sijun. Full flexible model updating of single-strip pantograph based on modal test. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1753-1760 doi: 10.6052/0459-1879-23-063
Citation: Xu Xianghong, Luo Yi, Zhang Haochen, Zhou Rui, Wu Mengzhen, Huang Sijun. Full flexible model updating of single-strip pantograph based on modal test.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1753-1760doi:10.6052/0459-1879-23-063

基于模态实验的单滑板受电弓全柔模型修正方法

doi:10.6052/0459-1879-23-063
基金项目:国家自然科学基金资助项目(11672297)
详细信息
    通讯作者:

    许向红, 副研究员, 主要研究方向为受电弓力学特性与结构优化、仿生微结构设计及3D打印. E-mail:xxh@lnm.imech.ac.cn

  • 中图分类号:U264.3+4

FULL FLEXIBLE MODEL UPDATING OF SINGLE-STRIP PANTOGRAPH BASED ON MODAL TEST

  • 摘要:动车组通过受电弓从接触网上获取电能, 良好的弓网接触是列车受流的重要保障. 随着列车速度的提高, 弓网动态特性问题日益突出. 受电弓在高速或更高速运行时, 接触网不平顺、气动效应等高频激励, 将激发受电弓的高频弹性模态及富有高频成分的弓网相互作用力. 只考虑受电弓3个垂向自由度的三质量块模型不再适用于高频弓网动力学分析, 为进行更高速下的受电弓动力学参数设计和弓网受流质量评估, 需建立反映结构弹性模态的受电弓全柔模型. 文章提出基于模态实验的受电弓全柔模型的修正方法. 首先, 开展一款新型单滑板高速受电弓的模态实验, 获得260 Hz以内的两阶垂向耦合振动模态参数和6阶垂向弹性模态参数. 然后, 进行受电弓模态频率对材料参数的灵敏度分析, 研究得到弓头、上臂和下臂的弹性模量和密度及弓头弹簧刚度, 对受电弓的8阶垂向模态频率的影响显著, 确定了模型修正的参数. 最后, 利用粒子群优化算法, 获得与模态实验结果吻合度较高的修正全柔模型, 其与实验结果的误差仅为5.2%. 此外, 提出基于模态置信度的振型识别方法, 实现了迭代寻优过程中正确率为100%的模态自动识别.

  • 图 1单滑板高速受电弓模态实验

    Figure 1.Modal test of single-strip high-speed pantograph

    图 2目标模态的振型. (a) 弓头垂振R1; (b) 弓头侧滚R2; (c) 弓头垂向一阶弯振F1; (d) 弓头垂向二阶弯振F2; (e) 弓头垂向3阶弯振F3; (f) 上臂垂向一阶弯振F4; (g) 上臂垂向二阶弯振F5; (h)下臂垂向一阶弯振F6. 其中, 第1和2列分别为实验和计算结果

    Figure 2.Modal shapes of the target modes. (a) Vertical vibration of the pan head R1; (b) Side rolling of the pan head R2; (c) Vertical 1st bending vibration of the pan head F1; (d) Vertical 2nd bending vibration of the pan head F2; (e) Vertical 3rd bending vibration of the pan head F3; (f) Vertical 1st bending vibration of the upper arm F4; (g) Vertical 2nd bending vibration of the upper arm F5; (h) Vertical 1st bending vibration of the lower arm F6. Columns 1 and 2 show the experimental and calculated results, respectively

