EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Reddy型TSDT的弹性地基上FG-CNTRC板线性弯曲与自由振动无网格分析

陈卫,方耀楚,孙冰,彭林欣

downloadPDF
陈卫, 方耀楚, 孙冰, 彭林欣. 基于改进Reddy型TSDT的弹性地基上FG-CNTRC板线性弯曲与自由振动无网格分析. 力学学报, 2023, 55(6): 1355-1370 doi: 10.6052/0459-1879-23-040
引用本文: 陈卫, 方耀楚, 孙冰, 彭林欣. 基于改进Reddy型TSDT的弹性地基上FG-CNTRC板线性弯曲与自由振动无网格分析. 力学学报, 2023, 55(6): 1355-1370doi:10.6052/0459-1879-23-040
Chen Wei, Fang Yaochu, Sun Bing, Peng Linxin. Meshless analysis of linear bending and free vibration of functionally graded carbon nanotube-reinforced composite plate on elastic foundation based on improved Reddy type third-order shear deformation theory. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1355-1370 doi: 10.6052/0459-1879-23-040
Citation: Chen Wei, Fang Yaochu, Sun Bing, Peng Linxin. Meshless analysis of linear bending and free vibration of functionally graded carbon nanotube-reinforced composite plate on elastic foundation based on improved Reddy type third-order shear deformation theory.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1355-1370doi:10.6052/0459-1879-23-040

基于改进Reddy型TSDT的弹性地基上FG-CNTRC板线性弯曲与自由振动无网格分析

doi:10.6052/0459-1879-23-040
基金项目:国家自然科学基金(11562001, 12162004)和南华大学博士科研启动基金(Y00043-13)资助项目
详细信息
    通讯作者:

    彭林欣, 教授, 主要研究方向为计算复合板壳力学中的无网格法. E-mail:penglx@gxu.edu.cn

  • 中图分类号:TU339

MESHLESS ANALYSIS OF LINEAR BENDING AND FREE VIBRATION OF FUNCTIONALLY GRADED CARBON NANOTUBE-REINFORCED COMPOSITE PLATE ON ELASTIC FOUNDATION BASED ON IMPROVED REDDY TYPE THIRD-ORDER SHEAR DEFORMATION THEORY

  • 摘要:基于改进Reddy型3阶剪切变形理论(third-order shear deformation theory, TSDT)假设, 考虑碳纳米管(carbon nanotubes, CNTs)转向及功能梯度材料的不均匀性, 建立弹性地基上功能梯度碳纳米管增强复合材料(functionally graded carbon nanotube-reinforced composite, FG-CNTRC)板的线性弯曲和自由振动无网格分析模型. 利用改进Reddy型TSDT推导FG-CNTRC板的势能和动能, 给出弹性地基势能的表达式, 再将其分别进行叠加, 通过最小势能原理及Hamilton原理推导出弹性地基上FG-CNTRC板的线性弯曲和自由振动控制方程. 采用稳定移动克里金插值(stabilized moving Kriging interpolation, SMKI)对问题域内的节点进行离散, 该近似形函数的构造方法满足克罗内克条件, 可以直接施加边界条件. 文中首先给出基于三阶剪切变形理论的弹性地基FG-CNTRC板线性弯曲与自由振动无网格离散模型. 随后通过基准算例, 研究本文方法的有效性及精度问题. 最后数值分析了CNTs的分布形式、转向角、体积分数、地基系数、宽厚比和边界条件等对FG-CNTRC板的线性弯曲及自振频率的影响. 研究表明: 采用本文方法计算FG-CNTRC薄板、中厚板、甚至厚板的线性弯曲和自振频率均具有较高的计算精度; 随着CNTs体积分数和地基系数的增加, FG-CNTRC板结构刚度逐渐增大; FG-CTRC板结构刚度与宽厚比成正相关, 厚度增加的剪切效应会让CNTs转向角对结构刚度的影响逐渐降低.

