EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑Mullins效应的硅酮胶本构模型

郭鑫,陈素文

downloadPDF
郭鑫, 陈素文. 考虑Mullins效应的硅酮胶本构模型. 力学学报, 2023, 55(6): 1308-1318 doi: 10.6052/0459-1879-23-035
引用本文: 郭鑫, 陈素文. 考虑Mullins效应的硅酮胶本构模型. 力学学报, 2023, 55(6): 1308-1318doi:10.6052/0459-1879-23-035
Guo Xin, Chen Suwen. Constitutive modelling of silicone adhesive considering Mullins effect. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1308-1318 doi: 10.6052/0459-1879-23-035
Citation: Guo Xin, Chen Suwen. Constitutive modelling of silicone adhesive considering Mullins effect.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1308-1318doi:10.6052/0459-1879-23-035

考虑Mullins效应的硅酮胶本构模型

doi:10.6052/0459-1879-23-035
基金项目:国家自然科学基金(51678448)和土木工程防灾国家重点实验室自主研究课题(SLDRCE 19-B-18)资助项目
详细信息
    通讯作者:

    陈素文, 教授, 主要研究方向为工程结构抗爆和钢结构多重灾害防御. E-mail:swchen@tongji.edu.cn

  • 中图分类号:O341

CONSTITUTIVE MODELLING OF SILICONE ADHESIVE CONSIDERING MULLINS EFFECT

  • 摘要:硅酮结构胶广泛应用于建筑玻璃幕墙的粘接, 准确掌握其力学行为是实现可靠粘接的保证. 目前常用的唯象超弹性模型忽视了材料微观结构特性, 无法描述本构行为机理; 经典的熵弹性模型往往缺乏对聚合物网络非仿射变形、缠结效应等特性的考虑. 上述不足导致了已有模型难以有效模拟硅酮胶的力学行为, 尤其是循环加载下的显著Mullins效应. 为此, 文章基于非仿射网络模型, 根据分子链分布的微球模型对宏观−微观变形转换关系进行修正, 将受载下分子链构象的演化扩展至有限个方向. 在此基础上, 基于网络演化理论提出抽象交联网络和缠结网络的演化函数描述循环加载下聚合物网络的演化过程, 以模拟Mullins效应. 文章构建的修正非仿射网络模型结合了硅酮胶的微观结构特性和变形机制, 可以描述聚合物网络非仿射变形、缠结约束效应、分子链的有限拉伸性以及空间分布特性. 与文献硅酮胶材性试验数据和其他本构模型预测结果的对比表明, 修正非仿射网络模型可有效地模拟硅酮胶多种变形模式下的力学行为, 且可描述Mullins效应的残余变形和模量退化现象, 对硅酮胶的设计计算具有参考意义.

  • 图 1硅酮胶的典型应用形式

    Figure 1.Typical application of silicone adhesive

    图 2硅酮胶微观结构

    Figure 2.Microstructure of silicone adhesive

    图 3分子链分布的微球模型

    Figure 3.Microsphere model of polymer chain distribution

    图 4聚合物分子链的变形模式[32]

    Figure 4.Deformation of a polymer chain[32]

    图 5修正模型预测结果与TSSA材性试验结果[40]的比较

    Figure 5.Comparison between modified model results with experimental data of TSSA[40]

    图 6本文模型与其他分子统计学模型对TSSA材性试验[40]预测结果及相对误差

    Figure 6.Comparisons of prediction results and relative errors for TSSA[40]between modified model and other molecular-statistic-based models

    图 7TSSA单轴拉伸与单轴循环拉伸曲线[40-41]

    Figure 7.Experimental results of uniaxial tension and cyclic uniaxial tension of TSSA[40-41]

    图 8本文模型及伪弹性空化模型[12]预测结果与TSSA单轴循环拉伸试验结果[41]的比较

    Figure 8.Comparison of prediction results between the modified model and pseudo-elastic cavitation model[12]for cyclic uniaxial tension of TSSA[41]

    表 1模型参数表达式[32]

    Table 1.Expressions of model parameters[32]

