EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变梯度Mindlin板边值问题的讨论

徐晓建,邓子辰

downloadPDF
徐晓建, 邓子辰. 应变梯度Mindlin板边值问题的讨论. 力学学报, 2022, 54(11): 3080-3087 doi: 10.6052/0459-1879-22-310
引用本文: 徐晓建, 邓子辰. 应变梯度Mindlin板边值问题的讨论. 力学学报, 2022, 54(11): 3080-3087doi:10.6052/0459-1879-22-310
Xu Xiaojian, Deng Zichen. Discussion on boundary value problems of a Mindlin plate based on the simplified strain gradient elasticity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3080-3087 doi: 10.6052/0459-1879-22-310
Citation: Xu Xiaojian, Deng Zichen. Discussion on boundary value problems of a Mindlin plate based on the simplified strain gradient elasticity.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3080-3087doi:10.6052/0459-1879-22-310

应变梯度Mindlin板边值问题的讨论

doi:10.6052/0459-1879-22-310
基金项目:国家自然科学基金资助项目(12072266)
详细信息
    作者简介:

    邓子辰, 教授, 主要研究方向: 动力学与控制. E-mail:dweifan@nwpu.edu.cn

  • 中图分类号:O343

DISCUSSION ON BOUNDARY VALUE PROBLEMS OF A MINDLIN PLATE BASED ON THE SIMPLIFIED STRAIN GRADIENT ELASTICITY

  • 摘要:实验和分子动力学计算结果表明, 当材料/结构的特征尺寸降为微纳米量级时, 他们将表现出明显的尺度效应, 因此能否建立精确表征其力学行为的连续介质力学模型具有重要的理论和现实意义. 尽管现有文献对非经典Mindlin板的力学行为进行了大量研究, 但该模型的变分自洽的边值问题是近年来未攻克的科学问题之一. 基于简化的应变梯度理论给出了各向同性Mindlin板应变能的表达式, 通过变分原理和张量分析, 得到了Mindlin板变分自洽的边值问题及其对应角点条件的位移微分表达式. 本文Mindlin板模型的边值问题可退化为相应的Timoshenko梁和Kirchhoff板模型的边值问题, 验证了本文结果的有效性. 研究结果发现, 该Mindlin板模型的控制方程是一个解耦后横向振动具有12阶的偏微分方程, 因此需要每个板边提供6个边界条件. 角点条件由双应力(double stress)产生, 并与经典的剪力、弯矩和扭矩沿截面的法向梯度有关. 本文首次澄清了应变梯度Mindlin板存在角点条件这一事实, 所得的变分结果有望为其有限元法和伽辽金法等数值方法提供理论依据.

