EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫子弹冲击固支单梁的耦合分析模型

张元瑞,朱玉东,郑志军,虞吉林

downloadPDF
张元瑞, 朱玉东, 郑志军, 虞吉林. 泡沫子弹冲击固支单梁的耦合分析模型. 力学学报, 2022, 54(8): 2161-2172 doi: 10.6052/0459-1879-22-223
引用本文: 张元瑞, 朱玉东, 郑志军, 虞吉林. 泡沫子弹冲击固支单梁的耦合分析模型. 力学学报, 2022, 54(8): 2161-2172doi:10.6052/0459-1879-22-223
Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A coupling analysis model of clamped monolithic beam impacted by foam projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172 doi: 10.6052/0459-1879-22-223
Citation: Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A coupling analysis model of clamped monolithic beam impacted by foam projectiles.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172doi:10.6052/0459-1879-22-223

泡沫子弹冲击固支单梁的耦合分析模型

doi:10.6052/0459-1879-22-223
基金项目:国家自然科学基金资助项目(11872360)
详细信息
    作者简介:

    郑志军, 副教授, 主要研究方向: 冲击动力学. E-mail:zjzheng@ustc.edu.cn

  • 中图分类号:O389

A COUPLING ANALYSIS MODEL OF CLAMPED MONOLITHIC BEAM IMPACTED BY FOAM PROJECTILES

  • 摘要:使用泡沫金属子弹进行冲击可以模拟爆炸载荷的作用, 这一加载技术已被应用于防护结构的抗冲击性能测试中, 然而泡沫子弹作用于被测试结构上的真实载荷以及二者间的相互作用过程尚不明晰. 本文以泡沫子弹冲击固支梁的情形为例, 开展了对该冲击过程的理论分析和数值模拟研究. 基于泡沫材料的冲击波模型与固支单梁的结构冲击动力学响应模型, 构建了描述泡沫子弹冲击固支梁过程的耦合分析模型. 给出了不同响应阶段下子弹和单梁的动力学控制方程, 并采用Runge-Kutta方法得到了方程的数值解. 基于三维Voronoi技术, 建立了泡沫子弹冲击固支单梁的有限元模型并进行了数值模拟. 通过与有限元模拟结果的对比发现, 相较于经典的脉冲加载模型, 耦合分析模型能更好地预测泡沫子弹和单梁的速度变化规律, 也能准确地预测子弹对单梁的真实冲击压强. 当泡沫子弹的初始动量相同时, 由于子弹自身的压溃行为, 子弹的初始冲击速度、密度和长度的改变都会对冲击过程产生影响. 最后, 通过耦合分析模型分别分析了泡沫子弹的密度、长度、初速度对冲击压强的峰值、衰减速度和持续时间的影响, 并针对具有不同特征的目标模拟载荷给出了泡沫子弹的筛选策略. 所构建的耦合分析模型为研究泡沫子弹与被测试结构之间的相互作用规律以及泡沫子弹的设计提供了理论基础.

  • 图 1冲击情形示意图

    Figure 1.Schematic diagram of the impact situation

    图 2梁的速度场示意图

    Figure 2.Velocity field of the beam

    图 3梁的位移场示意图

    Figure 3.Deflection field of the beam

    图 4泡沫子弹的Voronoi模型

    Figure 4.Voronoi model of a foam projectile

    图 5泡沫子弹冲击单梁的有限元模型

    Figure 5.Finite element model of a foam projectile and a beam

    图 6子弹和梁的Mises应力云图

    Figure 6.The Mises stress nephogram of the foam projectile and the beam

    图 7有限元模拟与QDF模型预测的速度v1

    Figure 7.Velocityv1predicted by simulation and QDF model

    图 8有限元模拟与耦合分析模型预测的速度

    Figure 8.Velocity predicted by simulation and coupled model

    图 9跨中挠度w0时程曲线

    Figure 9.Time history curves of mid-span deflectionw0

    图 10冲击压强p随时间的变化

    Figure 10.Variation of impact pressurepwith time

    图 11泡沫子弹P1的速度历程曲线

    Figure 11.Velocity history curves of foam projectile P1

    图 12泡沫子弹P7的速度历程曲线

    Figure 12.Velocity history curves of foam projectile P7

    图 13泡沫子弹P1和P7的冲击压强历程曲线

    Figure 13.Pressure history curves of foam projectiles P1 and P7

    图 14QDF模型预测速度v1与有限元结果比较

    Figure 14.Comparison between prediction velocityv1of the QDF model and simulation results

