EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深纵比对方腔过渡流临界特性的影响研究

安博,孟欣雨,郭世鹏,桑为民

downloadPDF
安博, 孟欣雨, 郭世鹏, 桑为民. 深纵比对方腔过渡流临界特性的影响研究. 力学学报, 2023, 55(6): 1247-1256 doi: 10.6052/0459-1879-23-041
引用本文: 安博, 孟欣雨, 郭世鹏, 桑为民. 深纵比对方腔过渡流临界特性的影响研究. 力学学报, 2023, 55(6): 1247-1256doi:10.6052/0459-1879-23-041
An Bo, Meng Xinyu, Guo Shipeng, Sang Weimin. The impact of aspect ratio on the transitions of lid-driven cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1247-1256 doi: 10.6052/0459-1879-23-041
Citation: An Bo, Meng Xinyu, Guo Shipeng, Sang Weimin. The impact of aspect ratio on the transitions of lid-driven cavity flow.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1247-1256doi:10.6052/0459-1879-23-041

深纵比对方腔过渡流临界特性的影响研究

doi:10.6052/0459-1879-23-041
基金项目:翼型、叶栅空气动力学重点实验室基金(614220121030101)和中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题基金(IADL20210302)资助项目
详细信息
    通讯作者:

    桑为民, 教授, 研究方向为空气动力学、计算流体力学. E-mail:sangweimin@nwpu.edu.cn

  • 中图分类号:O3

THE IMPACT OF ASPECT RATIO ON THE TRANSITIONS OF LID-DRIVEN CAVITY FLOW

  • 摘要:流场过渡流临界特性是指流场因流动分岔而引起的流动状态和流场物理特性变化. 它从根本上决定了流动演化模式和流场特性等物理规律, 对解释复杂流动现象意义重大. 文章针对不同深纵比($ R \in [0.1,2.0] $)的顶盖驱动方腔内流开展数值模拟和流场稳定性分析研究. 预测Hopf, Neimark-Sacker和period-doubling流动分岔及湍流始现的临界雷诺数; 分析流场演化模式, 发现对应不同的深纵比, 有些流动遵循经典的Ruelle-Takens模式, 有些流动则会由周期性流动跃变至湍流; 捕捉和分析各种流动现象, 如流场稳定性丧失、能量级串、流场拓扑结构变化规律等. 研究成果对于揭示深纵比这一几何参数对腔体内流过渡流临界特性的影响规律意义重大, 进一步完善了内流流场特性的研究. 研究发现, Moffatt效应不仅存在于拥有尖锐夹角的内部流动中, 也出现于挤压拉伸的狭长空间; 无论是深腔还是浅腔, 流场稳定性最初的破坏总是以Hopf流动分岔的出现而开始; 就浅腔($ R < {\text{1}}{\text{.0}} $)而言, 随着深纵比逐渐增加, Hopf流动分岔的临界雷诺数越来越小, 流动更容易变为非定常状态, 说明流场稳定性变得越来越容易被破坏; 就深腔($ R > {\text{1}}{\text{.0}} $)而言, 相较于经典方腔驱动内流($ R = {\text{1}}{\text{.0}} $), 流场稳定性更容易丧失; 沿纵向的几何外形拉伸并不是提升流场稳定性的强制约束.

