EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化迭代步长的两种改进增量谐波平衡法

黄建亮,张兵许,陈树辉

downloadPDF
黄建亮, 张兵许, 陈树辉. 优化迭代步长的两种改进增量谐波平衡法. 力学学报, 2022, 54(5): 1353-1363 doi: 10.6052/0459-1879-22-042
引用本文: 黄建亮, 张兵许, 陈树辉. 优化迭代步长的两种改进增量谐波平衡法. 力学学报, 2022, 54(5): 1353-1363doi:10.6052/0459-1879-22-042
Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration step. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 doi: 10.6052/0459-1879-22-042
Citation: Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration step.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363doi:10.6052/0459-1879-22-042

优化迭代步长的两种改进增量谐波平衡法

doi:10.6052/0459-1879-22-042
基金项目:国家自然科学基金资助项目(11972381)和广东省基础与应用基础研究基金资助项目(2022A1515011809)
详细信息
    作者简介:

    黄建亮, 教授, 主要研究方向: 非线性动力学与控制. E-mail:huangjl@mail.sysu.edu.cn

  • 中图分类号:O322

TWO GENERALIZED INCREMENTAL HARMONIC BALANCE METHODS WITH OPTIMIZATION FOR ITERATION STEP

  • 摘要:增量谐波平衡法(IHB法)是一个半解析半数值的方法, 其最大优点是适合于强非线性系统振动的高精度求解. 然而, IHB法与其他数值方法一样, 也存在如何选择初值的问题, 如初值选择不当, 会存在不收敛的情况. 针对这一问题, 本文提出了两种基于优化算法的IHB法: 一是结合回溯线搜索优化算法(BLS)的改进IHB法(GIHB1), 用来调节IHB法的迭代步长, 使得步长逐渐减小满足收敛条件; 二是引入狗腿算法的思想并结合BLS算法的改进IHB法(GIHB2), 在牛顿-拉弗森(Newton-Raphson)迭代中引入负梯度方向, 并在狗腿算法中引入2个参数来调节BSL搜索方式用于调节迭代的方式, 使迭代方向沿着较快的下降方向, 从而减少迭代的步数, 提升收敛的速度. 最后, 给出的两个算例表明两种改进IHB法在解决初值问题上的有效性.

  • 图 1结合Backtracking line search (BLS)优化算法的IHB法(GIHB1)

    Figure 1.Algorithm for a generalized IHB method with backtracking line search (BLS) method (GIHB1)

    图 2结合BLS算法和狗腿算法的改进IHB法(GIHB2), 其中在狗腿算法的函数 $ {{F}}\left(\alpha\right) $ 中引入2个调节参数 $ \alpha_1 $ $ \alpha_2 $

    Figure 2.Algorithm for a generalized IHB method (GIHB2) combined with BLS method and dogleg method that contains two parameters $ \alpha_1 $ and $ \alpha_2 $ in the function $ {{F}}\left(\alpha\right) $

    图 3不同初值条件下用3种IHB法求解van der Pol振荡方程(32)迭代收敛情况, 其中, $ \varepsilon=5.0 $ , $ \lambda=0.87 $ . 初值分别为:(a) $ \omega_0=0.58 $ , $ a_1=1.0 $ , $ b_1=1.0 $ ; (b) $ \omega_0=0.58 $ , $ a_1=1.0 $ , $ b_1=1.4 $ ; (c) $ \omega_0=0.58 $ , $ a_1=1.8 $ , $ b_1=-0.7 $

    Figure 3.Iteration convergence of solution of van der Pol Eq. (32) with different initial values using the three IHB methods, where $ \varepsilon=5.0 $ , $ \lambda=0.87 $ . Initial values are (a) $ \omega_0=0.58 $ , $ a_1=1.0 $ , $ b_1=1.0 $ ; (b) $ \omega_0=0.58 $ , $ a_1=1.0 $ , $ b_1=1.4 $ ; (c) $ \omega_0=0.58 $ , $ a_1=1.8 $ , $ b_1=-0.7 $

    图 4用3种IHB法求得van der Pol振荡方程(32)解的初值 $ a_1 $ $ b_1 $ 的选定范围, 其他初值为 $ \omega_0=0.58 $ 及其他谐波项系数设为零

    Figure 4.The regions for the initial value for $ a_1 $ and $ b_1 $ of solutions of van der Pol Eq. (32) using the three IHB methods, the other initial value for frequncy is $ \omega_0=0.58 $ and the other initial harmonic terms are set to be zero

    图 5用3种IHB法和四阶龙格-库塔数值法求得范德波尔振荡方程(32)的解, 其中 $ \lambda=0.87 $ $ \varepsilon=5.0 $

    Figure 5.Solutions of van der Pol Eq. (32) by the three IHB methods and numerical integration using the fourth-order R-K method, where $ \lambda=0.87 $ and $ \varepsilon=5.0 $