    图 15泡沫子弹P3和P5的冲击响应

    Figure 15.Impact response of foam projectiles P3 and P5

    图 16泡沫子弹P2和P6加载下的冲击响应

    Figure 16.Impact response of foam projectiles P2 and P6

    图 17等初始动量子弹P2至P6冲击下单梁的永久跨中挠度W0

    Figure 17.Final mid-span deflectionW0of beam impacted by projectile with same initial momentumI0

    图 18相对密度ρ对冲击压强的影响

    Figure 18.Influence of relative densityρon impact pressure

    图 19初始长度l0对冲击压强的影响

    Figure 19.Influence of initial lengthl0of on impact pressure

    图 20初速度V0对冲击压强的影响

    Figure 20.Influence of initial velocityV0on impact pressure

    表 1不同泡沫子弹的参数

    Table 1.Parameters of uniform foam projectiles

    Type ρ V0/(m·s−1) l0/
    mm
    I0/(kN·s·m−1) Ek0/(kJ·m−2)
    P1 0.10 100 45 1.215 60.75
    P2 0.15 100 60 2.43 121.5
    P3 0.10 200 45 2.43 243
    P4 0.15 200 30 2.43 243
    P5 0.20 200 22.5 2.43 243
    P6 0.15 300 20 2.43 364.5
    P7 0.30 200 15 2.43 243
    下载: 导出CSV
  • [1] 丁圆圆, 王士龙, 郑志军等. 多胞牺牲层的抗爆炸分析, 力学学报, 2014, 46(6): 825-833

    Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding.Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833(in Chinese)
    [2] Zhang YR, Wang GF, Zhang YL, et al. Crashworthiness design of car threshold based on aluminium foam sandwich structure.International Journal of Crashworthiness, 2022, 27(4): 1167-1178
    [3] Reid SR, Peng C. Dynamic uniaxial crushing of wood.International Journal of Impact Engineering, 1997, 19(5-6): 531-570doi:10.1016/S0734-743X(97)00016-X
    [4] Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations.Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205
    [5] Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models.Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230
    [6] Radford DD, Deshpande VS, Fleck NA. The use of metal foam projectiles to simulate shock loading on a structure.International Journal of Impact Engineering, 2005, 31: 1152-1171doi:10.1016/j.ijimpeng.2004.07.012
    [7] Radford DD, Fleck NA, Deshpande VS. The response of clamped sandwich beams subjected to shock loading.International Journal of Impact Engineering, 2006, 32(6): 968-987doi:10.1016/j.ijimpeng.2004.08.007
    [8] Radford DD, McShane GJ, Deshpande VS, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading.International Journal of Solids and Structures, 2006, 43(7-8): 2243-2259doi:10.1016/j.ijsolstr.2005.07.006
    [9] Rathbun HJ, Radford DD, Xue Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading.International Journal of Solids and Structures, 2006, 43(6): 1746-1763doi:10.1016/j.ijsolstr.2005.06.079
    [10] 宋延泽, 王志华, 赵隆茂等. 撞击载荷下泡沫铝夹层板的动力响应. 爆炸与冲击, 2010, 30(3): 301-307doi:10.11883/1001-1455(2010)03-0301-07

    Song Yanze, Wang Zhihua, Zhao Longmao, et al. Dynamic response of foam sandwich plates subjected to impact loading.Explosion and Shock Waves, 2010, 30(3): 301-307(in Chinese))doi:10.11883/1001-1455(2010)03-0301-07
    [11] Xie QH, Jing L, Wang ZH, et al. Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact.Composites Part B:Engineering, 2013, 44(1): 330-338doi:10.1016/j.compositesb.2012.04.070
    [12] Jing L, Wang ZH, Zhao LM. Response of metallic cylindrical sandwich shells subjected to projectile impact—Experimental investigations.Composite Structures, 2014, 107: 36-47doi:10.1016/j.compstruct.2013.07.011
    [13] 叶楠, 张伟, 黄威等. PVC 夹芯板在冲击载荷下的动态响应与失效模式. 爆炸与冲击, 2017, 37(1): 37-45doi:10.11883/1001-1455(2017)01-0037-09

