EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲波彩虹捕获效应及其在能量俘获中的应用

王芳隆,沈一舟,徐艳龙,周生喜,杨智春

downloadPDF
王芳隆, 沈一舟, 徐艳龙, 周生喜, 杨智春. 弯曲波彩虹捕获效应及其在能量俘获中的应用. 力学学报, 2022, 54(10): 2695-2707 doi: 10.6052/0459-1879-22-107
引用本文: 王芳隆, 沈一舟, 徐艳龙, 周生喜, 杨智春. 弯曲波彩虹捕获效应及其在能量俘获中的应用. 力学学报, 2022, 54(10): 2695-2707doi:10.6052/0459-1879-22-107
Wang Fanglong, Shen Yizhou, Xu Yanlong, Zhou Shengxi, Yang Zhichun. Rainbow trapping of flexural waves and its application in energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707 doi: 10.6052/0459-1879-22-107
Citation: Wang Fanglong, Shen Yizhou, Xu Yanlong, Zhou Shengxi, Yang Zhichun. Rainbow trapping of flexural waves and its application in energy harvesting.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707doi:10.6052/0459-1879-22-107

弯曲波彩虹捕获效应及其在能量俘获中的应用

doi:10.6052/0459-1879-22-107
基金项目:广东省基础与应用基础研究基金(2022A1515011497)、国家自然科学基金(12072267)和陕西省创新人才推进计划-青年科技新星项目(2020KJXX-021)资助项目
详细信息
    作者简介:

    徐艳龙, 副教授, 主要研究方向: 弹性波超材料、超构表面. E-mail:xuyanlong@nwpu.edu.cn

  • 中图分类号:Q347.4+1

RAINBOW TRAPPING OF FLEXURAL WAVES AND ITS APPLICATION IN ENERGY HARVESTING

  • 摘要:弹性波在色散关系经过设计的梯度结构中传播时会产生空间分频现象和波场能量增强现象, 即不同频率的弹性波会在结构的不同位置停止向前传播并发生能量聚集, 这就是弹性波彩虹捕获效应. 其相关研究成果可以促进结构健康监测、振动控制以及能量俘获等领域的发展. 本文通过所设计的梯度结构梁, 系统地研究了弯曲波彩虹捕获效应及其在压电能量俘获中的应用. 首先, 利用传递矩阵法获得了梯度结构梁元胞能带结构的解析解, 进而分析了弯曲波彩虹捕获效应的产生机理: 不同频率的弯曲波会在不同元胞附近群速度减小到零, 从而停止向前传播并发生反射; 入射波和反射波的叠加, 以及群速度减小带来的能量聚集, 会显著增强反射处的波场能量. 其次, 通过有限元仿真和实验验证了弯曲波彩虹捕获效应的空间分频现象和波场能量增强现象. 最后, 通过有限元多物理场耦合仿真和实验, 研究了粘贴PVDF压电薄膜的梯度结构梁相对于均匀梁的弯曲波能量俘获效果及其随入射波频率的变化规律. 结果表明, 在弯曲波彩虹捕获效应发生频带内, 粘贴在梯度结构梁上的PVDF压电薄膜的输出电压约为粘贴在均匀梁相应位置处的PVDF压电薄膜的输出电压的2倍.

  • 图 1梯度结构梁及其元胞

    Figure 1.Beam with graded pillars and its unit cell

    图 2弯曲波彩虹捕获效应的产生机理

    Figure 2.Generation mechanism of rainbow trapping of flexural waves

    图 3频域有限元仿真模型(单位: mm)

    Figure 3.Finite element simulation model in frequency domain (unit: mm)

    图 4弯曲波彩虹捕获效应(续)

    Figure 4.Rainbow trapping of flexural waves (continued)

    图 5f0为2876 Hz的弯曲波在梯度结构梁中的传播过程

    Figure 5.Propagation of flexural waves with center frequencyf0of 2876 Hz in beam with graded pillars

    图 6波场能量增强现象的产生机理验证(续)

    Figure 6.Generation mechanism of wave field energy enhancement (continued)

    图 7弯曲波彩虹捕获效应实验设置

    Figure 7.Experiment setting for rainbow trapping of flexural waves

    图 8弯曲波彩虹捕获效应实验结果

    Figure 8.Experimental results of rainbow trapping of flexural waves

    图 9能量俘获有限元仿真模型

    Figure 9.Finite element simulation model of energy harvesting

    图 10各单元处电压比与弯曲波频率的关系(续)

    Figure 10.Relationship between voltage ratio at each unit and flexural wave frequency (continued)

    图 11弯曲波能量俘获实验设置

    Figure 11.Experiment setting for flexural wave energy harvesting

    图 12f0为4681 Hz的弯曲波在第1个单元处的能量俘获实验

    Figure 12.Energy harvesting from flexural wave with center frequency of 4681 Hz at the 1st unit