    图 3受电弓的全柔模型

    Figure 3.Full flexible model of pantograph

    图 4模型修正流程

    Figure 4.Model updating process

    图 5目标模态频率对决策变量的灵敏度

    Figure 5.Sensitivity of target modal frequency to decision variables

    图 6收敛曲线

    Figure 6.Convergence curve

    图 7(a)滑板、(b)上臂和(c)下臂处的关键节点

    Figure 7.Key nodes of (a) strip, (b) upper arm (c) and lower arm

    图 8模态置信度矩阵

    Figure 8.Modal assurance criterion matrix

    表 1目标模态的频率

    Table 1.Modal frequency of the target modes

    Mode Modal test Initial full flexible model Updating full flexible model
    frequency/Hz frequency/Hz er/% frequency/Hz er/%
    R1 10.0 8.5 −15.8 9.0 −10.0
    R2 12.5 13.6 8.2 13.8 9.8
    F1 48.4 50.2 3.8 50.6 4.5
    F2 128.5 119.2 −7.2 123.2 −4.1
    F3 213.0 203.7 −4.3 213.0 0.0
    F4 127.7 164.4 28.7 133.4 4.5
    F5 247.6 245.4 −0.9 232.4 −6.2
    F6 114.2 105.8 −7.4 117.2 2.6
    re(x) 9.6 5.2
    下载: 导出CSV
  • [1] Bruni S, Bucca G, Carnevale M, et al. Pantograph–catenary interaction: recent achievements and future research challenges.International Journal of Rail Transportation, 2018, 6(2): 57-82doi:10.1080/23248378.2017.1400156
    [2] Lee JH, Park TW, Oh HK, et al. Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line.Vehicle System Dynamics, 2015, 53(8): 1117-1134doi:10.1080/00423114.2015.1025797
    [3] Ambrósio J, Pombo J, Pereira M. Optimization of high-speed railway pantographs for improving pantograph-catenary contact.Theoretical and Applied Mechanics Letters, 2013, 3(1): 013006doi:10.1063/2.1301306
    [4] Vieira R. High Speed Train Pantograph Models Identification. Técnico Lisboa, 2016
    [5] Zhu M, Zhang SY, Jiang JZ, et al. Enhancing pantograph-catenary dynamic performance using an inertance-integrated damping system.Vehicle System Dynamics, 2022, 60(6): 1909-1932doi:10.1080/00423114.2021.1884273
    [6] EN 50317. Railway applications-current collection systems-requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line. European Committee for Electrotechnical Standardization, 2012
    [7] EN 50318. Railway applications-current collection systems-validation of simulation of the dynamic interaction between pantograph and overhead contact line. European Committee for Electrotechnical Standardization, 2018
    [8] Massat JP, Laurent C, Bianchi JP, et al. Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools.Vehicle System Dynamics, 2014, 52(sup1): 338-354doi:10.1080/00423114.2014.898780
    [9] Nåvik P, Derosa S, Rønnquist A. On the use of experimental modal analysis for system identification of a railway pantograph.International Journal of Rail Transportation, 2020, 9(2): 132-143
    [10] Bocciolone M, Resta F, Rocchi D, et al. Pantograph aerodynamic effects on the pantograph-catenary interaction.Vehicle System Dynamics, 2006, 44(sup1): 560-570doi:10.1080/00423110600875484
    [11] Collina A, Lo Conte A, Carnevale M. Effect of collector deformable modes in pantograph-catenary dynamic interaction.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2009, 223(1): 1-14doi:10.1243/09544097JRRT212
    [12] Ambrósio J, Rauter F, Pombo J, et al. A flexible multibody pantograph model for the analysis of the catenary−pantograph contact. In: Multibody Dynamics: Computational Methods and Applications, 2011: 1-27
    [13] Eppinger SD, O’Connor DN, Seering WP, et al. Modeling and experimental evaluation of asymmetric pantograph dynamics.Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 1988, 110(2): 168-174
    [14] Bruni S, Ambrosio J, Carnicero A, et al. The results of the pantograph-catenary interaction benchmark.Vehicle System Dynamics, 2014, 53(3): 412-435
    [15] Bautista A, Montesinos J, Pintado P. Dynamic interaction between pantograph and rigid overhead lines using a coupled FEM-multibody procedure.Mechanism and Machine Theory, 2016, 97: 100-111doi:10.1016/j.mechmachtheory.2015.10.009
    [16] Yao Y, Zhou N, Zou D, et al. Collision dynamics analysis of lifting the pantograph.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2021, 235(4): 450-462doi:10.1177/0954409720943397
    [17] Liu Z, Jönsson PA, Stichel S, et al. Implications of the operation of multiple pantographs on the soft catenary systems in Sweden.Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2016, 230(3): 971-983doi:10.1177/0954409714559317
    [18] Collina A, Bruni S. Numerical simulation of pantograph-overhead equipment interaction.Vehicle System Dynamics, 2002, 38: 261-291doi:10.1076/vesd.38.4.261.8286
    [19] Tuissi A, Bassani P, Casati R, et al. Application of SMA composites in the collectors of the railway pantograph for the Italian high-speed train.Journal of Materials Engineering and Performance, 2009, 18: 612-619doi:10.1007/s11665-009-9453-3
    [20] Song Y, Rønnquist A, Jiang T, et al. Identification of short-wavelength contact wire irregularities in electrified railway pantograph–catenary system.Mechanism and Machine Theory, 2021, 162: 104338doi:10.1016/j.mechmachtheory.2021.104338
    [21] Szeląg A, Wilk A, Judek S, et al. Modal analysis of railway current collectors using Autodesk Inventor//13th International Conference Modern Electrified Transport. 2018: 108
    [22] 李东阳, 吴积钦, 关金发. DSA250型受电弓振动特性仿真与测试. 电气化铁道, 2012, 23(4): 7-10 (Li Dongyang, Wu Jiqin, Guan Jinfa. Simulation and test of vibration characteristics of DSA250 pantograph.Electric Railway, 2012, 23(4): 7-10 (in Chinese)

    Li Dongyang, Wu Jiqin, Guan Jinfa. Simulation and test of vibration characteristics of DSA250 pantograph. Electric Railway, 2012, 23(4): 7-10 (in Chinese)
    [23] 高文斌, 马果垒, 马思群等. DSA380型高速列车受电弓模态分析. 大连交通大学学报, 2015, 36(6): 24-28 (Gao Wenbin, Ma Guolei, Ma Siqun, et al. Study on the pantograph modal test of type DSA380 for high-speed train editorial.Journal of Dalian Jiaotong University, 2015, 36(6): 24-28 (in Chinese)