    Ye Nan, Zhang Wei, Huang Wei, et al. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading.Explosion and Shock Waves, 2017, 37(1): 37-45(in Chinese)doi:10.11883/1001-1455(2017)01-0037-09
    [14] 张博一, 赵威, 王理等. 泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应. 爆炸与冲击, 2017, 37(4): 600-610

    Zhang Boyi, Zhao Wei, Wang Li, et al. Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading.Explosion and Shock Waves, 2017, 37(4): 600-610(in Chinese)
    [15] Xiao D, Chen X, Li Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis.Materials&Design, 2019, 176: 107840
    [16] Wang X, Yu RP, Zhang QC, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores.International Journal of Impact Engineering, 2020, 139: 103533doi:10.1016/j.ijimpeng.2020.103533
    [17] Tilbrook MT, Deshpande VS, Fleck NA. The impulsive response of sandwich beams: analytical and numerical investigation of regimes of behaviour.Journal of the Mechanics and Physics of Solids, 2006, 54(11): 2242-2280doi:10.1016/j.jmps.2006.07.001
    [18] Qiu X, Deshpande VS, Fleck NA. Impulsive loading of clamped monolithic and sandwich beams over a central patch.Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1015-1046doi:10.1016/j.jmps.2004.12.004
    [19] Qin QH, Wang TJ. A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading.European Journal of Mechanics-A/Solids, 2009, 28(5): 1014-1025doi:10.1016/j.euromechsol.2009.04.002
    [20] Qin QH, Wang TJ, Zhao SZ. Large deflections of metallic sandwich and monolithic beams under locally impulsive loading.International Journal of Mechanical Sciences, 2009, 51(11-12): 752-773doi:10.1016/j.ijmecsci.2009.08.008
    [21] Yu TX, Stronge WJ. Large deflections of a rigid-plastic beam-on-foundation from impact.International Journal of Impact Engineering, 1990, 9(1): 115-126doi:10.1016/0734-743X(90)90025-Q
    [22] Deshpande VS, Fleck NA. One-dimensional response of sandwich plates to underwater shock loading.Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347-2383doi:10.1016/j.jmps.2005.06.006
    [23] Main JA, Gazonas GA. Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution.International Journal of Solids and Structures, 2008, 45(7-8): 2297-2321doi:10.1016/j.ijsolstr.2007.11.019
    [24] Li L, Han B, Zhang QC, et al. Dynamic response of clamped sandwich beams: analytical modeling.Theoretical and Applied Mechanics Letters, 2019, 9(6): 391-396doi:10.1016/j.taml.2019.06.002
    [25] Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave models.International Journal of Impact Engineering, 2013, 53: 29-43doi:10.1016/j.ijimpeng.2012.06.012
    [26] Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress–strain states for metal foams using a 3 D cellular model.Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114doi:10.1016/j.jmps.2014.07.013
    [27] 王礼立. 应力波基础, 第 2版. 北京: 国防工业出版社, 2005

    Wang Lili. Foundation of Stress Waves, 2nd Edition. Beijing: National Defense Industry Press, 2005 (in Chinese)
    [28] Jones N. Structural Impact. Cambridge: Cambridge University Press, 2011
    [29] Conroy MF. The plastic deformation of built-in beams due to distributed dynamic loading.Journal of Applied Mechanics, 1964, 31(3): 507-514doi:10.1115/1.3629669
    [30] Yang J, Wang SL, Ding YY, et al. Crashworthiness of graded cellular materials: A design strategy based on a nonlinear plastic shock model.Materials Science and Engineering A, 2017, 680: 411-420doi:10.1016/j.msea.2016.11.010
  • 加载中
图(20)/ 表(1)
计量
  • 文章访问数:523
  • HTML全文浏览量:149
  • PDF下载量:88
  • 被引次数:0
出版历程
  • 收稿日期:2022-05-27
  • 录用日期:2022-07-07
  • 网络出版日期:2022-07-08
  • 刊出日期:2022-08-18

目录

    /

      返回文章
      返回
        Baidu
        map