    图 6不同初值条件下用3种IHB法求得耦合范德波尔振荡方程(38)的解, 其中, $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ $ \gamma_2=0.08 $

    Figure 6.The solutions of coupled van der Pol Eq. (38) with different initial values using the three IHB methods, where $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ , and $ \gamma_2=0.08 $

    图 7不同初值条件下用3种IHB法求解耦合van der Pol振荡方程(38)在 $ \omega\approx 1.0 $ 附近迭代收敛情况, 其中, $ \lambda=0.08 $ , $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ $ \gamma_2=0.08 $

    Figure 7.Iteration convergence of solution of coupled van der Pol Eq. (38) near $ \omega\approx 1.0 $ with different initial values using the three IHB methods, where $ \lambda=0.08 $ , $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ , and $ \gamma_2=0.08 $

    8用3种IHB法和四阶龙格-库塔数值法求得耦合van der Pol振荡方程(38)的解, 其中, $ \lambda=0.08 $ , $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ $ \gamma_2 $ = 0.08

    8.Solutions of coupled van der Pol Eq. (38) by the three IHB methods and numerical integration using the fourth-order R-K method, where $ \lambda=0.08 $ , $ \mu_1=-0.1 $ , $ \mu_2=0.5 $ , $ \gamma_1=0.1 $ , and $\gamma_2=$ 0.08

  • [1] Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic systems.Journal of Applied Mechanics, 1981, 48(4): 959-964doi:10.1115/1.3157762
    [2] Lau SL. The incremental harmonic balance method and its applications to nonlinear vibrations//Proceedings of the International Conference on Structural Dynamics, Vibration, Noise and Control, Hong Kong, 1995: 50-57
    [3] 陈树辉. 强非线性振动系统的定量分析方法. 北京: 科学出版社, 2007