    Parameter Definition Expression
    ${G_c}$ crosslink modulus $nkT{g^2}\left( {1 - {2 \mathord{\left/ {\vphantom {2 u}} \right. } u}} \right)$
    ${G_e}$ entanglement modulus ${ { {n_e}kT} }/{2}$
    ${\lambda _{{\rm{max}}} }$ finite chain extensibility $\dfrac{1}{g}\sqrt {\dfrac{N}{ {1 - {2 \mathord{\left/ {\vphantom {2 u} } \right. } u} } } }$
    $n$ chain density of crosslink network
    $k$ Boltzmann’s constant
    $T$ temperature
    $g$ affine/non-affine deformation parameter
    $u$ crosslink functionality, i.e. the number of chains connected at a crosslink
    ${n_e}$ chain density of entanglement network
    下载: 导出CSV

    表 2TSSA材性试验基本情况[40-41]

    Table 2.Information of TSSA material tests[40-41]

    Test Specimen/mm Loading conditions/(mm·min−1)
    uniaxial tension (UT) R.T. 5
    uniaxial compression (UC) R.T. 0.174
    simple shear (SS) R.T. 0.21
    cyclic uniaxial tension (CUT) R.T. 3.75
    下载: 导出CSV

    表 3单调加载模型参数

    Table 3.Parameters for monotonic loading

    Parameter Definition Fitting result/MPa
    $G_0^c$ initial crosslink modulus 1.38
    $G_0^e$ entanglement modulus 0.20
    下载: 导出CSV

    表 4几种基于分子统计理论模型的比较

    Table 4.Comparison between different molecular-statistic-based models

    Model
    (legend in figures)
    Non-affine deformation Entanglement effect Anisotropic evolution of polymer chains
    8-chain model[14]
    (8-chain model)
    \ \ \
    non-affine network model[32]
    (original model)
    \
    modified non-affine network model
    (modified model)
    下载: 导出CSV

    表 5循环加载模型参数

    Table 5.Parameters for cyclic loading

    Parameter Definition Fitting result
    $\varLambda_{m,\max }^0$ nominal maximum chain stretch 2.05
    ${a_c}$ crosslink network alteration parameter 0.47
    ${a_e}$ entanglement network alteration parameter 1.22
    下载: 导出CSV
  • [1] De Buyl F. Silicone sealants and structural adhesives.International Journal of Adhesion&Adhesives, 2001, 21: 411-422
    [2] Sitte S, Brasseur MJ, Carbary LD, et al. Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (TSSA) for point fixing in glazing.Journal of ASTM International, 2011, 8(10): 1-27
    [3] Santarsiero M, Louter C, Nussbaumer A. The mechanical behaviour of SentryGlas® ionomer and TSSA silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state.Glass Structures and Engineering, 2016, 1(2): 395-415doi:10.1007/s40940-016-0018-1
    [4] Broker KA, Fisher S, Memari AM. Seismic racking test evaluation of silicone used in a four-sided structural sealant glazed curtain wall system.Journal of ASTM International, 2012, 9(3): 1-22
    [5] Clift CD, Carbary LD, Hutley P, et al. Next generation structural silicone glazing.Journal of Facade Design and Engineering, 2015, 2(3-4): 137-161doi:10.3233/FDE-150020
    [6] Hagl A. Mechanical characteristics of degraded silicone bonded point supports.Journal of ASTM International, 2011, 9(2): 1-14
    [7] Staudt Y. Proposal of a failure criterion of adhesively bonded connections with silicone. [PhD Thesis]. Luxembourg: University of Luxembourg, 2018
    [8] Santarsiero M, Louter C, Nussbaumer A. Laminated connections for structural glass applications under shear loading at different temperatures and strain rates.Construction and Building Materials, 2016, 128: 214-237doi:10.1016/j.conbuildmat.2016.10.045
    [9] Dias V, Odenbreit C, Hechler O, et al. Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel-glass connections using structural silicone.International Journal of Adhesion and Adhesives, 2014, 48: 194-209doi:10.1016/j.ijadhadh.2013.09.043
    [10] Schaaf B, Richter C, Feldmann M, et al. Material parameter determination for the simulation of hyperelastic bonds in civil engineering considering a novel material model.International Journal of Adhesion and Adhesives, 2020, 103: 102692doi:10.1016/j.ijadhadh.2020.102692
    [11] Drass M, Bois PAD, Schneider J, et al. Pseudo-elastic cavitation model: part I—finite element analyses on thin silicone adhesives in façades.Glass Structures and Engineering, 2020, 5(1): 41-65doi:10.1007/s40940-019-00115-4
    [12] Drass M, Bartels N, Schneider J, et al. Pseudo-elastic cavitation model—part II: extension to cyclic behavior of transparent silicone adhesives.Glass Structures and Engineering, 2020, 5(1): 67-82doi:10.1007/s40940-019-00103-8
    [13] 王晓明, 吴荣兴, 蒋义等. 显式模拟类橡胶材料应力软化引起的不可恢复变形及其各向异性特征. 力学学报, 2021, 53(7): 1999-2009 (Wang Xiaoming, Wu Rongxing, Jiang Yi, et al. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009 (in Chinese)doi:10.6052/0459-1879-21-060

