EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风过境下大型单桩式海上风机结构动力特性研究

秦梦飞,施伟,柴威,付兴,李昕

downloadPDF
秦梦飞, 施伟, 柴威, 付兴, 李昕. 台风过境下大型单桩式海上风机结构动力特性研究. 力学学报, 2022, 54(4): 881-891 doi: 10.6052/0459-1879-21-606
引用本文: 秦梦飞, 施伟, 柴威, 付兴, 李昕. 台风过境下大型单桩式海上风机结构动力特性研究. 力学学报, 2022, 54(4): 881-891doi:10.6052/0459-1879-21-606
Qin Mengfei, Shi Wei, Chai Wei, Fu Xing, Li Xin. Research on dynamic characteristics of large-scale monopile offshore wind turbine under typhoon event. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 881-891 doi: 10.6052/0459-1879-21-606
Citation: Qin Mengfei, Shi Wei, Chai Wei, Fu Xing, Li Xin. Research on dynamic characteristics of large-scale monopile offshore wind turbine under typhoon event.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 881-891doi:10.6052/0459-1879-21-606

台风过境下大型单桩式海上风机结构动力特性研究

doi:10.6052/0459-1879-21-606
基金项目:国家自然科学基金(52071058, 52071301)、辽宁省兴辽英才计划(XLYC1807208)和中央高校基本业务科研费(DUT20ZD219)资助项目
详细信息
    作者简介:

    施伟, 副教授, 主要研究方向: 海洋可再生能源开发. E-mail:weishi@dlut.edu.cn

  • 中图分类号:TK89

RESEARCH ON DYNAMIC CHARACTERISTICS OF LARGE-SCALE MONOPILE OFFSHORE WIND TURBINE UNDER TYPHOON EVENT

  • 摘要:风机大型化是我国海上风电技术发展的重要方向. 东南沿海是我国海上风电发展的重要基地, 这一区域频繁发生的台风对海上风机的影响不可忽略. 台风风场与常规大风风场有不同的湍流特性, 同时台风期间较高的风速会引起巨大的台风浪. 本文考虑台风经过期间独特的风场及波浪场, 开展风浪联合作用对大型单桩海上风机影响的研究. 基于DTU 10 MW大型单桩风机, 运用一体化分析软件SIMA建立风浪联合作用下大型单桩风机的耦合数值模型, 研究台风经过不同阶段大型风力机的动力响应特性. 计算结果显示, 叶片变桨能有效降低台风经过时风机叶片所受风载荷, 变桨状态下单桩风机所受风载荷主要来源于塔筒. 在台风经过的不同阶段, 大型单桩海上风机结构表现出不同的动力特性. 台风全过程塔筒运动均受波浪激发一阶频率控制, 塔基上方结构动力载荷以惯性载荷为主, FOVS至FEWS阶段及BOVS阶段至BEWS阶段塔筒运动一阶频率处响应能量增长较小, 响应能量向低频及波频转移. 塔基下方泥面线处剪力响应受波频控制, 弯矩响应受一阶频率控制.

  • 图 1FEWS阶段轮毂处风速曲线及谱对比

    Figure 1.Wind speed at hub height and the comparison between target spectrum and fitted spectrum

    图 2桩土模型示意图

    Figure 2.Illustration of the soil-structure interaction model

    图 3海上风机模型示意图(单位: m)

    Figure 3.Illustration of the offshore wind turbine model (unit: m)

    图 4台风经过全过程塔顶FA向运动响应

    Figure 4.Tower top-aft (FA) motion during typhoon event

    图 5运动响应功率谱密度

    Figure 5.PSD of motion response

    图 6塔顶剪力

    Figure 6.Tower top shear force

    图 7载荷响应统计图

    Figure 7.Statistics of load response

    8载荷响应功率谱密度

    8.PSD of load response

    图 9叶片载荷响应统计图

    Figure 9.Statistics of blade load

    表 1DTU 10 MW风力机参数

    Table 1.Main parameters of DTU 10 MW wind turbine

    Parameter Value
    rated power/MW 10
    rated thrust/kN 1500
    rated wind speed/(m·s−1) 11.4
    hub height/m 119
    number of blades 3
    nacelle mass/t 446
    tower mass/t 561
    下载: 导出CSV