    图 13f0为2253 Hz的弯曲波在第8个单元处的能量俘获实验

    Figure 13.Energy harvesting from flexural wave with center frequency of 2253 Hz at the 8th unit

    图 14f0为1906 Hz的弯曲波在第15个单元处的能量俘获实验

    Figure 14.Energy harvesting from flexural wave with center frequency of 1906 Hz at the 15th unit

    表 1元胞的零群速度点频率 ${\boldsymbol{f}}_{\boldsymbol{n}}$ 和两相邻元胞零群速度点频率的中间频率 ${\boldsymbol{f}}_{\boldsymbol{n}}^{{\boldsymbol{n}}{\bf{+1}}}$

    Table 1.Zero group velocity point frequency ${f}_{n}$ of unit cells and intermediate frequency ${f}_{n}^{n+1}$ of zero group velocity point frequencies of two adjacent unit cells

    n Hn/mm fn/Hz fnn+ 1/Hz
    1 6.0 4851 4681
    2 6.4 4510 4352
    3 6.8 4194 4049
    4 7.2 3904 3771
    5 7.6 3637 3516
    6 8.0 3394 3283
    7 8.4 3171 3070
    8 8.8 2969 2876
    9 9.2 2783 2699
    10 9.6 2614 2537
    11 10.0 2459 2389
    12 10.4 2318 2253
    13 10.8 2187 2127
    14 11.2 2067 2012
    15 11.6 1957 1906
    16 12.0 1855
    下载: 导出CSV

    表 2PVDF的参数

    Table 2.Parameters of PVDF

    Parameter Value
    size/mm3 20 × 15 × 0.11
    d31/(C·N−1) 2.3 × 10−11
    relative permittivity 12
    elastic modulus/GPa 2
    density/(kg·m−3) 1780
    下载: 导出CSV

    表 3梯度结构梁与均匀梁俘能效果

    Table 3.Energy harvesting performance of beam with graded pillars and uniform beam

    n f0/Hz Type Normalized voltage
    output rate /
    (mV·mm−1)
    Voltage ratio
    $\left(\dfrac{ { {\text{graded} } } }{ { {\text{uniform} } } }\right)$
    1 4681 graded 22.36 1.95
    uniform 11.47
    8 2876 graded 22.96 1.91
    uniform 12.01
    15 1906 graded 30.72 2.45
    uniform 12.52
    下载: 导出CSV
  • [1] Doyle JF. 结构中波的传播. 吴斌, 何存富, 焦敬品等译. 北京: 科学出版社, 2013

    Doyle JF. Wave Propagation in Structures. Wu Bin, He Cunfu, Jiao Jingpin, et al., trans. Beijing: Science Press, 2013 (in Chinese)
    [2] Liu ZY, Zhang XX, Mao YW, et al. Locally resonant sonic materials.Science, 2000, 289(5485): 1734-1736doi:10.1126/science.289.5485.1734
    [3] Li Y, Baker E, Reissman T, et al. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting.Applied Physics Letters, 2017, 111(25): 251903doi:10.1063/1.5008674
    [4] Hu GB, Tang LH, Das R. Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting.Journal of Applied Physics, 2018, 123(5): 055107doi:10.1063/1.5011999
    [5] Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites.Physical Review Letters, 1993, 71(13): 2022-2025doi:10.1103/PhysRevLett.71.2022
    [6] 温熙森, 温激鸿, 郁殿龙等. 声子晶体. 北京: 国防工业出版社, 2009

