EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定优胶溶液狭缝喷射减阻实验研究

时朋飞,杜伟,胡海豹,冯家兴,谢络

downloadPDF
时朋飞, 杜伟, 胡海豹, 冯家兴, 谢络. 定优胶溶液狭缝喷射减阻实验研究. 力学学报, 2022, 54(5): 1257-1263 doi: 10.6052/0459-1879-21-567
引用本文: 时朋飞, 杜伟, 胡海豹, 冯家兴, 谢络. 定优胶溶液狭缝喷射减阻实验研究. 力学学报, 2022, 54(5): 1257-1263doi:10.6052/0459-1879-21-567
Shi Pengfei, Du Wei, Hu Haibao, Feng Jiaxing, Xie Luo. Experimental study on drag reduction characteristics of diutan gum solution by slit injection. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1257-1263 doi: 10.6052/0459-1879-21-567
Citation: Shi Pengfei, Du Wei, Hu Haibao, Feng Jiaxing, Xie Luo. Experimental study on drag reduction characteristics of diutan gum solution by slit injection.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1257-1263doi:10.6052/0459-1879-21-567

定优胶溶液狭缝喷射减阻实验研究

doi:10.6052/0459-1879-21-567
基金项目:国家自然科学基金(52071272, 12102358), 基础前沿项目(JCKY2018*18), 陕西省自然科学基础研究计划(2020JC-18), 中国博士后科学基金(2021M692617), 中央高校基本科研业务费专项资金(3102021HHZY030008)和重庆市自然科学基金(cstc2021jcyj-msxmX0393)资助
详细信息
    作者简介:

    谢络, 副教授, 主要研究方向: 水下仿生减阻. E-mail:xieluo@nwpu.edu.cn

  • 中图分类号:O357.5+4

EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF DIUTAN GUM SOLUTION BY SLIT INJECTION

  • 摘要:定优胶具有比柔性聚合物更优越的抗剪切效果, 是一种新型高分子聚合物减阻添加剂, 目前对其研究仍相对缺乏. 这里通过开展定优胶流变和管内狭缝喷射减阻实验, 分析了流变特性与减阻行为之间的联系, 并从其喷射扩散角度解释了其减阻规律变化的原因. 实验结果表明, 定优胶溶液为剪切变稀流体, 会发生黏性到弹性转变, 且转变点与温度无关, 仅随浓度增加而前移; 定优胶减阻率随水流速度(雷诺数)呈先增后降趋势, 但随喷射速率单调递增; 相较于喷射纯水, 定优胶溶液在流场中扩散缓慢, 且喷射速率越高, 壁面附近集聚越明显. 同时, 定优胶溶液喷射减阻的变化与其扩散规律相吻合: 当流速较小时, 定优胶溶液扩散不充分, 呈非均匀聚集态, 未能充分发挥其湍流抑制效果, 减阻较弱; 随流速增加, 水流的剪切拖拽作用增强了定优胶的扩散均匀程度, 进而提升湍流抑制效果, 减阻率上升; 但当流速过大时, 定优胶的快速扩散造成其浓度被大幅稀释, 且近壁区过大剪切率可能已造成部分长链分子断裂, 致使减阻效果下降.

  • 图 1实验装置示意图

    Figure 1.Schematic diagram of experimental apparatus

    图 2流场测试光学示意图

    Figure 2.Optical diagram of flow field test

    图 320 °C下不同浓度定优胶的黏度随剪切速率的变化曲线

    Figure 3.The dependence of the apparent viscosity for diutan gum solutions on the shear rate at different concentrations withT= 20 °C

    图 420 °C下不同浓度定优胶的G′与G″随角频率的变化曲线

    Figure 4.The dependence of theG′ andG″ for aqueous diutan gum on the oscillation frequency at different concentrations withT= 20 °C

    图 5不同温度定优胶G′与G″随角频率的变化曲线

    Figure 5.The dependence of theG′ andG″ for aqueous diutan gum on the oscillation frequency at different temperature