  • 图 1计算域和几何外形

    Figure 1.Computational domain and geometries

    图 2平直物面边界

    Figure 2.Straight wall boundary

    图 3定常状态的流场拓扑结构

    Figure 3.Flow topology of a steady state

    图 4水平速度频谱、轨迹及相图

    Figure 4.Horizontal velocity spectrum, trajectories and phase

    图 5浅腔Hopf分岔图谱

    Figure 5.Hopf diagram of shallow cavities

    图 6Period-doubling流动分岔

    Figure 6.Period-doubling bifurcation

    图 7湍流骤现

    Figure 7.Sudden appearance of chaos

    图 8Period-doubling流动分岔及湍流

    Figure 8.Period-doubling bifurcation and chaos

    图 9Neimark-Sacker流动分岔

    Figure 9.Neimark-Sacker bifurcation

    图 10湍流骤现

    Figure 10.Sudden appearance of chaos

    图 11定常状态的流场拓扑结构

    Figure 11.Flow topology of a steady state

    图 12定常状态的流场拓扑结构

    Figure 12.Flow topology of a steady state

    图 13Neimark-Sacker流动分岔及湍流

    Figure 13.Neimark-Sacker bifurcation and choas

    图 14周期性解不同时刻的流场变化

    Figure 14.Snapshots of a periodic solution at different time steps

    图 15准周期性解不同庞加莱交叉点的流场变化

    Figure 15.Quasi-periodic snapshots at different Poincaré crossings

    图 16湍流特性

    Figure 16.Chaotic characteristics

    表 1网格总量

    Table 1.Total number of mesh cells

    R Number of cells (n)
    0.1 100000
    0.3 300000
    0.5 500000
    0.75 750000
    1.0 1000000
    1.5 1500000
    2.0 2000000
    下载: 导出CSV

    表 2算法验证

    Table 2.Methodology validation

    P Ref. [23] Ref. [24] This work
    LD X =0.0703
    Y =0.1367
    $ \psi $ = 0.001361
    $ \omega $ = 1.5306
    X =0.0733
    Y =0.1367
    $ \psi $ = 0.001376
    $ \omega $ = 1.5143
    X =0.0735
    Y =0.1372
    $ \psi $ = 0.001379
    $ \omega $ = 1.512
    RD X =0.8086
    Y =0.0742
    $ \psi $ = 0.003084
    $ \omega $ = 2.6635
    X =0.8050
    Y =0.0733
    $ \psi $ = 0.003073
    $ \omega $ = 2.739
    X =0.8055
    Y =0.0741
    $ \psi $ = 0.003076
    $ \omega $ = 2.743
    C X =0.5117
    Y =0.5352
    $ \psi $ = −0.1190
    $ \omega $ = −1.8602
    X =0.5150
    Y =0.5350
    $ \psi $ = −0.1222
    $ \omega $ = −1.9405
    X =0.5156
    Y =0.5362
    $ \psi $ = −0.1214
    $ \omega $ = −1.922
    下载: 导出CSV
  • [1] Hof B, Van Doorne CWH, Westerweel J, et al. Experimental observation of nonlinear travelling waves in turbulent pipe flow.Science, 2004, 305: 1594-1598
    [2] Avila K, Moxey D, Lozar de A, et al. The onset of turbulence in pipe flow.Science, 2011, 333: 192-196
    [3] Graham MD. Fluid dynamics turbulence spreads like wildfire.Nature, 2015, 526: 508-509
    [4] An B, Bergadà JM, Mellibovsky F. The lid driven right-angled isosceles triangular cavity flow.Journal of Fluid Mechanics, 2019, 875: 476-519
    [5] An B, Mellibovsky F, Bergadà JM, et al. Towards a better understanding of wall-driven square cavity flows using lattice Boltzmann method.Applied Mathematical Modelling, 2020, 82: 469-486
    [6] An B, Bergadà JM, Mellibovsky F, et al. New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers.Mathematics with Applications, 2020, 79(16): 1718-1741
    [7] 安博, 孟欣雨, 桑为民. 镜像对称顶盖驱动方腔内流过渡流临界特性研究. 力学学报, 2022, 54(9): 2409-2418 (An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetry lid-driven cavity flow.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418 (in Chinese)doi:10.6052/0459-1879-22-218

