EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式

胡迎港,蒋艳群,黄晓倩

downloadPDF
胡迎港, 蒋艳群, 黄晓倩. 非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式. 力学学报, 2022, 54(11): 3203-3214 doi: 10.6052/0459-1879-22-233
引用本文: 胡迎港, 蒋艳群, 黄晓倩. 非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式. 力学学报, 2022, 54(11): 3203-3214doi:10.6052/0459-1879-22-233
Hu Yinggang, Jiang Yanqun, Huang Xiaoqian. High order weight compacr nonlinear scheme for time-dependent Hamilton-Jacobi equations. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3203-3214 doi: 10.6052/0459-1879-22-233
Citation: Hu Yinggang, Jiang Yanqun, Huang Xiaoqian. High order weight compacr nonlinear scheme for time-dependent Hamilton-Jacobi equations.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3203-3214doi:10.6052/0459-1879-22-233

非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式

doi:10.6052/0459-1879-22-233
基金项目:国家自然科学基金(11872323)和国家数值风洞工程( NNW2018-ZT4A08)资助项目
详细信息
    作者简介:

    蒋艳群, 研究员, 主要研究方向: 计算流体力学. E-mail:jyq2005@mail.ustc.edu.cn

  • 中图分类号:V221.3

HIGH ORDER WEIGHT COMPACR NONLINEAR SCHEME FOR TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS

  • 摘要:Hamilton-Jacobi (HJ) 方程是一类重要的非线性偏微分方程, 在物理学、流体力学、图像处理、微分几何、金融数学、最优化控制理论等方面有着广泛的应用. 由于HJ方程的弱解存在但不唯一, 且解的导数可能出现间断, 导致其数值求解具有一定的难度. 本文提出了非稳态HJ方程的7阶精度加权紧致非线性格式 (WCNS). 该格式结合了Hamilton函数的Lax-Friedrichs型通量分裂方法和一阶空间导数左、右极限值的高阶精度混合节点和半节点型中心差分格式. 基于7点全局模板和4个4点子模板推导了半节点函数值的高阶线性逼近和4个低阶线性逼近, 以及全局模板和子模板的光滑度量指标. 为避免间断附近数值解产生非物理振荡以及提高格式稳定性, 采用WENO型非线性插值方法计算半节点函数值. 时间离散采用3阶TVD型Runge-Kutta方法. 通过理论分析验证了WCNS格式对于光滑解具有最佳的7阶精度. 为方便比较, 经典的7阶WENO格式也被推广用于求解HJ方程. 数值结果表明, 本文提出的WCNS格式能够很好地模拟HJ方程的精确解, 且在光滑区域能够达到7阶精度; 与经典的同阶WENO格式相比, WCNS格式在精度、收敛性和分辨率方面更优, 计算效率略高.

  • 图 1两种格式的计算误差与CPU时间关系曲线图

    Figure 1.CPU times against numerical computing errors obtained with two schemes

    图 2基于初值条件(33)在 $t = 11$ 时刻所得数值解比较

    Figure 2.Comparisons of numerical solutions at time $t = 11$ based on the initial condition (33)

    图 3基于初值条件(34)在不同时刻所得数值解比较

    Figure 3.Comparisons of numerical solutions at different times based on the initial condition (34)

    图 4一维(a)凸和(b)非凸Hamilton问题的数值解

    Figure 4.Numerical solutions of 1D (a) convex and (b) nonconvex Hamilton problems

    图 5二维凸Hamilton问题的数值解(a)曲面图和(b)截面图

    Figure 5.(a) Surface and (b) cross-sectional diagram of the numerical solution of the 2D convex Hamilton problem

    图 6二维非凸Hamilton问题的数值解(a)曲面图和(b)截面图

    Figure 6.(a) Surface and (b) cross-sectional diagram of the numerical solution of the 2D nonconvex Hamilton problem

    图 8二维最优控制问题的数值解(a), (b)曲面图和(c), (d)截面图

    Figure 8.(a), (b) Surfaces and (c), (d) cross-sectional diagrams of the numerical solutions of the optimal control problem

    8二维最优控制问题的数值解(a), (b)曲面图和(c), (d)截面图 (续)

    8.(a), (b)Surfaces and (c), (d) cross-sectional diagrams of the numerical solutions of the optimal control problem (continued)

    7二维完全问题的数值解(a), (b) 曲面图和(c), (d)截面图

    7.(a), (b) Surfaces and (c), (d) cross-sectional diagrams of numerical solutions of the fully problem

    图 9二维传播面问题的 $\varepsilon = 0$ 时数值解

    Figure 9.Numerical solutions of the propagating surface problem with $\varepsilon = $ 0

    图 10二维传播面问题的 $\varepsilon = 0.1$ 时数值解

    Figure 10.Numerical solutions of the propagating surface problem with $\varepsilon = $ 0.1

