EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合干摩擦的准零刚度隔振系统的亚谐共振

牛江川,张婉洁,申永军,王军

downloadPDF
牛江川, 张婉洁, 申永军, 王军. 复合干摩擦的准零刚度隔振系统的亚谐共振. 力学学报, 2022, 54(4): 1092-1101 doi: 10.6052/0459-1879-21-680
引用本文: 牛江川, 张婉洁, 申永军, 王军. 复合干摩擦的准零刚度隔振系统的亚谐共振. 力学学报, 2022, 54(4): 1092-1101doi:10.6052/0459-1879-21-680
Niu Jiangchuan, Zhang Wanjie, Shen Yongjun, Wang Jun. Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101 doi: 10.6052/0459-1879-21-680
Citation: Niu Jiangchuan, Zhang Wanjie, Shen Yongjun, Wang Jun. Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101doi:10.6052/0459-1879-21-680

复合干摩擦的准零刚度隔振系统的亚谐共振

doi:10.6052/0459-1879-21-680
基金项目:国家自然科学基金(11872254, U1934201, 11802183)和河北省自然科学基金(A2021210012)资助项目
详细信息
    作者简介:

    牛江川, 教授, 主要研究方向: 机械系统动力学与振动控制. E-mail:menjc@stdu.edu.cn

  • 中图分类号:O322

SUBHARMONIC RESONANCE OF QUASI-ZERO-STIFFNESS VIBRATION ISOLATION SYSTEM WITH DRY FRICTION DAMPER

  • 摘要:利用增量平均法研究了复合干摩擦阻尼器的准零刚度非线性隔振系统在外部简谐激励作用下的1/3次亚谐共振. 首先利用平均法得到了复合干摩擦的准零刚度隔振系统的主共振近似解析解, 然后在系统主共振近似解析解的基础上将系统的亚谐共振响应看作增量, 并利用平均法得到了准零刚度隔振系统的亚谐共振近似解析解. 利用李雅普诺夫方法得到了准零刚度隔振系统主共振和亚谐共振稳态解的稳定性条件, 并推导了系统1/3次亚谐共振的存在条件. 根据近似解析解分别得到了复合干摩擦的准零刚度隔振系统的主共振和亚谐共振力传递率. 利用数值解验证了准零刚度隔振系统主共振和亚谐共振近似解析解的准确性. 利用系统的近似解析解详细分析了准零刚度参数和干摩擦力对系统主共振和亚谐共振的幅频响应以及力传递特性的影响. 分析结果表明, 通过选取合适的干摩擦力参数, 可以消除准零刚度隔振系统在主共振区域的亚谐共振. 通过复合干摩擦阻尼器不但可以提高准零刚度隔振系统在低频区域的振幅抑制效果, 而且可以降低准零刚度隔振系统的起始隔振频率, 但是会增大系统在有效隔振频带内的力传递率.

  • 图 1准零刚度隔振系统模型

    Figure 1.Quasi-zero-stiffness vibration isolation system model

    图 2水平弹簧在垂直方向的弹性恢复力位移曲线

    Figure 2.Restoring force-displacement curve of horizontal springs in vertical direction

    3幅频响应响应曲线对比

    3.Comparison of amplitude-frequency response curves

    3幅频响应响应曲线对比(续)

    3.Comparison of amplitude-frequency response curves (continued)

    4力传递率对比

    4.Comparison of force transmissibility

    5不同准零刚度参数的振动控制效果

    5.Effect of different quasi-zero-stiffness parameters

    5不同准零刚度参数的振动控制效果(续)

    5.Effect of different quasi-zero-stiffness parameters (continued)