    Wen Xisen, Wen Jihong, Yu Dianlong, et al. Phononic Crystal. Beijing: National Defence Industry Press, 2009 (in Chinese))
    [7] 季宏丽, 黄薇, 裘进浩等. 声学黑洞结构应用中的力学问题. 力学进展, 2017, 47(1): 333-384 (Ji Hongli, Huang Wei, Qiu Jinhao, et al. Mechanics problems in application of acoustic black hole structures.Advances in Mechanics, 2017, 47(1): 333-384 (in Chinese)
    [8] Krylov VV. Acoustic black holes for flexural waves: a smart approach to vibration damping.Procedia Engineering, 2017, 199: 56-61doi:10.1016/j.proeng.2017.09.150
    [9] Pelat A, Gautier F, Conlon SC, et al. The acoustic black hole: a review of theory and applications.Journal of Sound and Vibration, 2020, 476: 115316
    [10] 黄薇, 季宏丽, 裘进浩等. 二维声学黑洞对弯曲波的能量聚集效应. 振动与冲击, 2017, 36(9): 51-57, 92 (Huang Wei, Ji Hongli, Qiu Jinhao, et al. Energy focusing effect of two-dimensional acoustic black hole on flexural waves.Journal of Vibration and Shock, 2017, 36(9): 51-57, 92 (in Chinese)
    [11] Tsakmakidis KL, Boardman AD, Hess O. ‘Trapped rainbow’ storage of light in metamaterials.Nature, 2007, 450(7168): 397-401doi:10.1038/nature06285
    [12] Tian ZH, Yu LY. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.Scientific Reports, 2017, 7(1): 40004doi:10.1038/srep40004
    [13] Arreola-Lucas A, Báez G, Cervera F, et al. Experimental evidence of rainbow trapping and bloch oscillations of torsional waves in chirped metallic beams.Scientific Reports, 2019, 9(1): 1860doi:10.1038/s41598-018-37842-7
    [14] Xu YL, Peng P. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface.Journal of Applied Physics, 2015, 117(3): 035103doi:10.1063/1.4905948
    [15] Xu YL. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media.Physics Letters A, 2015, 379(30): 1752-1756
    [16] Zhao DG, Li Y, Zhu XF. Broadband Lamb wave trapping in cellular metamaterial plates with multiple local resonances.Scientific Reports, 2015, 5(1): 9376doi:10.1038/srep09376
    [17] Li P, Cheng L. Shear horizontal wave propagation in a periodic stubbed plate and its application in rainbow trapping.Ultrasonics, 2018, 84: 244-253doi:10.1016/j.ultras.2017.11.010
    [18] De Ponti JM, Colombi A, Ardito R, et al. Graded elastic metasurface for enhanced energy harvesting.New Journal of Physics, 2020, 22(1): 013013
    [19] De Ponti JM, Colombi A, Riva E, et al. Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting.Applied Physics Letters, 2020, 117(14): 143902doi:10.1063/5.0023544
    [20] Chaplain GJ, Pajer D, De Ponti JM, et al. Delineating rainbow reflection and trapping with applications for energy harvesting.New Journal of Physics, 2020, 22(6): 063024doi:10.1088/1367-2630/ab8cae
    [21] Chaplain GJ, De Ponti JM, Aguzzi G, et al. Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems.Physical Review Applied, 2020, 14(5): 054035doi:10.1103/PhysRevApplied.14.054035
    [22] De Ponti JM. Graded Elastic Metamaterials for Energy Harvesting. Berlin: Springer, 2021
    [23] Wang B, Huang Y, Zhou WJ, et al. Metamaterial beam for flexural wave resonance rainbow trapping and piezoelectric energy harvesting.Journal of Applied Physics, 2021, 129(6): 064505doi:10.1063/5.0040029
    [24] Colombi A, Colquitt D, Roux P, et al. A seismic metamaterial: the resonant metawedge.Scientific Reports, 2016, 6(1): 27717doi:10.1038/srep27717
    [25] Colombi A, Ageeva V, Smith RJ, et al. Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.Scientific Reports, 2017, 7(1): 6750doi:10.1038/s41598-017-07151-6
    [26] Skelton EA, Craster RV, Colombi A, et al. The multi-physics metawedge: graded arrays on fluid-loaded elastic plates and the mechanical analogues of rainbow trapping and mode conversion.New Journal of Physics, 2018, 20(5): 053017doi:10.1088/1367-2630/aabecf
    [27] Chaplain GJ, Craster RV. Flat lensing by graded line meta-arrays.Physical Review B, 2019, 99(22): 220102doi:10.1103/PhysRevB.99.220102
    [28] De Ponti JM, Iorio L, Riva E, et al. Selective mode conversion and rainbow trapping via graded elastic waveguides.Physical Review Applied, 2021, 16: 034028doi:10.1103/PhysRevApplied.16.034028
    [29] Shen YZ, Xu YL, Liu F, et al. 3D-printed meta-slab for focusing flexural waves in broadband.Extreme Mechanics Letters, 2021, 48: 101410doi:10.1016/j.eml.2021.101410
    [30] Cao LY, Yang ZC, Xu YL, et al. Disordered elastic metasurfaces.Physical Review Applied, 2020, 13(1): 014054doi:10.1103/PhysRevApplied.13.014054
    [31] 苟文选, 王安强. 材料力学. 北京: 科学出版社, 2017

    Gou Wenxuan, Wang Anqiang. Mechanics of Materials. Beijing: Science Press, 2017 (in Chinese))
  • 加载中
图(14)/ 表(3)
计量
  • 文章访问数:878
  • HTML全文浏览量:299
  • PDF下载量:226
  • 被引次数:0
出版历程
  • 收稿日期:2022-03-15
  • 录用日期:2022-05-09
  • 网络出版日期:2022-05-10
  • 刊出日期:2022-10-18

目录

    /

      返回文章
      返回
        Baidu
        map