    表 1一维情形时两种格式的数值误差、精度阶和CPU运行时间

    Table 1.Numerical errors, convergence rates and CPU time obtained with two schemes for the 1D case

    Method $N$ ${L_1}$error Order ${L_\infty }$error Order CPU time
    WCNS 60 2.00 × 10−8 3.72 × 10−8 0.078125
    80 2.67 × 10−9 7.00 4.90 × 10−9 7.04 0.218750
    100 5.60 × 10−10 7.00 1.02 × 10−9 7.05 0.453125
    120 1.56 × 10−10 7.00 2.81 × 10−10 7.05 0.796875
    140 5.33 × 10−11 6.98 9.52 × 10−11 7.03 1.312500
    WENO 60 7.73 × 10−8 5.94 × 10−7 0.078125
    80 1.33 × 10−8 6.13 1.31 × 10−7 5.24 0.203125
    100 3.36 × 10−9 6.15 4.09 × 10−8 5.23 0.453125
    120 1.14 × 10−9 5.94 1.57 × 10−8 5.24 0.828125
    140 4.56 × 10−10 5.93 6.97× 10−9 5.27 1.093750
    下载: 导出CSV

    表 2二维情形时两种格式的数值误差、精度阶和CPU运行时间

    Table 2.Numerical errors, convergence rates and CPU time obtained with two schemes for the 2D case