    Wang Xiaoming, Wu Rongxing, Jiang Yi, et al. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. (in Chinese))doi:10.6052/0459-1879-21-060
    [14] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412doi:10.1016/0022-5096(93)90013-6
    [15] Anssari-Benam A, Bucchi A. A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers.International Journal of Non-Linear Mechanics, 2021, 128: 103626doi:10.1016/j.ijnonlinmec.2020.103626
    [16] Miehe C, Göktepe S, Lulei F. A micro-macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity.Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2617-2660doi:10.1016/j.jmps.2004.03.011
    [17] Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers.Journal of the Mechanics and Physics of Solids, 2018, 117: 110-122doi:10.1016/j.jmps.2018.04.016
    [18] 付宾, 杨晓翔, 李庆. 炭黑填充橡胶材料的修正三链模型和Mullins模型. 固体力学学报, 2015, 36(5): 421-428 (Fu Bin, Yang Xiaoxiang, Li Qing. Modified 3-chain model and Mullins constitutive model of carbon black filled rubber materials.Chinese Journal of Solid Mechanics, 2015, 36(5): 421-428 (in Chinese)doi:10.19636/j.cnki.cjsm42-1250/o3.2015.05.007

    Fu Bin, Yang Xiaoxiang, Li Qing. Modified 3-chain model and Mullins constitutive model of carbon black filled rubber materials. Chinese Journal of Solid Mechanics, 2015, 36(5): 421-428. (in Chinese))doi:10.19636/j.cnki.cjsm42-1250/o3.2015.05.007
    [19] Darabi E, Itskov M. A generalized tube model of rubber elasticity.Soft Matter, 2021, 17(6): 1675-1684doi:10.1039/D0SM02055A
    [20] 魏志刚, 陈海波, 罗仲龙等. 橡胶材料弹性的一种新的螺旋管模型. 力学学报, 2023, 55(2): 470-485 (Wei Zhigang, Chen Haibo, Luo Zhonglong, et al. A new helical tube model for the elasticity of rubber-like materials.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 470-485 (in Chinese)doi:10.6052/0459-1879-22-435

    Wei Zhigang, Chen Haibo, Luo Zhonglong, et al. A new helical tube model for the elasticity of rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 470-485. (in Chinese))doi:10.6052/0459-1879-22-435
    [21] Tang S, Greene MS, Liu WK. Two-scale mechanism-based theory of nonlinear viscoelasticity.Journal of the Mechanics and Physics of Solids, 2012, 60(2): 199-226doi:10.1016/j.jmps.2011.11.003
    [22] Yuan B, Zeng F, Cui J, et al. Molecular simulation guided constitutive modeling of filled rubber: Bridging structural parameters to constitutive equations.Polymer, 2022, 254: 125090doi:10.1016/j.polymer.2022.125090
    [23] Li Y, Tang S, Kröger M, et al. Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers.Journal of the Mechanics and Physics of Solids, 2016, 88: 204-226doi:10.1016/j.jmps.2015.12.007
    [24] Li Y, Liu Z, Jia Z, et al. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites.Computational Mechanics, 2017, 59: 187-201doi:10.1007/s00466-016-1346-3
    [25] Zhong D, Xiang Y, Yin T, et al. A physically-based damage model for soft elastomeric materials with anisotropic Mullins effect.International Journal of Solids and Structures, 2019, 176-177: 121-134doi:10.1016/j.ijsolstr.2019.05.018
    [26] Plagge J, Klüppel M. A physically based model of stress softening and hysteresis of filled rubber including rate and temperature dependency.International Journal of Plasticity, 2017, 89: 173-196doi:10.1016/j.ijplas.2016.11.010
    [27] Plagge J, Ricker A, Kröger NH, et al. Efficient modeling of filled rubber assuming stress-induced microscopic restructurization.International Journal of Engineering Science, 2020, 151: 103291doi:10.1016/j.ijengsci.2020.103291
    [28] 张成, 苟晓凡, 肖锐. 超弹−黏弹−损伤仿射微球模型及其应用. 固体力学学报, 2022, 43(4): 397-405 (Zhang Cheng, Gou Xiaofan, Xiao Rui. A hyper-visco-damage affine microsphere model and its application.Chinese Journal of Solid Mechanics, 2022, 43(4): 397-405 (in Chinese)doi:10.19636/j.cnki.cjsm42-1250/o3.2022.001