    Gao Wenbin, Ma Guolei, Ma Siqun, et al. Study on the Pantograph Modal Test of Type DSA380 for High-Speed Train. Editorial. Journal of Dalian Jiaotong University, 2015, 36(6):24-28 (in Chinese)
    [24] Mottershead JE, Link M, Friswell MI. The sensitivity method in finite element model updating: A tutorial.Mechanical Systems and Signal Processing, 2011, 25(7): 2275-2296doi:10.1016/j.ymssp.2010.10.012
    [25] Ozcelik O, Misir IS, Yucel U, et al. Model updating of Masonry courtyard walls of the historical Isabey mosque using ambient vibration measurements.Journal of Civil Structural Health Monitoring, 2022, 12(5): 1157-1172doi:10.1007/s13349-022-00610-3
    [26] Fatahi L. Surrogate-based sensitivity analysis and finite element model updating of welded plates.Mechanics of Advanced Materials and Structures, 2022, 29(23): 3447-3461doi:10.1080/15376494.2021.1907006
    [27] Girardi M, Padovani C, Pellegrini D, et al. A finite element model updating method based on global optimization.Mechanical Systems and Signal Processing, 2021, 152: 107372doi:10.1016/j.ymssp.2020.107372
    [28] Svendsen BT, Petersen ØW, Frøseth GT, et al. Improved finite element model updating of a full-scale steel bridge using sensitivity analysis.Structure and Infrastructure Engineering, 2022, 19(3): 315-331
    [29] Li D, Zhang J. Finite element model updating through derivative-free optimization algorithm.Mechanical Systems and Signal Processing, 2023, 185: 109726doi:10.1016/j.ymssp.2022.109726
    [30] Qin S, Yuan Y, Han S, et al. A novel multiobjective function for finite-element model updating of a long-span cable-stayed bridge using in situ static and dynamic measurements.Journal of Bridge Engineering, 2023, 28(1): 04022131doi:10.1061/(ASCE)BE.1943-5592.0001974
    [31] He L, Castoro C, Aloisio A, et al. Dynamic assessment, FE modelling and parametric updating of a butterfly-arch stress-ribbon pedestrian bridge.Structure and Infrastructure Engineering, 2022, 18(7): 1064-1075doi:10.1080/15732479.2021.1995444
    [32] Zhu H, Li J, Tian W, et al. An enhanced substructure-based response sensitivity method for finite element model updating of large-scale structures.Mechanical Systems and Signal Processing, 2021, 154: 107359doi:10.1016/j.ymssp.2020.107359
    [33] Xu H, Qin D, Liu C, et al. An Improved dynamic model updating method for multistage gearbox based on surrogate model and sensitivity analysis.IEEE Access, 2021, 9: 18527-18537doi:10.1109/ACCESS.2021.3053395
    [34] Peeters B, Van der Auweraer H, Guillaume P, et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation?Shock and Vibration, 2004, 11(3-4): 395-409doi:10.1155/2004/523692
    [35] 克拉夫 R, 彭津 J. 结构动力学. 王光远等译. 第2版(修订本), 北京: 高等教育出版社, 2006: 1-581

    Ray Clough, Joseph Penzien. Dynamics of Structures. Wang Guangyuan trans. Revision 2. Beijng: Higher Education Press, 2006: 1-581 (in Chinese))
    [36] Borgonovo E, Plischke E. Sensitivity analysis: A review of recent advances.European Journal of Operational Research, 2016, 248(3): 869-887doi:10.1016/j.ejor.2015.06.032
    [37] Munkhdalai L, Munkhdalai T, Park KH, et al. Mixture of activation functions with extended min-max normalization for forex market prediction.IEEE Access, 2019, 7: 183680-183691doi:10.1109/ACCESS.2019.2959789
    [38] Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, Australia, 1995, 1942-1948
    [39] Loh WL. On latin hypercube sampling.The Annals of Statistics, 1996, 24(5): 2058-2080
    [40] Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients.IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255doi:10.1109/TEVC.2004.826071
    [41] Dong W, Kang L, Zhang W. Opposition-based particle swarm optimization with adaptive mutation strategy.Soft Computing, 2017, 21(17): 5081-5090doi:10.1007/s00500-016-2102-5
    [42] Allemang RJ. Investigation of some multiple input/output frequency response function experimental modal analysis techniques. [PhD Thesis]. University of Cincinnati, 1980
  • 加载中
图(8)/ 表(1)
计量
  • 文章访问数:411
  • HTML全文浏览量:154
  • PDF下载量:102
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-28
  • 录用日期:2023-06-08
  • 网络出版日期:2023-06-09
  • 刊出日期:2023-08-18

目录

    /

      返回文章
      返回
        Baidu
        map