    Chen Shuhui. Quantitative Analysis Methods for Strongly Nonlinear Vibration. Beijing: Science Press, 2007 (in Chinese))
    [4] Cheung YK, Chen SH, Lau SL. Application of the incremental harmonic balance method to cubic non-linearity systems.Journal of Sound and Vibration, 1990, 140(2): 273-286doi:10.1016/0022-460X(90)90528-8
    [5] Liu G, Lv ZR, Liu JK, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method.International Journal of Non-Linear Mechanics, 2018, 100: 10-19doi:10.1016/j.ijnonlinmec.2018.01.004
    [6] Wang S, Hua L, Yang C, et al. Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method.Nonlinear Dynamics, 2018, 92(4): 1719-1732doi:10.1007/s11071-018-4157-6
    [7] Zhou SH, Ren ZH, Zhang YC, et al. Analysis of flow characteristics of granular material unloaded on nonlinear vibration inclined platform.Applied Mathematical Modelling, 2020, 78: 57-74doi:10.1016/j.apm.2019.10.004
    [8] 杜亚震, 王文华, 黄一. 基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究. 振动与冲击, 2020, 39(1): 85-90 (Du Yazhen, Wang Wenhua, Huang Yi. Swing-pitch coupled internal resonance responses of Spar platform based on IHBM.Journal of Vibration and Shock, 2020, 39(1): 85-90 (in Chinese)
    [9] Wang XF, Zhu WD. Dynamic analysis of an automotive belt-drive system with a noncircular sprocket by a modified incremental harmonic balance method.Journal of Vibration and Acoustics, 2016, 139(1): 011009
    [10] Mitra KR, Banik AK, Datta TK, et al. Nonlinear roll oscillation of semisubmersible system and its control.International Journal of Non-Linear Mechanics, 2018, 107: 42-55doi:10.1016/j.ijnonlinmec.2018.10.006
    [11] Li YG, Chen TN, Wang XP. Non-linear dynamics of gear pair with dynamic backlash subjected to combined internal and external periodic excitations.Journal of Vibration and Control, 2016, 22(6): 1693-1703doi:10.1177/1077546314544350
    [12] Zhou SH, Liu J, Li CF, et al. Nonlinear behavior of a spur gear pair transmission system with backlash.Journal of Vibroengineering, 2014, 16(8): 3850-3861
    [13] Wang XF, Zhu WD, Liu M. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays.Nonlinear Dynamics, 2020, 100: 1457-1467doi:10.1007/s11071-020-05535-4
    [14] Cheng C, Li SM, Wang Y, et al. Resonance response of a quasi-zero stiffness vibration isolator considering a constant force.Journal of Vibration Engineering&Technologies, 2018, 6(6): 471-481
    [15] Li YP, Chen SY. Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method.Nonlinear Dynamics, 2016, 83(1): 941-950
    [16] Karličić D, Chatterjee T, Cajić M, et al. Parametrically amplified Mathieu-Duffing nonlinear energy harvesters.Journal of Sound and Vibration, 2020, 488: 115677doi:10.1016/j.jsv.2020.115677
    [17] Shen JH, Lin KC, Chen SH, et al. Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method.Nonlinear Dynamics, 2008, 52(4): 403-414doi:10.1007/s11071-007-9289-z
    [18] Shen YJ, Wen SF, Li XH, et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method.Nonlinear Dynamics, 2016, 85(3): 1457-1467doi:10.1007/s11071-016-2771-8
    [19] Huang JL, Zhu WD. An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies.Nonlinear Dynamics, 2017, 90(2): 1015-1033doi:10.1007/s11071-017-3708-6
    [20] Huang JL, Zhu WD. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation.Journal of Vibration and Acoustics, 2017, 139(2): 021010doi:10.1115/1.4035135
    [21] Huang JL, Zhou WJ, Zhu WD. Quasi-periodic motions of high-dimensional nonlinear models of a translating beam with a stationary load subsystem under harmonic boundary excitation.Journal of Sound and Vibration, 2019, 462: 114870doi:10.1016/j.jsv.2019.114870
    [22] 窦苏广, 叶敏, 张伟. 基于增量谐波平衡的参激系统非线性识别法. 力学学报, 2010, 42(2): 332-336 (Dou Suguang, Ye Min, Zhang Wei. Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method.Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 332-336 (in Chinese)doi:10.6052/0459-1879-2010-2-2008-770
    [23] 苏鸾鸣, 叶敏. 高维非线性振动系统参数识别. 力学学报, 2012, 44(2): 425-436 (Su Luanming, Ye Min. Parametric identification for high-dimensional nonlinear vibration system.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436 (in Chinese)doi:10.6052/0459-1879-2012-2-20120227
    [24] 吴健, 叶敏, 李兴等. 黏弹性复合材料梁动力学实验建模的研究. 力学学报, 2011, 43(3): 586-597 (Wu Jian, Ye Min, Li Xing, et al. Research of the dynamic experimental modeling for viscoelastic composite beam.Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 586-597 (in Chinese)
    [25] 朱辰钟, 叶敏. 参强联合作用非线性结构动力学实验建模. 力学学报, 2013, 45(1): 116-128 (Zhu Chenzhong, Ye Min. Research of dynamic experimental modeling for nonlinear structure under parametric and forced excitation.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 116-128 (in Chinese)
    [26] Wang XF, Zhu WD. A modified incremental harmonic balance method based on the fast Fourier transform and Broyden's method.Nonlinear Dynamics, 2015, 81(1): 981-989
    [27] Zhou SH, Song GQ, Li YM, et al. Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method.Nonlinear Dynamics, 2019, 98(1): 75-94doi:10.1007/s11071-019-05172-6
    [28] Zheng ZC, Lu ZR, Chen YM, et al. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system.Journal of Applied Mechanics, 2021, 89(2): 021001
    [29] Dennis JE, Schnabel RB. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, 1996
    [30] Nocedal J, Wright SJ. Numerical Optimization (Second Edition). Springer, 2006
    [31] Motta V, Malzacher L. Open-loop and closed-loop flow control based on Van der Pol modeling.Acta Mechanica, 2018, 229(1): 389-401doi:10.1007/s00707-017-1975-4
    [32] Akhtar I, Marzouk OA, Nayfeh AH. A van der Pol-Duffing oscillator model of hydrodynamic forces on canonical structures.Journal of Computational and Nonlinear Dynamics, 2009, 4(4): 041006doi:10.1115/1.3192127
    [33] Facchinettia ML, Langrea E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations.Journal of Fluids and Structures, 2004, 19: 123-140doi:10.1016/j.jfluidstructs.2003.12.004
    [34] Burton TD. Non-linear oscillator limit cycle analysis using a time transformation approach.International Journal of Non-linear Mechanics, 1982, 17: 7-19doi:10.1016/0020-7462(82)90033-6
    [35] Barron MA, Sen M. Synchronization of four coupled van der Pol oscillators.Nonlinear Dynamics, 2009, 56: 357-367doi:10.1007/s11071-008-9402-y
    [36] Siewe RT, Talla AF, Woafo P. Experimental synchronization of two Van der Pol oscillators with nonlinear and delayed unidirectional coupling.International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(6): 515-523doi:10.1515/ijnsns-2017-0024
    [37] Lau SL, Yuen SW. The Hopf bifurcation and limit cycle by the incremental harmonic balance method.Computer Methods in Applied Mechanics and Engineering, 1991, 91: 1109-1121doi:10.1016/0045-7825(91)90065-E
    [38] Xu Z, Lau SL. Asymptotic method for nonlinear autonomous system with two degrees of freedom//Proc. Asia Vibration Conference '89, 1989: 69-74
  • 加载中
图(9)
计量
  • 文章访问数:816
  • HTML全文浏览量:246
  • PDF下载量:147
  • 被引次数:0
出版历程
  • 收稿日期:2022-01-21
  • 录用日期:2022-03-02
  • 网络出版日期:2022-03-03
  • 刊出日期:2022-05-01

目录

    /

      返回文章
      返回
        Baidu
        map