    表 2工况定义

    Table 2.Definition of load cases

    Wind speed /(m·s−1) Turbulence intensity/% Hs
    /m
    Tp
    /s
    FOVS 25 10.5 4.52 10.12
    FEWS 45 13.3 6.76 12.19
    TES 11.4 10.0 2.23 7.74
    BEWS 40 10.1 6.96 11.85
    BOVS 20 12.1 4.45 9.89
    下载: 导出CSV

    表 3塔顶运动时程统计

    Table 3.Statistics of tower-top motion

    FOVS
    /m
    FEWS
    /m
    TES
    /m
    BEWS
    /m
    BOVS
    /m
    mean 0.049 0.23 −0.01 0.17 0.021
    std 0.088 0.124 0.06 0.11 0.09
    下载: 导出CSV
  • [1] Global Wind Energy Council (GWEC). https://gwec.net/global-offshore-wind-report-2020/
    [2] 刘天绍, 刘孙俊, 杨玺等. 1951—2015影响广东沿海台风的统计分析. 海洋预报, 2018, 35(4): 68-74 (Liu Tianshao, Liu Sunjun, Yang Xi, et al. Statistical analysis of the typhoon influencing Guangdong province during 1951—2015.Marine Forecasts, 2018, 35(4): 68-74 (in Chinese)
    [3] 李朝, 侯一筠, 李水清等. 两类典型台风路径影响下的黄、渤海海浪场特征研究. 海洋与湖沼, 2021, 52(1): 51-65 (Li Chao, Hou Yijun, Li Shuiqing, et al. Characteristics of wave field in the yellow sea and the bohai sea under the influence of two typical typhoons.Oceanologia Et Limnologia Sinica, 2021, 52(1): 51-65 (in Chinese)
    [4] 孙富学, 许向楠, 史文海等. 温州滨海平坦地貌近地台风特性实测研究. 工程力学, 2018, 35(9): 73-80 (Sun Fuxue, Xu Xiangnan, Shi Wenhai, et al. Field measurements of typhoon characteristics near Ground in Wenzhou coastal flat terrain.Engineering Mechanics, 2018, 35(9): 73-80 (in Chinese)
    [5] 雷鹰, 李涛, 张建国等. 厦门地区台风风场特性的数值模拟. 工程力学, 2014, 31(1): 122-128 (Lei Ying, Li Tao, Zhang Jianguo, et al. Numerical simulation of the characteristics of typhoon wind-field in XIAMEN region.Engineering Mechanics, 2014, 31(1): 122-128 (in Chinese)
    [6] 史文海, 董大治, 李正农. 沿海地区近地边界层强/台风的统计特征分析. 工程力学, 2013, 30(S1): 30-33 (Shi Wenhai, Dong Dazhi, Li Zhengnong. Statistical characteristics analysis of boundary layer strong wind or typhoon in coastal areas.Engineering Mechanics, 2013, 30(S1): 30-33 (in Chinese)
    [7] 李利孝, 肖仪清, 宋丽莉等. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究. 工程力学, 2012, 29(9): 284-293 (Li Lixiao, Xiao Yiqing, Song Lili, et al. Study on wind profile of typhoon hagupit using wind observed tower and wind profile radar measurements.Engineering Mechanics, 2012, 29(9): 284-293 (in Chinese)
    [8] Li L, Xiao Y, Kareem A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea.Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104: 565-576
    [9] Guo Y, Damiani R, Musial W. Simulaiting Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions. National Renewable Energy Laboratory, 2014
    [10] 韩然, 王珑, 王同光等. 台风不同区域中的风力机动力响应特性研究. 太阳能学报, 2020, 41(10): 251-258 (Han Ran, Wang Long, Wang Tongguang, et al. Dynamic response characteristics of wind turbine in different regions of typhoon.Acta Energiae Solaris Sinica, 2020, 41(10): 251-258 (in Chinese)