  • 图 1弹性地基上FG-CNTRC板的等效模型

    Figure 1.Equivalent model of FG-CNTRC plate on elastic foundation

    图 2四边简支FG-CNTRC板中点挠度收敛性分析(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11,b/h= 10)

    Figure 2.Convergence analysis of central deflection of simply supported FG-CNTRC plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11,b/h= 10)

    图 3不同边界条件下FG-CNTRC板中点无量纲轴向应力${\bar \sigma }_{xx}$(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.17,b/h= 50)

    Figure 3.Normalized axial stress ${{\bar \sigma }}_{xx}$ of central point of FG-CNTRC plate under different boundary condition (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.17,b/h= 50)

    图 4本文方法与SMKI-FSDT之间的计算效率比较(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11,b/h= 10)

    Figure 4.Comparison of computational efficiency between the present method and SMKI-FSDT (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11,b/h= 10)

    图 5不同宽厚比下四边固支UD板中点归一化挠度随转向角θ的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    Figure 5.Normalized central deflection versus CNT orientation angleθfor the clamped UD plate with different width-thickness ratio (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    图 6弹性地基上四边固支FG-CNTRC板的无量纲中点挠度随转向角θ的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    Figure 6.Dimensionless central deflection versus CNT orientation angleθfor the clamped FG-CNTRC plate on elastic foundation (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    图 7FG-CNTRC板的无量纲基础频率随边界条件的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    Figure 7.Dimensional fundamental frequency versus boundary condition for the FG-CNTRC square plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    图 8不同长宽比下四边固支UD板的无量纲基础频率随转向角θ的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    Figure 8.Dimensional fundamental frequency versus CNT orientation angleθfor the clamped UD plate with different length-width ratio (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    图 9不同宽厚比下四边固支UD板的归一化基础频率随转向角θ的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    Figure 9.Normalized fundamental frequency versus CNT orientation angleθfor the clamped UD plate with different width-thickness ratio (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14)

    图 10弹性地基上四边固支FG-CNTRC板的无量纲基础频率随转向角θ的变化(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    Figure 10.Dimensionless fundamental frequencies versus CNT orientation angleθfor the clamped FG-CNTRC plate on elastic foundation (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    图 11四边固支UD板前5阶自振模态(${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    Figure 11.The first five natural vibration modes of clamped UD plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.14,b/h= 50)

    表 1材料参数

    Table 1.The properties of material

    Parameters Matrix CNTs
    Poisson’s ratio νm= 0.34 $ {\nu }_{\text{12}}^{\text{CNT}} $ = 0.175
    density/(kg·m−3) ρm= 1150 ρCNT= 1400
    Young’s modulus/GPa Em= 2.1 ${{E} }_{\text{11} }^{\text{CNT} }$ = 5646.6,
    ${{E} }_{\text{22} }^{\text{CNT} }$ = 7080
    shear modulus/GPa ${{G} }_{\text{12} }^{\text{CNT} }$ = 1944.5
    下载: 导出CSV

    表 2CNTs的效能参数

    Table 2.The efficiency parameters of CNTs

    ${{V} }_{\text{CNT} }^{\text{*} }$ η1 η2 η3
    0.11 0.149 0.934 0.934
    0.14 0.150 0.941 0.941
    0.17 0.149 1.381 1.381
    下载: 导出CSV

    表 3四边简支FG-CNTRC板中点无量纲挠度(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)

    Table 3.Dimensionless central deflection of simply supported FG-CNTRC plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)

    b/h CNT type FEM-FSDT[8] IGA-TSDT[16] Present
    10 UD 3.739 × 10−3 3.717 × 10−3 3.716 × 10−3
    FG-V 4.466 × 10−3 4.427 × 10−3 4.447 × 10−3
    FG-O 5.230 × 10−3 5.438 × 10−3 5.430 × 10−3
    FG-X 3.177 × 10−3 3.102 × 10−3 3.140 × 10−3
    20 UD 3.628 × 10−3 3.624 × 10−3 3.629 × 10−3
    FG-V 4.879 × 10−3 4.877 × 10−3 4.880 × 10−3
    FG-O 6.155 × 10−3 6.248 × 10−3 6.243 × 10−3
    FG-X 2.701 × 10−3 2.685 × 10−3 2.697 × 10−3
    50 UD 1.155 1.156 1.156
    FG-V 1.653 1.654 1.652
    FG-O 2.157 2.163 2.158
    FG-X 0.790 0.791 0.792
    下载: 导出CSV