    An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetry lid-driven cavity flow.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418(in Chinese))doi:10.6052/0459-1879-22-218
    [8] An B, Guo SP, Bergadà JM. Lid driven triangular and trapezoidal cavity flow:Vortical structures for steady solutions and Hopf bifurcations.Applied Sciences, 2023, 13(2): 888
    [9] Lin LS, Chen YC, Lin CA. Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios.Computers&Fluids, 2012, 45(1): 233-240
    [10] Lin LS, Chang HW, Lin CA. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU.Computers&Fluids, 2013, 80: 381-387
    [11] Chen KT, Tsai CC, Luo WJ, et al. Multiplicity of steady solutions in a two-sided lid-driven cavity with different aspect ratios.Theoretical and Computational Fluid Dynamics, 2013, 27(6): 767-776
    [12] Zdanski PSB, Ortega MA, Fico Jr NGCR. Numerical study of the flow over shallow cavities.Computers&Fluids, 2003, 32(7): 953-974
    [13] Patil DV, Lakshmisha KN, Rogg B. Lattice Boltzmann simulattion of lid-driven flow in deep cavities.Computers&Fluids, 2006, 35(10): 1116-1125
    [14] Heaton CJ. On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies.Physics of Fluids, 2008, 20(10): 103102
    [15] Chen M, Hung KC. Vortex structure of steady flow in a rectangular cavity.Computers&Fluids, 2006, 35(10): 1046-1062
    [16] Zhuo CS, Zhong CW, Cao J. Filter-matrix lattice Boltzmann simulation of lid-driven deep-cavity flow. Part I-Steady flows.Computers&Mathematics with Applications, 2013, 65(12): 1863-1882
    [17] Zhuo CS, Zhong CW, Cao J. Filter-matrix lattice Boltzmann Boltzmann simulation of lid-driven deep-cavity flow. Part II-Flow bifurcation.Computers&Mathematics with Applications, 2013, 65(12): 1883-1893
    [18] Samantaray D, Das MK. High Reynolds number incompressible turbulent flow inside a lid-driven cavity with multiple aspect ratios.Physics of Fluids, 2018, 30(7): 075107
    [19] Hammami F, Ben-Cheikh N, Ben-Beya B, et al. Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow.International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28(4): 943-962
    [20] Guo GM, Gong JJ, Zhang MQ. Numerical investigation on flow characteristics of low-speed flow over a cavity with small aspect ratio.International Journal Mechanical Sciences, 2020, 178: 105632
    [21] Qian YH, d’Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation.Europhysics Letters, 1992, 17(6): 478-484
    [22] Guo ZL, Zheng CG, Shi BC. An extrapolation method for method boundary conditions in lattice Boltzmann method.Physics of Fluids, 2002, 14(6): 2007-2010
    [23] Ghia U, Ghia KN, Shin CT. High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method.Journal of Computational Physics, 1982, 48(3): 387-411
    [24] Erturk E, Gökçöl C. Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers.International Journal for Numerical Methods in Fluids, 2005, 50(4): 421-436
    [25] Newhouse S, Ruelle D, Takens F. Occurrence of strange axion-A attractors near quasi periodic flows on TM, M is greater than or equal to 3.Communications in Mathematical Physics, 1978, 1(64): 35-40
    [26] Ruelle D, Takens T. Nature of turbulence.Communications in Mathematical Physics, 1971, 20(3): 167-192
    [27] Anupindi K, Lai WC, Frankel S. Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method.Computers&Fluids, 2014, 92: 7-21
    [28] Moffatt HK. Viscous and resistive eddies near sharp corner.Journal of Fluid Mechanics, 1964, 18(1): 1-18
    [29] Alexakis A, Biferale L. Cascades and transitions in turbulent flows.Physics Reports-review Section of Physics Letters, 2018, 767: 1-101
    [30] Vassilicos JC. Dissipation in turbulent flows.Annual Review of Fluid Mechanics, 2015, 47: 95-114doi:10.1146/annurev-fluid-010814-014637
    [31] Jimenez J. Cascades in wall-bounded turbulence.Annual Review of Fluid Mechanics, 2012, 44: 27-45doi:10.1146/annurev-fluid-120710-101039
  • 加载中
图(16)/ 表(2)
计量
  • 文章访问数:504
  • HTML全文浏览量:221
  • PDF下载量:62
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-13
  • 录用日期:2023-04-24
  • 网络出版日期:2023-04-25
  • 刊出日期:2023-06-18

目录

    /

      返回文章
      返回
        Baidu
        map