EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑马鱼直线加速游动试验研究

郭春雨,梁泽军,韩阳,郐云飞,徐鹏,孙路程

downloadPDF
郭春雨, 梁泽军, 韩阳, 郐云飞, 徐鹏, 孙路程. 斑马鱼直线加速游动试验研究. 力学学报, 2022, 54(9): 2446-2459 doi: 10.6052/0459-1879-22-157
引用本文: 郭春雨, 梁泽军, 韩阳, 郐云飞, 徐鹏, 孙路程. 斑马鱼直线加速游动试验研究. 力学学报, 2022, 54(9): 2446-2459doi:10.6052/0459-1879-22-157
Guo Chunyu, Liang Zejun, Han Yang, Kuai Yunfei, Xu Peng, Sun Lucheng. Experimental study of zebrafish swimming with linear acceleration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2446-2459 doi: 10.6052/0459-1879-22-157
Citation: Guo Chunyu, Liang Zejun, Han Yang, Kuai Yunfei, Xu Peng, Sun Lucheng. Experimental study of zebrafish swimming with linear acceleration.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2446-2459doi:10.6052/0459-1879-22-157

斑马鱼直线加速游动试验研究

doi:10.6052/0459-1879-22-157
基金项目:国家自然科学基金资助项目(52001090)
详细信息
    作者简介:

    韩阳, 实验师, 主要研究方向: 精细流场测试技术、水动力实验技术. E-mail:hanyang@hrbeu.edu.cn

  • 中图分类号:U661.1

EXPERIMENTAL STUDY OF ZEBRAFISH SWIMMING WITH LINEAR ACCELERATION

  • 摘要:海洋生物低噪音、高速、髙效游动能力是任何人造水下航行器所无法比拟的. 借助时间解析粒子图像测速技术对斑马鱼直线加速游动过程进行精细流场测量, 对其运动学行为特性和动力学机理进行分析. 同时应用双正交分解对涡量场进行模态分解, 获取流场的时间演化和空间分布特征. 从流动机理的角度探究斑马鱼游动过程的流动结构特征及旋涡动态演化特性. 试验结果表明: 流动可视化展现了整体涡流尾迹的结构分布,方便探究运动特性与旋涡尾迹之间的耦合关系. 斑马鱼从运动开始时体干保持着鲹科式的运动规律, 游动时的动能主要由前几次大幅的摆尾过程提供, 后续的摆尾主要调整方向及姿态. 两次不同方向的摆尾动作会形成一对方向相反的旋涡, 并在时序下旋涡逐渐脱落. 同时尾流的涡量变化在一定程度上反映鱼体的游向的变化. 基于双正交分解分解后的时间演化结果验证本次试验在时间上涡量场具有合理的恒定幅度, 空间分布表明低阶空间模态表征斑马鱼游动的主要涡流动结构, 高阶空间模态表征涡流动的细节结构. 研究鱼类游动时的摆尾推进机制与动力学特性能够为高效率的仿鱼类推进装置设计提供一定科学参考.

  • 图 1试验PIV搭建

    Figure 1.Experimental PIV setup

    图 2PIV计算流程

    Figure 2.PIV calculation process

    图 3图像预处理过程

    Figure 3.Image preprocessing process

    3图像预处理过程(续)

    3.Image preprocessing process (continued)

    图 4斑马鱼运动形态特征

    Figure 4.Morphological characteristics of zebrafish movement

    图 5各体干点位置

    Figure 5.The position of each body trunk point

    图 6各体干点速度/加速度时序变化趋势

    Figure 6.Time series trend of velocity/acceleration of each body trunk point

    图 7斑马鱼直线加速过程速度场的时序变化

    Figure 7.Time series change of velocity field during straight acceleration in zebrafish

    图 8斑马鱼涡量场时序变化图

    Figure 8.Time series change diagram of vortex field in zebrafish

    图 9涡核判别示意图

    Figure 9.Schematic diagram of vortex core discrimination

    图 10涡量极值的时序变化

    Figure 10.Time series variation of vorticity extrema

    图 11涡量场模态的能量分布

    Figure 11.Energy distribution of vorticity field modes

    图 12涡量场 ${\psi _n}(t)$ 前四阶模态的时间函数

    Figure 12.Time function of the first four modes of the vorticity field ${\psi _n}(t)$