    表 4四边简支FG-CNTRC板无量纲基础频率(${\boldsymbol{V}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)

    Table 4.Dimensionless fundamental frequencies of simply supported FG-CNTRC plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)

    b/h CNT
    type
    FEM-
    FSDT[8]
    FEM-
    TSDT[32]
    SMKI-
    FSDT (error)
    Present (error)
    5 UD 8.832 8.627 (2.321) 8.753 (0.894)
    FG-V 8.407 8.551 (1.713) 8.504 (1.154)
    FG-O 8.029 8.133 (1.295) 7.946 (1.034)
    FG-X 9.122 8.877 (2.686) 9.040 (0.899)
    10 UD 13.532 13.601 13.519 (0.603) 13.553 (0.353)
    FG-V 12.452 12.352 12.423 (0.575) 12.458 (0.858)
    FG-O 11.550 11.371 11.544 (1.521) 11.322 (0.431)
    FG-X 14.616 14.727 14.601 (0.856) 14.677 (0.340)
    20 UD 17.355 17.354 17.333 (0.121) 17.320 (0.196)
    FG-V 15.110 15.038 15.050 (0.080) 15.081 (0.286)
    FG-O 13.532 13.432 13.526 (0.700) 13.405 (0.201)
    FG-X 19.939 19.945 19.905 (0.201) 19.914 (0.155)
    50 UD 19.223 19.181 19.268 (0.454) 19.199 (0.094)
    FG-V 16.252 16.218 16.261 (0.265) 16.252 (0.210)
    FG-O 14.302 14.275 14.410 (0.946) 14.302 (0.189)
    FG-X 22.984 22.930 22.993 (0.275) 22.935 (0.022)
    下载: 导出CSV

    表 5不同体积分数及地基系数下四边简支FG-CNTRC板中点无量纲挠度${{\tilde w}}$

    Table 5.Dimensionless central deflections ${\tilde w}$ of simply supported FG-CNTRC plates with different volume fraction and foundation coefficient

    (kw,ks) Theory $\text{}{{V} }_{\text{CNT} }^{\text{*} }$ = 0.11 $\text{}{{V} }_{\text{CNT} }^{\text{*} }$ = 0.17
    UD FG-V FG-O FG-X UD FG-V FG-O FG-X
    uniform load
    (0, 0) TSDT 0.7356 0.8806 1.0705 0.6206 0.4712 0.5663 0.6844 0.4012
    SSDT 0.7340 0.8792 1.0743 0.6179 0.4702 0.5655 0.6862 0.4001
    present 0.7352 0.8797 1.0741 0.6214 0.4710 0.5656 0.6854 0.4013
    (100, 0) TSDT 0.6983 0.8286 0.9955 0.9350 0.4556 0.5440 0.6530 0.3897
    SSDT 0.6969 0.8274 0.9988 0.5910 0.4548 0.5437 0.6546 0.3887
    present 0.6980 0.8278 0.9987 0.5942 0.4554 0.5437 0.6540 0.3898
    (100, 50) TSDT 0.4773 0.5346 0.5991 0.4262 0.3500 0.4000 0.4557 0.3098
    SSTD 0.4767 0.5341 0.6003 0.4250 0.3495 0.3997 0.4565 0.3092
    present 0.4774 0.5346 0.6008 0.4266 0.3500 0.3999 0.4565 0.3100
    sinusoidal load
    (100, 0) TSDT 0.4964 0.5869 0.7081 0.4227 0.3177 0.3769 0.4526 0.2723
    SSDT 0.4953 0.5859 0.7104 0.4208 0.3170 0.3763 0.4537 0.2715
    present 0.4963 0.5865 0.7102 0.4235 0.3176 0.3765 0.4532 0.2726
    (100, 0) TSDT 0.4729 0.5544 0.6612 0.4056 0.3079 0.3632 0.4330 0.2651
    SSDT 0.4719 0.5534 0.6633 0.4038 0.3072 0.3626 0.4340 0.2644
    present 0.4728 0.5540 0.6631 0.4063 0.3078 0.3628 0.4335 0.2653
    (100, 50) TSDT 0.3240 0.3583 0.4001 0.2896 0.2361 0.2674 0.3034 0.2101
    SSDT 0.3219 0.3579 0.4009 0.2888 0.2357 0.2671 0.3039 0.2097
    present 0.3226 0.3584 0.4011 0.2902 0.2362 0.2673 0.3038 0.2104
    Notes: The data TSDT and SSDT in the table are from the analytical solution of Ref. [28]
    下载: 导出CSV