    [11] Wang H, Ke ST, Wang T, et al. Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects.Renewable Energy, 2020, 153: 740-758doi:10.1016/j.renene.2020.02.013
    [12] 李琪, 周文杰, 童建国等. 台风环境中典型海上风机结构的动力响应数值分析. 中国海洋平台, 2019, 34(3): 32-39 (Li Qi, Zhou Wenjie, Tong Jianguo, et al. Numerical analysis on dynamic response of typical structure of offshore wind turbines under typhoon.China Offshore Platform, 2019, 34(3): 32-39 (in Chinese)doi:10.3969/j.issn.1001-4500.2019.03.006
    [13] Kim E. Offshore wind turbine loads under the coupled influence of wind, waves, and currents during hurricanes. [PhD Thesis]. Texas: Texas at Austin University, 2015
    [14] 朱彬彬, 王滨, 李玉刚等. 台风作用下海上风机基础结构安全评价. 海洋工程, 2019, 37(3): 78-85 (Zhu Binbin, Wang Bin, Li Yugang, et al. Typhoon risk assessment of the substructures of offshore wind turbines.the Ocean Engineering, 2019, 37(3): 78-85 (in Chinese)
    [15] 芦直跃, 马宏旺, 李玉韬等. 台风对海上风电单桩基础累积变形影响试验研究. 海洋技术学报, 2019, 38(6): 75-82 (Lu Zhiyue, Ma Hongwang, Li Yutao, et al. Experimental study on the effect of typhoons on accumulated deformation of the monopile foundation for offshore wind turbines.Ocean Technology, 2019, 38(6): 75-82 (in Chinese)
    [16] 姜贞强, 何奔, 单治钢等. 黄海海域极端荷载下海上风力机结构累积变形及疲劳性状—3种典型基础对比研究. 太阳能学报, 2021, 42(4): 386-395 (Jiang Zhenqiang, He Ben, Shan Zhigang, et al. Cumulative deformation and fatigue behaviour of offshore wind turbine structure subjected under extreme loading in yellow sea-a comparative study between three typical foundations.Acta Energiae Solaris Sinica, 2021, 42(4): 386-395 (in Chinese)
    [17] 孙肖菲, 马东, 苏冠瑜等. 海上风电大直径单桩基础固有频率影响因素的数值分析. 船海工程, 2021, 50(1): 99-103 (Sun Xiaofei, Ma Dong, Su Guanyu, et al. Numerical analysis of influencing factors on nature frequency of large-diameter single pile foundation of offshore wind power.Ship&Ocean Engineering, 2021, 50(1): 99-103 (in Chinese)
    [18] 刘晨晨, 张琪, 李明广等. 波浪与地震荷载共同作用下桩的动力响应. 上海交通大学学报, 2021, 55(6): 638-644 (Liu Chenchen, Zhang Qi, Li Mingguang, et al. Dynamic response of pile at waterwave load and seismic load.Journal of Shanghai Jiaotong University, 2021, 55(6): 638-644 (in Chinese)
    [19] Bergua R , Robertson A, Jonkman J, et al. OC6 phase II: Verification of an advanced soil structure interaction model for offshore wind turbines,Wind Energy, 2021, in press, doi:10.100z/we.2698
    [20] Bachynski EE, Page A, Katsikogiannis G, et al. Dynamic response of a large-diameter monopile considering 35-hour storm conditions//Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering, 2019
    [21] 赵丹平, 徐宝清. 风力机设计理论及方法. 北京: 北京大学出版社, 2012

    Zhao Danping, Xu Baoqing. Theory and Method of Wind Turbine Design. Beijing: Peking University Press, 2012 (in Chinese))
    [22] 唐新姿, 王效禹, 袁可人等. 风速不确定性对风力机气动力影响量化研究. 力学学报, 2020, 52(1): 51-59 (Tang Xinzi, Wang Xiaoyu, Yuan Keren, et al. Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59 (in Chinese)
    [23] 李玉成, 滕斌. 波浪对海上建筑物的作用. 北京: 海洋出版社, 2015