    Method $M \times N$ ${L_1}$error Order ${L_\infty }$error Order CPU time
    WCNS 60 × 60 2.95× 10−8 4.80× 10−8 1.578125
    80 × 80 3.95× 10−9 6.99 6.42× 10−9 6.99 4.843750
    100 × 100 8.28 × 10−10 7.00 1.34× 10−9 7.01 12.65625
    120 × 120 2.31 × 10−10 7.00 3.74 × 10−10 7.02 27.85937
    140 × 140 7.86 × 10−11 7.00 1.27 × 10−10 7.01 54.92187
    WENO 60 × 60 2.96× 10−8 1.88 × 10−7 1.140625
    80 × 80 4.48× 10−9 6.57 3.84× 10−8 5.52 3.765625
    100 × 100 1.07× 10−9 6.41 1.11× 10−8 5.55 9.984375
    120 × 120 3.33 × 10−10 6.41 3.94× 10−9 5.70 22.09375
    140 × 140 1.24 × 10−10 6.41 1.80× 10−9 5.09 43.14062
    下载: 导出CSV
  • [1] 刘瑛, 杜光勋, 全权等. 基于Hamilton-Jacobi方程的飞行器机动动作可达集分析. 自动化学报, 2016, 42(3): 347-357 (Liu Ying, Du Guangxun, Quan Quan, et al. Reachability calculation for aircraft maneuver using hamilton-jacobi function.Acta Automatica Sinica, 2016, 42(3): 347-357 (in Chinese)doi:10.16383/j.aas.2016.c140888
    [2] Chan CK, Lau KS, Zhang BL. Simulation of a premixed turbulent flame with the discrete vortex method.International Journal for Numerical Methods in Engineering, 2000, 48(4): 613-627doi:10.1002/(SICI)1097-0207(20000610)48:4<613::AID-NME900>3.0.CO;2-7
    [3] Huang L, Wong SC, Zhang M, et al. Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm.Transportation Research Part B:Methodological, 2009, 43(1): 127-141doi:10.1016/j.trb.2008.06.003
    [4] Lefèvre V, Garnica A, Lopez-Pamies O. A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics.Computer Methods in Applied Mechanics and Engineering, 2019, 349(1): 17-44
    [5] 陈苏婷, 李霞. 非紧空间上折现Hamilton-Jacobi方程的黏性解. 华东师范大学学报, 2022, 2022(2): 9-15 (Chen Suting, Li Xia. The viscosity solution of the discounted Hamilton-Jacobi equation in non-compact space.Proceedings of the National Academy of Sciences, 2022, 2022(2): 9-15 (in Chinese)
    [6] Crandall MG, Lions PL. Viscosity solutions of Hamilton-Jacobi equations.Transactions of the American Mathematical Society, 1983, 277: 1-42doi:10.1090/S0002-9947-1983-0690039-8
    [7] Acker F, Borges RBR, Costa B. An improved WENO-Z scheme.Journal of Computational Physics, 2016, 313: 726-753doi:10.1016/j.jcp.2016.01.038
    [8] 骆信, 吴颂平. 改进的五阶WENO-Z+ 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme.Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese)doi:10.6052/0459-1879-19-249
    [9] Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy.Journal of Computational Physics, 2000, 160(2): 405-452doi:10.1006/jcph.2000.6443
    [10] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics, 1988, 79(1): 12-49doi:10.1016/0021-9991(88)90002-2
    [11] Jiang GS, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations.SIAM Journal on Scientific Computing, 2000, 21(6): 2126-2143doi:10.1137/S106482759732455X
    [12] Bryson S, Levy D. High-order central WENO schemes for multidimensional Hamilton-Jacobi equations.SIAM Journal on Numerical Analysis, 2003, 41(4): 1339-1369doi:10.1137/S0036142902408404
    [13] Qiu J, Shu CW. Hermite WENO schemes for Hamilton–Jacobi equations.Journal of Computational Physics, 2005, 204(1): 82-99doi:10.1016/j.jcp.2004.10.003
    [14] Ha Y, Kim CH, Yang H, et al. A sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials for Hamilton−Jacobi equations.Journal of Scientific Computing, 2018, 75(3): 1675-1700doi:10.1007/s10915-017-0603-8
    [15] Cheng X, Feng J. A sixth-order finite difference WENO scheme for Hamilton−Jacobi equations.International Journal of Computer Mathematics, 2019, 96(3): 568-584doi:10.1080/00207160.2018.1447665
    [16] Zhu J, Zheng F, Qiu J. New Finite Difference Hermite WENO Schemes for Hamilton-Jacobi Equations.Journal of Scientific Computing, 2020, 83(1): 1-21doi:10.1007/s10915-020-01189-x
    [17] Rathan S. L1-type smoothness indicators based weighted essentially nonoscillatory scheme for Hamilton-Jacobi equations.International Journal for Numerical Methods in Fluids, 2020, 92(12): 1927-1947doi:10.1002/fld.4855
    [18] Abedian R. A symmetrical WENO-Z scheme for solving Hamilton−Jacobi equations.International Journal of Modern Physics C, 2020, 31(3): 2050039doi:10.1142/S0129183120500394
    [19] Kim CH, Ha Y, Yang H, et al. A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations.Applied Numerical Mathematics, 2021, 165: 167-183doi:10.1016/j.apnum.2021.01.020
    [20] Deng X, Zhang H. Developing high-order weighted compact nonlinear schemes.Journal of Computational Physics, 2000, 165(1): 22-44doi:10.1006/jcph.2000.6594
    [21] Deng X, Maekawa H. Compact high-order accurate nonlinear schemes.Journal of Computational Physics, 1997, 130(1): 77-91doi:10.1006/jcph.1996.5553
    [22] Nonomura T, Fujii K. Effects of difference scheme type in high-order weighted compact nonlinear schemes.Journal of Computational Physics, 2009, 228(10): 3533-3539doi:10.1016/j.jcp.2009.02.018
    [23] Zhang S, Jiang S, Shu CW. Development of nonlinear weighted compact schemes with increasingly higher order accuracy.Journal of Computational Physics, 2008, 227(15): 7294-7321doi:10.1016/j.jcp.2008.04.012
    [24] Deng X, Jiang Y, Mao M, et al. A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law.Computers&Fluids, 2015, 116: 29-45
    [25] Nonomura T, Fujii K. Robust explicit formulation of weighted compact nonlinear scheme.Computers&Fluids, 2013, 85: 8-18
    [26] Wong ML, Lele SK. High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows.Journal of Computational Physics, 2017, 339: 179-209doi:10.1016/j.jcp.2017.03.008
    [27] Zhao G, Sun M, Xie S, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator.Applied Mathematics and Computation, 2018, 330: 239-253doi:10.1016/j.amc.2018.01.019
    [28] 洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018, 50(6): 1356-1367 (Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave.Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367 (in Chinese)doi:10.6052/0459-1879-18-129
    [29] Jiang YQ, Zhou SG, Zhang X, et al. High-order weighted compact nonlinear scheme for one-and two-dimensional Hamilton-Jacobi equations.Applied Numerical Mathematics, 2022, 171: 353-368doi:10.1016/j.apnum.2021.09.012
    [30] Hiejima T. A high-order weighted compact nonlinear scheme for compressible flows.Computers&Fluids, 2022, 232: 105199
    [31] Jiang YQ, Zhou SG, Zhang X, et al. High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations.Journal of Computational and Applied Mathematics, 2022, 411: 114272doi:10.1016/j.cam.2022.114272
    [32] Ma Y, Yan ZG, Liu H, et al. Improved weighted compact nonlinear scheme for implicit large-eddy simulations.Computers&Fluids, 2022, 240: 105412
    [33] Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods.SIAM Review, 2001, 43(1): 89-112doi:10.1137/S003614450036757X
  • 加载中
图(12)/ 表(2)
计量
  • 文章访问数:659
  • HTML全文浏览量:181
  • PDF下载量:99
  • 被引次数:0
出版历程
  • 收稿日期:2022-05-31
  • 录用日期:2022-10-11
  • 网络出版日期:2022-10-12
  • 刊出日期:2022-11-18

目录

    /

      返回文章
      返回
        Baidu
        map