    表 6不同宽厚比及地基系数下四边固支FG-CNTRC板中点无量纲挠度(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)

    Table 6.Dimensionless central deflections of clamped FG-CNTRC plates with width-thick ratio and foundation coefficient (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)

    (kw,ks) CNT type b/h
    5 10 20 50 100
    (0, 0) UD 3.833 × 10−4 2.119 × 10−3 1.315 × 10−2 2.627 × 10−1 3.632
    FG-V 3.875 × 10−4 2.252 × 10−3 1.572 × 10−2 3.663 × 10−1 5.293
    FG-O 4.251 × 10−4 2.604 × 10−3 1.934 × 10−2 4.797 × 10−1 7.040
    FG-X 3.722 × 10−4 1.985 × 10−3 1.120 × 10−2 1.896 × 10−1 2.470
    (100, 0) UD 3.792 × 10−4 2.056 × 10−3 1.195 × 10−2 1.434 × 10−1 0.521
    FG-V 3.832 × 10−4 2.181 × 10−3 1.406 × 10−2 1.708 × 10−1 0.538
    FG-O 4.201 × 10−4 2.511 × 10−3 1.693 × 10−2 1.926 × 10−1 0.544
    FG-X 3.683 × 10−4 1.929 × 10−3 1.030 × 10−2 1.181 × 10−1 0.492
    (100, 50) UD 3.428 × 10−4 1.592 × 10−3 6.580 × 10−3 2.900 × 10−2 0.064
    FG-V 3.462 × 10−4 1.665 × 10−3 7.110 × 10−3 2.980 × 10−2 0.065
    FG-O 3.759 × 10−4 1.847 × 10−3 7.730 × 10−3 3.030 × 10−2 0.065
    FG-X 3.340 × 10−4 1.516 × 10−3 6.080 × 10−3 2.810 × 10−2 0.064
    下载: 导出CSV

    表 7不同体积分数及地基系数下四边简支FG-CNTRC板的无量纲基础频率

    Table 7.Dimensionless fundamental frequencies of simply supported FG-CNTRC plates with different volume fraction and foundation coefficient

    $\text{}{{V} }_{\text{CNT} }^{\text{*} }$ CNT type (kw,ks) = (0, 0) (kw,ks) = (100, 0) (kw,ks) = (100, 50)
    TSDT SSDT Present TSDT SSDT Present TSDT SSDT Present
    0.11 UD 13.55 13.57 13.55 13.88 13.90 13.89 16.82 16.83 16.81
    FG-V 12.45 12.46 12.46 12.81 12.82 12.82 15.94 15.95 15.93
    FG-O 11.34 11.20 11.32 11.73 11.72 11.72 15.09 15.07 15.06
    FG-X 14.69 14.72 14.68 15.00 15.03 14.98 17.75 17.77 17.73
    0.14 UD 14.36 14.38 14.36 14.67 14.69 14.67 17.46 17.47 17.44
    FG-V 13.28 13.29 13.28 13.62 13.63 13.62 16.57 16.59 16.57
    FG-O 12.13 21.10 12.12 12.50 12.48 12.48 15.67 15.66 15.65
    FG-X 15.41 15.45 15.40 15.70 15.74 15.69 18.33 18.36 18.31
    0.17 UD 16.83 16.85 16.84 17.10 17.12 17.10 19.53 19.54 19.52
    FG-V 15.44 15.46 15.45 15.73 15.74 15.74 18.34 18.35 18.33
    FG-O 14.09 14.08 14.08 14.41 14.39 14.40 17.21 17.20 17.20
    FG-X 18.19 18.21 18.18 18.43 18.46 18.43 20.70 20.73 20.69
    Notes: The data TSDT and SSDT in the table are from the analytical solution of Ref. [28]
    下载: 导出CSV