    Li Yucheng, Teng Bin. Wave Action on Marine Structures. Beijing: Ocean press, 2015 (in Chinese)
    [24] Hu S, Zhao DS. Non-gaussian properties of 2 nd-order random waves.Journal of Engineering Mechanics-ASCE, 1993, 119(2): 344-364doi:10.1061/(ASCE)0733-9399(1993)119:2(344)
    [25] Vonkarman T. Progress in the statistical theory of turbulence.Journal of Marine Research, 1948, 7(3): 252-264
    [26] Kaimal JC. Horizontal velocity spectra in an unstable surface-layer.Journal of the Atmospheric Sciences, 1978, 35(1): 18-24doi:10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2
    [27] Tieleman HW. Universality of velocity spectra.Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56(1): 55-69doi:10.1016/0167-6105(94)00011-2
    [28] Davenport AG. The spectrum of horizontal gustiness near the ground in high winds.Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194-211doi:10.1002/qj.49708737208
    [29] Tao T, Shi P, Wang H. Spectral modelling of typhoon winds considering nexus between longitudinal and lateral components.Renewable Energy, 2020, 162: 2019-2030doi:10.1016/j.renene.2020.09.130
    [30] Solari G, Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures.Probabilistic Engineering Mechanics, 2001, 16(1): 73-86doi:10.1016/S0266-8920(00)00010-2
    [31] 侯凤国, 王春江, 李向民等. 基于AR法的摩天轮结构脉动风速数值模拟. 力学季刊, 2014, 35(2): 362-368 (Hou Fengguo, Wang Chunjiang, Li Xiangmin, et al. Numerical simulation of the fluctuating wind velocity for wheel structure based on AR model.Chinese Quarterly of Mechanic, 2014, 35(2): 362-368 (in Chinese)
    [32] 罗俊杰, 韩大建. 谐波合成法模拟随机风场的优化算法. 华南理工大学学报, 2007, 7: 105-109 (Luo Junjie, Han Dajian. Optimized algorithm of wave superposition method to simulate stochastic wind field.Journal of South China University of Technology, 2007, 7: 105-109 (in Chinese)
    [33] 陈法波, 李昕, 周晶. 近海风力涡轮机所受随机空气动力荷载模拟研究. 太阳能学报, 2011, 32(10): 1528-1532 (Chen Fabo, Li Xin, Zhou Jing. Simulation of random aerodynamic loads of offshore wind turbine.Acta Energiae Solaris Sinica, 2011, 32(10): 1528-1532 (in Chinese)
    [34] 余聿修, 柳淑学. 随机波浪及其工程应用. 大连: 大连理工大学出版社, 2011

    Yu Yuxiu, Liu Shuxe. Random Wave and Its Applications to Engineering. Dalian: Dalian University of Technology Press, 2011 (in Chinese)
    [35] Young IR. A review of the sea state generated by hurricanes.Marine Structures, 2003, 16(3): 201-218doi:10.1016/S0951-8339(02)00054-0
    [36] Roger B. Specification document for OC6 phaseⅡ: Verification of an advanced soil-structure interaction model for offshore wind turbines. NREL/TP-5000-79938, 2021
    [37] Ren Z, Verma AS, Li Y, et al. Offshore wind turbine operations and maintenance: A state-of-the-art review.Renewable and Sustainable Energy Reviews, 2021, 144: 110886doi:10.1016/j.rser.2021.110886
  • 加载中
图(10)/ 表(3)
计量
  • 文章访问数:610
  • HTML全文浏览量:247
  • PDF下载量:70
  • 被引次数:0
出版历程
  • 收稿日期:2021-11-19
  • 录用日期:2022-02-28
  • 网络出版日期:2022-03-01
  • 刊出日期:2022-04-18

目录

    /

      返回文章
      返回
        Baidu
        map