  • 图 1Mindlin板及其边界

    Figure 1.A Mindlin plate and its boundary

    表 1矩形Mindlin板的各种边界条件

    Table 1.Various boundary conditons of a rectangular Mindlin plate

    Boundary condition (BC) Generalized classical BC Nonclassical higher-order BC
    clamped $w = {\hat \phi _x} = {\hat \phi _y} = 0$ 8 possible selections
    simply supported $w = 0,\;{\hat M_{xx}} = {\hat M_{xy}} = 0$ 8 possible selections
    free end $ {\hat Q_x} = {\hat M_{xx}} = {\hat M_{xy}} = 0 $ 8 possible selections
    下载: 导出CSV
  • [1] Eom K, Park HS, Yoon DS, et al. Nanomechanical resonators and their applications in biological/chemical detection:Nanomechanics principles.Physics Reports, 2011, 503(4-5): 115-163
    [2] Mindlin RD. Second gradient of strain and surface-tension in linear elasticity.International Journal of Solids and Structures, 1965, 1(1): 417-438
    [3] Mindlin RD. Micro-structure in linear elasticity.Archive For Rational Mechanics and Analysis, 1964, 16(1): 51-78doi:10.1007/BF00248490
    [4] Toupin RA. Elastic materials with couple-stresses.Archive For Rational Mechanics and Analysis, 1962, 11(1): 385-414doi:10.1007/BF00253945
    [5] Aifantis E. On the role of gradients in the localization of deformation and fracture.International Journal of Engineering Science, 1992, 30: 1279-1299doi:10.1016/0020-7225(92)90141-3
    [6] Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.Journal of Applied Physics, 1983, 54(9): 4703-4710
    [7] Gurtin ME, Ian Murdoch A. A continuum theory of elastic material surfaces.Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323
    [8] Aifantis EC. On the role of gradients in the localization of deformation and fracture.International Journal of Engineering Science, 1992, 30(10): 1279-1299
    [9] Xu XJ. Free vibration of nonlocal beams: Boundary value problem and a calibration method.Thin-Walled Structures, 2021, 161: 107423doi:10.1016/j.tws.2020.107423
    [10] Zhong XX, Liao SJ. Analytic approximations of Von Karman plate under arbitrary uniform pressure-equations in integral form.Science China-Physics Mechanics&Astronomy, 2018, 61(1): 014611
    [11] Chen JP, Wang B. Existence criteria and validity of plate models for graphene-like materials.Science China-Physics Mechanics&Astronomy, 2019, 62(5): 954611
    [12] Papargyri-Beskou S, Tsepoura KG, Polyzos D, et al. Bending and stability analysis of gradient elastic beams.International Journal of Solids and Structures, 2003, 40(2): 385-400
    [13] Giannakopoulos AE, Stamoulis K. Structural analysis of gradient elastic components.International Journal of Solids and Structures, 2007, 44(10): 3440-3451
    [14] Xu XJ, Zheng ML. Analytical solutions for buckling of size-dependent Timoshenko beams.Applied Mathematics and Mechanics, 2019, 40(7): 953-976doi:10.1007/s10483-019-2494-8
    [15] Papargyri-Beskou S, Giannakopoulos AE, Beskos DE. Variational analysis of gradient elastic flexural plates under static loading.International Journal of Solids and Structures, 2010, 47(20): 2755-2766
    [16] Niiranen J, Niemi AH. Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates.European Journal of Mechanics - A/Solids, 2017, 61(1): 164-179
    [17] 徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用. 应用数学和力学, 2022, 43(4): 363-373 (Xu Xiaojian, Deng Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application.Applied Mathematics and Mechanics, 2022, 43(4): 363-373 (in Chinese)
    [18] Xu XJ, Deng ZC. Effects of strain and higher order inertia gradients on wave propagation in single-walled carbon nanotubes.Physica E:Low-dimensional Systems and Nanostructures, 2015, 72: 101-110doi:10.1016/j.physe.2015.04.011
    [19] Torabi J, Niiranen J, Ansari R. Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory.European Journal of Mechanics - A/Solids, 2021, 87: 104221doi:10.1016/j.euromechsol.2021.104221
    [20] 徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究. 力学学报, 2015, 47(5): 751-761 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient Middle thick plate model on the vibration of graphene sheets.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761 (in Chinese)
    [21] Gao XL, Park SK. Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem.International Journal of Solids and Structures, 2007, 44(22-23): 7486-7499
    [22] Polizzotto C. A hierarchy of simplified constitutive models within isotropic strain gradient elasticity.European Journal of Mechanics - A/Solids, 2017, 61: 92-109doi:10.1016/j.euromechsol.2016.09.006
    [23] Xing YF, Wang ZK. An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates.International Journal of Mechanical Sciences, 2020, 182: 105739doi:10.1016/j.ijmecsci.2020.105739
    [24] 徐司慧, 王炳龙, 周顺华等. 黏弹性层状周期板动力计算的近似理论与解答. 力学学报, 2017, 49(6): 1348-1359 (Xu Sihui, Wang Binglong, Zhou Shunhua, et al. Approximate theory and analytical solution for dynamic calculation of viscoelastic layered periodic plate.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1348-1359 (in Chinese)doi:10.6052/0459-1879-17-248
    [25] 马航空, 周晨阳, 李世荣. Mindlin矩形微板的热弹性阻尼解析解. 力学学报, 2020, 52(5): 1383-1393 (Ma Hangkong, Zhou Chenyang, Li Shirong. Analytical solution of thermoelastic damping in rectangular Mindlin micro plates.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1383-1393 (in Chinese)doi:10.6052/0459-1879-20-175
    [26] Miranda Jr EJP, Nobrega ED, Rodrigues SF, et al. Wave attenuation in elastic metamaterial thick plates: Analytical, numerical and experimental investigations.International Journal of Solids and Structures, 2020, 204-205: 138-152
    [27] 赵唯以, 高泽鹏, 王琳等. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究. 工程力学, 2022, 39(3): 158-170 (Zhao Weiyi, Gao Zepeng, Wang Lin, et al. Mechanical performance of two-way simply supported steel-plate composite slabs under concentrated load.Engineering Mechanics, 2022, 39(3): 158-170 (in Chinese)
    [28] 滕兆春, 王伟斌, 郑文达. 温度影响下Winkler-Pasternak弹性地基上多孔FGM矩形板的自由振动分析. 工程力学, 2022, 39(4): 246-256 (Teng Zhaochun, Wang Weibin, Zheng Wenda. Free bibration analyses of porous FGM rectangular plates on a Winkler-Pasternak elastic foundation considering the temperature effect.Engineering Mechanics, 2022, 39(4): 246-256 (in Chinese)
    [29] Xing YF, Li G, Yuan Y. A review of the analytical solution methods for the eigenvalue problems of rectangular plates.International Journal of Mechanical Sciences, 2022, 221: 107171doi:10.1016/j.ijmecsci.2022.107171
    [30] Niiranen J, Kiendl J, Niemi AH, et al. Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates.Computer Methods in Applied Mechanics and Engineering, 2017, 316: 328-348
    [31] 刘璟泽, 姜东, 韩晓林等. 曲线加筋Kirchhoff-Mindlin板自由振动分析. 力学学报, 2017, 49(4): 929-939 (Liu Jingze, Jiang Dong, Han Xiaolin, et al. Free vibration analysis of curvilinearly stiffneed Kirchhoff-Mindlin plates.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 929-939 (in Chinese)
    [32] Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. New York: CRC Press, 2004: 487-560
    [33] Polizzotto C. A second strain gradient elasticity theory with second velocity gradient inertia – Part I: Constitutive equations and quasi-static behavior.International Journal of Solids and Structures, 2013, 50(24): 3749-3765doi:10.1016/j.ijsolstr.2013.06.024
    [34] Xu XJ, Deng ZC, Meng JM, et al. Bending and vibration analysis of generalized gradient elastic plates.Acta Mechanica, 2014, 225(12): 3463-3482doi:10.1007/s00707-014-1142-0
    [35] Xu XJ, Deng ZC. Variational principles for buckling and vibration of MWCNTs modeled by strain gradient theory.Applied Mathematics and Mechanics, 2014, 35(9): 1115-1128doi:10.1007/s10483-014-1855-6
  • 加载中
图(1)/ 表(1)
计量
  • 文章访问数:873
  • HTML全文浏览量:236
  • PDF下载量:125
  • 被引次数:0
出版历程
  • 收稿日期:2022-07-11
  • 录用日期:2022-10-02
  • 网络出版日期:2022-10-03
  • 刊出日期:2022-11-18

目录

    /

      返回文章
      返回
        Baidu
        map