    表 8不同宽厚比及地基系数下四边固支FG-CNTRC板的无量纲基础频率(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)

    Table 8.Dimensionless fundamental frequencies of clamped FG-CNTRC plates with different width-thickness ratio and foundation coefficient (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)

    b/h (kw,ks) = (0, 0) (kw,ks) = (100, 0) (kw,ks) = (100, 50)
    UD FG-V FG-O FG-X UD FG-V FG-O FG-X UD FG-V FG-O FG-X
    5 10.61 10.57 10.12 10.76 10.66 10.62 10.17 10.81 11.20 11.16 10.74 11.34
    10 18.04 17.56 16.40 18.59 18.29 17.82 16.68 18.84 20.77 20.37 19.38 21.25
    20 28.57 26.39 23.95 30.74 29.82 27.74 25.43 31.91 40.82 39.39 37.83 42.32
    50 39.53 33.98 29.95 46.01 52.08 48.00 45.24 57.15 121.31 119.69 118.51 123.44
    100 42.56 35.81 31.33 50.98 104.94 102.39 100.91 108.62 323.58 322.49 321.73 325.06
    下载: 导出CSV
  • [1] Iijima S. Helical microtubles of graphitic carbon.Nature, 1991, 354: 56-58doi:10.1038/354056a0
    [2] Thostenson ET, Ren Z, Chou T. Advances in the science and technology of carbon nanotubes and their composites: A review.Composites Science and Technology, 2001, 61(13): 1899-1912doi:10.1016/S0266-3538(01)00094-X
    [3] Esawi AM, Farag MM. Carbon nanotube reinforced composites: Potential and current challenges.Materials&Design, 2007, 28(9): 2394-2401
    [4] Odegard GM, Gates TS, Wise KE, et al. Constitutive modeling of nanotube-reinforced polymer composites.Composites Science and Technology, 2003, 63(11): 1671-1687doi:10.1016/S0266-3538(03)00063-0
    [5] Seidel GD, Lagoudas DC. Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites.Mechanics of Materials, 2006, 38(8-10): 884-907doi:10.1016/j.mechmat.2005.06.029
    [6] Shen HS. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.Composite Structures, 2009, 91(1): 9-19doi:10.1016/j.compstruct.2009.04.026
    [7] 李煜冬, 傅卓佳, 汤卓超. 功能梯度碳纳米管增强复合材料板弯曲和模态的广义有限差分法. 力学学报, 2022, 54(2): 414-424

    Li Yudong, Fu Zhoujia, Tang Zhouchao. Generalized finite difference method for bending and modal analysis of functionally graded carbon nanotube-reinforced composite plates.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 414-424 (in Chinese))
    [8] Zhu P, Lei ZX, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory.Composite Structures, 2012, 94(4): 1450-1460doi:10.1016/j.compstruct.2011.11.010
    [9] 张宇. 碳纳米管增强复合材料屈曲及自由振动行为的数值研究. [硕士论文]. 上海: 上海海洋大学, 2017

    Zhang Yu. Numerical study on buckling and free vibration behavior of CNT-reinforced composites. [Master Thesis]. Shanghai: Shanghai Ocean University, 2017 (in Chinese))
    [10] 周涛. 功能梯度碳纳米管增强复合材料板的弯曲行为研究. [博士论文]. 北京: 中国矿业大学, 2019

    Zhou Tao. Bending analysis of functionally graded carbon nanotube-reinforced composite plates. [PhD Thesis]. Beijing: China University of Mining & Technology, 2019 (in Chinese))
    [11] 薛婷, 秦现生, 张顺琦等. 基于一阶剪切变形理论的CNTRC板的自由振动分析. 机械工程学报, 2019, 55(24): 45-50 (Xue Ting, Qin Xiansheng, Zhang Shunqi, et al. Free vibration analysis of CNTRC plates based on first-order shear deformation theory.Journal of Mechanical Engineering, 2019, 55(24): 45-50 (in Chinese)doi:10.3901/JME.2019.24.045