    6不同干摩擦力的振动控制效果

    6.Effect of different dry friction force

  • [1] 徐鉴. 振动控制研究进展综述. 力学季刊, 2015, 36(4): 547-565 (Xu Jian. Advances of research on vibration control.Chinese Quarterly of Mechanics, 2015, 36(4): 547-565 (in Chinese)
    [2] 陆泽琦, 陈立群. 非线性被动隔振的若干进展. 力学学报, 2017, 49(3): 550-564 (Lu Zeqi, Chen Liqun. Some recent progresses in nonlinear passive isolations of vibrations.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564 (in Chinese)doi:10.6052/0459-1879-17-064
    [3] 高雪, 陈前, 刘先斌. 一类分段光滑隔振系统的非线性动力学设计方法. 力学学报, 2016, 48(1): 192-200 (Gao Xue, Chen Qian, Liu Xianbin. Nonlinear dynamics design for piecewise smooth vibration isolation system.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200 (in Chinese)doi:10.6052/0459-1879-15-099
    [4] Ding H, Zhu MH, Chen LQ. Nonlinear vibration isolation of a viscoelastic beam.Nonlinear Dynamics, 2018, 92: 325-349doi:10.1007/s11071-018-4058-8
    [5] Ibrahim R. Recent advances in nonlinear passive vibration isolators.Journal of Sound and Vibration, 2008, 314(3): 371-452
    [6] Carrella A, Brennan MJ, Waters TP, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic- stiffness.International Journal of Mechanical Sciences, 2012, 55(1): 22-29doi:10.1016/j.ijmecsci.2011.11.012
    [7] Zhao F, Ji J, Luo Q, et al. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band.Nonlinear Dynamics, 2021, 104: 349-365doi:10.1007/s11071-021-06296-4
    [8] Wang Y, Li S, Cheng C, et al. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension.Journal of Mechanical Science and Technology, 2018, 32: 2973-2985doi:10.1007/s12206-018-0601-2
    [9] Zeng R, Wen G, Zhou J, et al. Limb-inspired bionic quasi-zero stiffness vibration isolator.Acta Mechanica Sinica, 2021, 37: 1152-1167doi:10.1007/s10409-021-01070-6
    [10] Liu Y, Xu L, Song C, et al. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping.Archive of Applied Mechanics, 2019, 89: 1743-1759doi:10.1007/s00419-019-01541-0
    [11] 吴波, 艾星然. 准零刚度悬架的低频隔振仿真分析. 噪声与振动控制, 2021, 41(3): 127-134 (Wu Bo, Ai Xingran. Simulation analysis of low-frequency vibration isolation of quasi-zero stiffness suspensions.Noise and Vibration Control, 2021, 41(3): 127-134 (in Chinese)doi:10.3969/j.issn.1006-1355.2021.03.022
    [12] Cheng C, Li S, Wang Y, et al. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping.Nonlinear Dynamics, 2017, 87: 2267-2279doi:10.1007/s11071-016-3188-0
    [13] Zhou X, Sun X, Zhao D, et al. The design and analysis of a novel passive quasi-zero stiffness vibration isolator.Journal of Vibration Engineering&Technologies, 2021, 9: 225-245
    [14] 徐道临, 张月英, 周加喜等. 一种准零刚度隔振器的特性分析与实验研究. 振动与冲击, 2014, 33(11): 208-213 (Xu Daolin, Zhang Yueying, Zhou Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness.Journal of Vibration and Shock, 2014, 33(11): 208-213 (in Chinese)
    [15] Wang Q, Zhou J, Wang K, et al. Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs.Science China Technological Sciences, 2021, 64: 2255-2271doi:10.1007/s11431-020-1804-7
    [16] Gao X, Teng HD. Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping.Nonlinear Dynamics, 2020, 102: 2205-2227doi:10.1007/s11071-020-06063-x
    [17] Wang K, Zhou J, Chang Y, et al. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism.Nonlinear Dynamics, 2020, 101: 755-773doi:10.1007/s11071-020-05806-0
    [18] Wen G, He J, Liu J, et al. Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs.Nonlinear Dynamics, 2021, 106: 309-321doi:10.1007/s11071-021-06835-z
    [19] Zhang Z, Zhang YW, Ding H. Vibration control combining nonlinear isolation and nonlinear absorption.Nonlinear Dynamics, 2020, 100: 2121-2139doi:10.1007/s11071-020-05606-6
    [20] Liu C, Yu K, Liao B, et al. Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter,Communications in Nonlinear Science and Numerical Simulation, 2021, 95: 105654
    [21] Donmez A, Cigeroglu E, Ozgen GO. An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping.Nonlinear Dynamics, 2020, 101: 107-121doi:10.1007/s11071-020-05685-5
    [22] Ding H, Chen LQ. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators.Nonlinear Dynamics, 2019, 95: 2367-2382doi:10.1007/s11071-018-4697-9
    [23] 赵含, 杨志荣, 塔娜等. 基于准零刚度隔振器的船舶推进轴系纵向减振研究. 振动与冲击, 2020, 39(23): 90-95 (Zhao Han, Yang Zhirong, Ta Na, et al. Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator.Journal of Vibration and Shock, 2020, 39(23): 90-95 (in Chinese)
    [24] 赵权, 李韶华, 冯桂珍. 一种准零刚度车载隔振系统的设计与试验研究. 振动与冲击, 2021, 40(6): 55-63, 183 (Zhao quan, Li Shaohua, Feng Guizhen, et al. Design and test of a quasi-zero-stiffness vehicle vibration isolation system.Journal of Vibration and Shock, 2021, 40(6): 55-63, 183 (in Chinese)
    [25] Liu C, Yu K. Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance.Nonlinear Dynamics, 2020, 100: 95-117doi:10.1007/s11071-020-05509-6
    [26] Wu YG, Li L, Fan Y, et al. Design of semi-active dry friction dampers for steady-state vibration: sensitivity analysis and experimental studies.Journal of Sound and Vibration, 2019, 459: 114850doi:10.1016/j.jsv.2019.114850
    [27] Jaisee S, Yue F, Ooi YH. A state-of-the-art review on passive friction dampers and their applications,Engineering Structures, 2021, 235: 112022
    [28] 丁千, 翟红梅. 机械系统摩擦动力学研究进展. 力学进展, 2013, 43(1): 112-131 (Ding Qian, Zhai Hongmei. The advance in researches of friction dynamics in mechanics system.Advances in Mechanics, 2013, 43(1): 112-131 (in Chinese)
    [29] 章健, 马艳红, 王永锋等. 航空发动机承力结构系统阻尼减振设计方法. 航空动力学报, 2019, 34(11): 2440-2447 (Zhang Jian, Ma Yanhong, Wang Yongfeng, et al. Damping design technology of aero-engine supporting structure system.Journal of Aerospace Power, 2019, 34(11): 2440-2447 (in Chinese)
    [30] Pierre C, Ferri AA, Dowell EH. Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method.Journal of Applied Mechanics, 1985, 52(4): 958-964doi:10.1115/1.3169175
  • 加载中
图(10)
计量
  • 文章访问数:510
  • HTML全文浏览量:220
  • PDF下载量:110
  • 被引次数:0
出版历程
  • 收稿日期:2021-12-21
  • 录用日期:2022-02-10
  • 网络出版日期:2022-02-11
  • 刊出日期:2022-04-18

目录

    /

      返回文章
      返回
        Baidu
        map