    图 13涡量场 ${\psi _n}(t)$ 的时间演化

    Figure 13.Time evolution trend of vorticity field ${\psi _n}(t)$

    图 14涡量场的前四阶模态

    Figure 14.The first four modes of the vorticity field

  • [1] Flammang BE, Lauder GV, Troolin DR, et al. Volumetric imaging of fish locomotion.Biology Letters, 2011, 7(5): 695-698doi:10.1098/rsbl.2011.0282
    [2] Flammang BE, Lauder GV, Troolin DR, et al. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.Proceedings of the Royal Society B:Biological Sciences, 2011, 278(1725): 3670-3678doi:10.1098/rspb.2011.0489
    [3] Wolfgang MJ, Anderson JM, Grosenbaugh MA, et al. Near-body flow dynamics in swimming fish.Journal of Experimental Biology, 1999, 202(17): 2303-2327doi:10.1242/jeb.202.17.2303
    [4] Wolfgang MJ, Triantafyllou MS, Yue DKP. Visualization of complex near-body transport processes in flexible-body propulsion.Journal of Visualization, 1999, 2(2): 143-151doi:10.1007/BF03181517
    [5] Cheng B, Tu Z, Goerig E, et al. Swimming behaviour of silver carp (Hypophthalmichthys molitrix) in response to turbulent flow induced by a D‐cylinder.Journal of Fish Biology, 2022, 100(2): 486-497doi:10.1111/jfb.14958
    [6] Sánchez-Rodríguez J, Celestini F, Raufaste C, et al. Proprioceptive mechanism for bioinspired fish swimming.Physical Review Letters, 2021, 126(23): 234501
    [7] Sfakiotakis M, Lane DM, Davies JBC. Review of fish swimming modes for aquatic locomotion.IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252doi:10.1109/48.757275
    [8] Lighthill MJ. Large-amplitude elongated-body theory of fish locomotion.Proceedings of the Royal Society of London, 1971, 179(1055): 125-138
    [9] Weihs D. A hydrodynamical analysis of fish turning manoeuvres.Proceedings of the Royal Society B:Biological Sciences, 1972, 182(1066): 59-72
    [10] Gibb AC, Jayne BC, Lauder GV. Kinematics of pectoral fin locomotion in the bluegill sunfish lepomis macrochirus.Journal of Experimental Biology, 1994, 189(1): 133-161doi:10.1242/jeb.189.1.133
    [11] Standen EM. Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (oncorhynchus mykiss).Journal of Experimental Biology, 2008, 211(18): 2931-2942doi:10.1242/jeb.018572
    [12] Kazakidi A, Tsakiris DP, Ekaterinaris JA. Propulsive efficiency in drag-based locomotion of a reduced-size swimmer with various types of appendages.Computers&Fluids, 2018, 167: 241-248
    [13] Tytell ED. The hydrodynamics of eel swimming: I. Wake structure.Journal of Experimental Biology, 2004, 207(11): 1825-1841
    [14] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.Journal of Experimental Biology, 2009, 212(4): 576-592doi:10.1242/jeb.025007
    [15] Cui Z, Jiang H. Numerical study of complex modal characteristics in anguilliform mode of fish swimming.Journal of Mechanical Science and Technology, 2021, 35(10): 4511-4521doi:10.1007/s12206-021-0921-5
    [16] 郭春雨, 徐鹏, 韩阳等. 自由面对潜艇尾流场流动特性影响研究. 力学学报, 2021, 53(01): 156-167

    Guo Chunyu, Xu Peng, Han Yang, et al. Research on the influence of free surface on the flow characteristics of submarine wake.Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(01): 156-167(in Chinese))
    [17] Liu DM, Xu WL, Zhao YZ. Experimental study of the flow field of a high head model pump turbine based on PIV technique.Journal of Hydrodynamics, 2021, 33(5): 1045-1055doi:10.1007/s42241-021-0092-y
    [18] Jardin T, Choi J, Colonius T. An empirical correlation between lift and the properties of leading-edge vortices.Theoretical and Computational Fluid Dynamics, 2021, 35(4): 437-448doi:10.1007/s00162-021-00567-x
    [19] 郭春雨, 徐鹏, 韩阳等. 船舶艉流场受预旋定子影响试验研究. 哈尔滨工程大学学报, 2021, 42(10): 1395-1402

    Guo Chunyu, Xu Peng, Han Yang, et al. Experimental study on the influence of pre-swirl stator on the fluid field of ship sterns.Journal of Harbin Engineering University, 2021, 42(10): 1395-1402(in Chinese))
    [20] Kim M, Lee H, Hwang W. Experimental study on the flow interaction between two synthetic jets emanating from a dual round orifice.Experimental Thermal and Fluid Science, 2021, 126(4): 110400
    [21] Stamhuis EJ, Videler JJ. Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry.Journal of Experimental Biology, 1995, 198: 283-294
    [22] 韩定强, 赵行, 武逸凡等. 基于PIV的仿生鲸尾型搅拌桨反应器流场研究. 西南师范大学学报(自然科学版), 2022, 47(02): 91-98