    图 620 °C下喷射速率对减阻效果的影响

    Figure 6.Drag reduction effect with different injection rates at 20 °C

    图 720 °C下雷诺数对减阻效果的影响

    Figure 7.Drag reduction effect with different Reynolds number at 20 °C

    图 8定优胶溶液流场扩散特性

    Figure 8.DG solution diffusion characteristics

  • [1] Toms BA. Some observations on the flow of linear polymer solutions through straight tubes at large reynolds numbers//The 1st International Congress on Rheology, Scheveningen, 1948
    [2] Lumley JL. Drag reduction by additives.Annual Review of Fluid Mechanics, 1969, 1: 367-384doi:10.1146/annurev.fl.01.010169.002055
    [3] Virk PS. Drag reduction fundamentals.Aiche Journal, 1975, 21(4): 625-656doi:10.1002/aic.690210402
    [4] Kim K, Islam MT, Shen X. Effect of macromolecular polymer structures on drag reduction in a turbulent channel flow.Physics of Fluids, 2004, 16(11): 4150-4162doi:10.1063/1.1790731
    [5] Yang SQ, Ding DH. Drag reduction induced by polymer in turbulent pipe flows.Chemical Engineering Science, 2013, 102(15): 200-208
    [6] White CM, Mungal MG. Mechanics and prediction of turbulent drag reduction with polymer additives.Annual Review of Fluid Mechanics, 2008, 40: 235-256doi:10.1146/annurev.fluid.40.111406.102156
    [7] Sreenivasan KR, White CM. The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote.Journal of Fluid Mechanics, 2000, 409: 149-164doi:10.1017/S0022112099007818
    [8] Bewersdorff HW, Bennan NS. The influence of flow-induced non-Newtonian fluid properties on turbulent drag reduction.Rheologica Acta, 1988, 27(2): 130-136doi:10.1007/BF01331897
    [9] 邵雪明, 林建忠, 余钊圣. 添加聚合物对混合层流场特性影响的实验研究. 实验力学, 1998, 13(4): 520-525 (Shao Xueming, Lin Jianzhong, Yu Zhangsheng. Experimental research for the influence of polymer additives on the characteristics of mixing layer flow.Journal of Experimental Mechanics, 1998, 13(4): 520-525 (in Chinese)
    [10] 蒋营营, 管新蕾, 姜楠. 高分子溶液壁湍流减阻机理的TRPIV实验研究. 实验力学, 2013, 28(4): 422-430 (Jiang Yingying, Guan Xinlei, Jiang Nan. TRPIV measurement investigation on drag-reduction mechanism of wall-bounded turbulent flow with polymer solution.Journal of Experimental Mechanics, 2013, 28(4): 422-430 (in Chinese)
    [11] Hong CH, Jang CH, Choi HJ. Turbulent drag reduction with polymers in rotating disk flow.Polymers, 2015, 7(7): 1279-1298doi:10.3390/polym7071279
    [12] Wells CS, Spangler JG. Injection of a drag-reducing fluid into turbulent pipe flow of a newtonian fluid.Physics of Fluids, 1967, 10: 1890-1894
    [13] Pereira AS, Soares EJ. Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device.Journal of Non-Newtonian Fluid Mechanics, 2012, 179: 9-22
    [14] Perlin M, Dowling DR, Ceccio SL. Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers.Journal of Fluids Engineering-Transactions of the ASME, 2016, 138(9): 091104doi:10.1115/1.4033295
    [15] 任刘珍, 张庆辉, 陈少强等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究. 实验力学, 2019, 34(2): 217-223 (Ren Liuzhen, Zhang Qignhui, Chen Shaoqiang, et al. Study of the turbulent flow drag reduction characteristics of homogeneous and inhomogeneous PEO solution in pipeline flow.Journal of Experimental Mechanics, 2019, 34(2): 217-223 (in Chinese)
    [16] Goren Y, Norbury JF. Turbulent flow of dilute aqueous polymer solutions.Journal of Basic Engineering, 1967, 89(4): 814-822
    [17] Soares EJ. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows.Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225
    [18] Dodge DW, Metzner AB. Turbulent flow of non-newtonian systems.AIChE Journal, 2010, 5(2): 189-204
    [19] Virk PS. An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules.Journal of Fluid Mechanics, 1971, 45(3): 417-440doi:10.1017/S0022112071000120