    Zhang Cheng, Gou Xiaofan, Xiao Rui. A hyper-visco-damage affine microsphere model and its application. Chinese Journal of Solid Mechanics, 2022, 43(4): 397-405. (in Chinese))doi:10.19636/j.cnki.cjsm42-1250/o3.2022.001
    [29] Shen S, Zhong D, Qu S, et al. A hyperelastic-damage model based on the strain invariants.Extreme Mechanics Letters, 2022, 52: 101641doi:10.1016/j.eml.2022.101641
    [30] 肖锐, 向玉海, 钟旦明等. 考虑缠结效应的超弹性本构模型. 力学学报, 2021, 53(4): 1028-1037 (Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037 (in Chinese)doi:10.6052/0459-1879-21-008

    Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037. (in Chinese))doi:10.6052/0459-1879-21-008
    [31] Zhan L, Wang S, Qu S, et al. A new micro–macro transition for hyperelastic materials.Journal of the Mechanics and Physics of Solids, 2023, 171: 105156doi:10.1016/j.jmps.2022.105156
    [32] Davidson JD, Goulbourne NC. A nonaffine network model for elastomers undergoing finite deformations.Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1784-1797doi:10.1016/j.jmps.2013.03.009
    [33] Rubinstein M, Panyukov S. Nonaffine deformation and elasticity of polymer networks.Macromolecules, 1997, 30(25): 8036-8044doi:10.1021/ma970364k
    [34] Rubinstein M, Panyukov S. Elasticity of polymer networks.Macromolecules, 2002, 35(17): 6670-6686doi:10.1021/ma0203849
    [35] Ricker A, Kröger NH, Wriggers P. Comparison of discontinuous damage models of Mullins-type.Archive of Applied Mechanics, 2021, 91(10): 4097-4119doi:10.1007/s00419-021-02026-9
    [36] Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect.Journal of the Mechanics and Physics of Solids, 2002, 50: 2011-2028doi:10.1016/S0022-5096(01)00136-3
    [37] Zhu P, Zhong Z. Constitutive modelling for the Mullins effect with permanent set and induced anisotropy in particle-filled rubbers.Applied Mathematical Modelling, 2021, 97: 19-35doi:10.1016/j.apm.2021.03.031
    [38] Yang TT, Shui Y, Wei CS, et al. Effect of cyclic straining with various rates on stress softening/hysteresis and structural evolution of filled rubber: a time-resolved SANS study.Composites Part B: Engineering, 2022, 242: 110100
    [39] Diani J, Fayolle B, Gilormini P. A review on the Mullins effect.European Polymer Journal, 2009, 45(3): 601-612doi:10.1016/j.eurpolymj.2008.11.017
    [40] Drass M, Schwind G, Schneider J, et al. Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone.Glass Structures and Engineering, 2018, 3(1): 39-54doi:10.1007/s40940-017-0046-5
    [41] Drass M, Muth J, Louter C, et al. Stress whitening effects in transparent structural silicone adhesives.Glass Structures and Engineering, 2019, 4(3): 433-448doi:10.1007/s40940-019-00102-9
    [42] Drass M, Schwind G, Schneider J, et al. Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone.Glass Structures and Engineering, 2018, 3(1): 55-74doi:10.1007/s40940-017-0048-3
  • 加载中
图(8)/ 表(5)
计量
  • 文章访问数:564
  • HTML全文浏览量:208
  • PDF下载量:57
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-07
  • 录用日期:2023-04-27
  • 网络出版日期:2023-04-28
  • 刊出日期:2023-06-18

目录

    /

      返回文章
      返回
        Baidu
        map