    Han Dingqiang, Zhao Xing, Wu Yifan, et al. On Flow Field of a Bionic Whale Tail Turbine Agitator Based on PIV.Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(02): 91-98(in Chinese))
    [23] Shih AM, Mendelson L, Techet AH. Archer fish jumping prey capture: kinematics and hydrodynamics.Journal of Experimental Biology, 2017, 220(8): 1411-1422doi:10.1242/jeb.145623
    [24] Mwaffo V, Peng Z, Cruz SR, et al. Zebrafish swimming in the flow: a particle image velocimetry study.Peerj, 2017, 5(1): e4041
    [25] McHenry MJ. The mechanical scaling of coasting in zebrafish (Daniorerio).Journal of Experimental Biology, 2005, 208(12): 2289-2301
    [26] Mignano AP, Kadapa S, Tangorra JL, et al. Passing the wake: Using multiple fins to shape forces for swimming.Biomimetics, 2019, 4(1): 23doi:10.3390/biomimetics4010023
    [27] 杨国党, 胡晓, 张奔等. 基于粒子图像测速技术(PIV)的自由游泳草鱼动力学特征分析. 大连海洋大学学报, 2021, 36(05): 833-841

    Yang Guodang, Hu Xiao, Zhang Ben, et al. Analysis of hydrodynamic characteristics of grass carp Ctenopharyngodon idellus juveniles under free-swimming status based on Particle Image Velocimetry (PIV).Journal of Dalian Fisheries University, 2021, 36(05): 833-841(in Chinese))
    [28] Drucker EG, Lauder GV. Experimental hydrodynamics of fish locomotion: Functional insights from wake visualization.Integrative and Comparative Biology, 2002
    [29] Sakakibara J, Nakagawa M, Yoshida M. Stereo-PIV study of flow around a maneuvering fish.Experiments in Fluids, 2004, 36(2): 282-293doi:10.1007/s00348-003-0720-z
    [30] Tytell ED, Lauder GV. Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus.Journal of Experimental Biology, 2008, 211(21): 3359-69doi:10.1242/jeb.020917
    [31] Ting SC, Yang JT. Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition.Physics of Fluids, 2009, 21(4): 33
    [32] Tu H, Wang FJ, Wang HP, et al. Experimental study on wake flows of a live fish with time-resolved tomographic PIV and pressure reconstruction.Experiments in Fluids, 2022, 63: 25doi:10.1007/s00348-021-03378-2
    [33] Lumley JL. The structure of inhomogeneous turbulent flows//Atmospheric Turbulence and Radio Wave Propagation, 1967: 166-178
    [34] Sirovich L. Turbulence and the dynamics of coherent structures. I-Coherent structures. II -Symmetries and transformations. III-Dynamics and scaling.Quarterly of Applied Mathematics, 1987, 45(3): 910463
    [35] Aubry N, Guyonnet R, Lima R. Spatiotemporal analysis of complex signals: Theory and applications.Journal of Statistical Physics, 1991, 64(3-4): 683-739doi:10.1007/BF01048312
    [36] Zhang Q, Liu Y, Wang S. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition.Journal of Fluids&Structures, 2014, 49: 53-72
    [37] Liu Y, Zhang Q. Dynamic mode decomposition of separated flow over a finite blunt plate: Time-resolved particle image velocimetry measurements.Experiments in Fluids, 2015, 56(7): 148doi:10.1007/s00348-015-2021-8
    [38] Zhang Q, Liu Y. Influence of incident vortex street on separated flow around a finite blunt plate: PIV measurement and POD analysis.Journal of Fluids and Structures, 2015, 55: 463-483doi:10.1016/j.jfluidstructs.2015.03.017
    [39] Paik BG, Kim KY, Lee JY, et al. Analysis of unstable vortical structure in a propeller wake affected by a simulated hull wake.Experiments in Fluids, 2009, 48(6): 1121-1133
    [40] 胡建军, 朱晴, 王美达等. 近距离下射流冲击平板PIV实验研究. 力学学报, 2020, 52(05): 1350-1361

    Hu Jianjun, Zhu Qing, Wang Meida, et al. PIV measurement of close impinging jet on flat plate.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(05): 1350-1361(in Chinese))
    [41] Meyer KE, Pedersen JM, Ozcan O. Turbulent jet in crossflow analyzed with proper orthogonal decomposition.Journal of Fluid Mechanics, 2007, 583: 199-228doi:10.1017/S0022112007006143
    [42] Song CZ, Yuille AL. FORMS: A flexible object recognition and modeling system.International Journal of Computer Vision, 1996, 20(3): 187-212
    [43] Jeong J, Hussain F. On the identification of a vortex.Journal of Fluid Mechanics, 1995, 332(1): 339-363
    [44] Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows.Studying Turbulence Using Numerical Simulation Databases, 1988, 2(1): 193-208
    [45] Adrian RJ, Christensen KT, Liu ZC. Analysis and interpretation of instantaneous turbulent velocity fields.Experiments in Fluids, 2000, 29(3): 275-290doi:10.1007/s003489900087
  • 加载中
图(15)
计量
  • 文章访问数:877
  • HTML全文浏览量:281
  • PDF下载量:126
  • 被引次数:0
出版历程
  • 收稿日期:2022-04-12
  • 录用日期:2022-05-31
  • 网络出版日期:2022-06-01
  • 刊出日期:2022-09-18

目录

    /

      返回文章
      返回
        Baidu
        map