    [20] Gadd GE. Turbulence damping and drag reduction produced by certain additives in water.Nature, 1965, 206(4983): 463-467doi:10.1038/206463a0
    [21] Sun YP, Wu QH, Wei MZ, et al. Experimental study of friction reducer flows in microfracture.Fuel, 2014, 131(17): 28-35
    [22] Santos WRD, Caser ES, Soares EJ, et al. Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer.Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104223doi:10.1016/j.jnnfm.2019.104223
    [23] Daniel TL. Fish mucus: In situ measurements of polymer drag reduction.Biological Bulletin, 1981, 3(160): 376-382
    [24] Hoyt JW. Hydrodynamic drag reduction due to fish slimes//in: Wu TYT, Brokaw CJ, Brerman C, eds. Swimming and Flying in Nature. NY: Plenum, 1975: 653-672
    [25] 李昌烽, 禹燕飞, 赵文斌等. 黄原胶水溶液管道流动减阻特性的试验. 江苏大学学报(自然科学版), 2015, 36(1): 30-35 (Li Changfeng, Yu Yanfei, Zhao Wenbin, et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow.Journal of Jiangsu University(Natural Science Edition) , 2015, 36(1): 30-35 (in Chinese)
    [26] Abdul Bari HA, Ahmad MA, Yunus RBM. Formulation of okra-natural mucilage as drag reducing agent in different size of galvanized iron pipes in turbulent water flowing system.Journal of Applied Sciences, 2010, 23: 3105-3110
    [27] Abdul Bari HA, Kamarulizam SN, Man RC. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent.Journal of Applied Sciences, 2011, 11: 2554-2561
    [28] Coelho1 EC, Barbosa1 KCO, Soares EJ, et al. Okra as a drag reducer for high Reynolds numbers water flows.Rheologica Acta, 2016, 55: 983-991doi:10.1007/s00397-016-0974-z
    [29] Abdul Bari HA, Letchmanan K, Yunus RM. Drag reduction characteristics using aloe vera natural mucilage: An experimental study.Journal of Applied Sciences, 2011, 11(6): 1039-1043doi:10.3923/jas.2011.1039.1043
    [30] Soares EJ, Siqueira RN, Leal LM, et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows.Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 1-10doi:10.1016/j.jnnfm.2018.12.010
    [31] Schmidt W, Brouwers HJH, Kühne HC, et al. The working mechanism of starch and diutan gum in cementitious and lime-stone dispersions in presence of polycarboxylate ether superplasticizers.Applied Rheology, 2013, 23: 244-249
    [32] Chowdhury TA, Lindberg B, Lindquist U, et al. Structural studies of an extracellular polysaccharide, S-657, elaborated by Xanthomonas ATCC 53159.Carbohydrate Research, 1987, 164: 117-122doi:10.1016/0008-6215(87)80124-6
    [33] Lee EJ, Chandrasekaran R. X-ray and computer modeling studies on gellan-related polymers: Molecular structures of welan, S-657, and rhamsan.Carbohydrate Research, 1991, 214: 11-24doi:10.1016/S0008-6215(00)90526-3
    [34] Xu L, Gong H, Dong M, et al. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.Carbohydrate Polymers, 2015, 132: 620-629doi:10.1016/j.carbpol.2015.06.083
    [35] Mota G, Pereira RG. The influence of concentration and temperature on the rheological behavior of diutan gum aqueous solutions.International Journal of Polymer Analysis and Characterization, 2021, 26(8): 735-753doi:10.1080/1023666X.2021.1975067
    [36] Hou YX, Somandepalli VSR, Mungal MG. Streamwise development of turbulent boundary-layer drag reduction with polymer injection.Journal of Fluid Mechanics, 2008, 597: 31-66doi:10.1017/S0022112007009718
    [37] Shah Y, Yarusevych S. Streamwise evolution of drag reduced turbulent boundary layer with polymer solutions.Physics of Fluids, 2020, 32(6): 065107doi:10.1063/5.0013318
  • 加载中
图(8)
计量
  • 文章访问数:535
  • HTML全文浏览量:170
  • PDF下载量:58
  • 被引次数:0
出版历程
  • 收稿日期:2021-11-02
  • 录用日期:2022-02-18
  • 网络出版日期:2022-02-19
  • 刊出日期:2022-05-01

目录

    /

      返回文章
      返回
        Baidu
        map