    Xue Ting, Qin Xiansheng, Zhang Shunqi, et al. Free vibration analysis of CNTRC plates based on first-order shear deformation theory.Journal of Mechanical Engineering, 2019, 55(24): 45-50. (in Chinese))doi:10.3901/JME.2019.24.045
    [12] Lei ZX, Liew KM, Yu JL. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment.Composite Structures, 2013, 106: 128-138doi:10.1016/j.compstruct.2013.06.003
    [13] Vuong NVD, Lee Y, Lee C. Isogeometric analysis of FG-CNTRC plates in combination with hybrid type higher-order shear deformation theory.Thin-Walled Structures, 2020, 148: 106565doi:10.1016/j.tws.2019.106565
    [14] Zhong R, Wang Q, Tang J, et al. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates.Composite Structures, 2018, 194: 49-67doi:10.1016/j.compstruct.2018.03.104
    [15] 范健宇. 功能梯度碳纳米管增强复合材料梁、壳结构自由振动行为的数值研究. [博士论文]. 西安: 西安电子科技大学, 2019

    Fan Jianyu. Numerical study on the free vibration behaviors of functionally graded CNT-reinforced composite beams and shells. [PhD Thesis]. Xi’an: Xidian University, 2019 (in Chinese))
    [16] Phung-Van P, Abdel-Wahab M, Liew KM, et al. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory.Composite Structures, 2015, 123: 137-149doi:10.1016/j.compstruct.2014.12.021
    [17] Selim BA, Zhang LW, Liew KM. Impact analysis of CNT-reinforced composite plates based on Reddy’s higher-order shear deformation theory using an element-free approach.Composite Structures, 2017, 170: 228-242doi:10.1016/j.compstruct.2017.03.026
    [18] Shen H, Zhang C. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates.Materials&Design, 2010, 31(7): 3403-3411
    [19] Lei ZX, Liew KM, Yu JL. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method.Composite Structures, 2013, 98: 160-168doi:10.1016/j.compstruct.2012.11.006
    [20] Shams S, Soltani B. The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method.Polymer Composites, 2015, 38: 531-541
    [21] 曾煌棚. 基于无网格kp-Ritz法的功能梯度复合材料层合板振动与屈曲分析. [硕士论文]. 南京: 南京理工大学, 2018

    Zeng Huangpeng. Vibration and buckling analysis of functionally graded composite laminates based on meshless kp-Ritz method. [Master Thesis]. Nanjing: Nanjing University of Science & Technology, 2018 (in Chinese))
    [22] 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36

    Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications.Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese))
    [23] 王东东, 张灿辉, 李庶林. Euler梁的无网格求解方法探讨. 厦门大学学报(自然科学版), 2006, 2: 206-210 (Wang Dongdong, Zhang Canhui, Li Shulin. On the meshfree analysis of Euler beam.Journal of Xiamen University(Natural Science), 2006, 2: 206-210 (in Chinese)

    Wang Dongdong, Zhang Canhui, Li Shulin. On the meshfree analysis of Euler beam.Journal of Xiamen University(Natural Science), 2006(02): 206-210. (in Chinese))
    [24] Nguyen-Xuan H, Thai CH, Nguyen-Thoi T. Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory.Composites Part B:Engineering, 2013, 55: 558-574doi:10.1016/j.compositesb.2013.06.044
    [25] Selim BA, Zhang LW, Liew KM. Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory.Composite Structures, 2016, 156: 276-290doi:10.1016/j.compstruct.2015.10.026
    [26] Zhang LW, Lei ZX, Liew KM. An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations.Engineering Analysis with Boundary Elements, 2015, 58: 7-17doi:10.1016/j.enganabound.2015.03.004
    [27] Zhang LW, Lei ZX, Liew KM. Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method.Applied Mathematics and Computation, 2015, 256: 488-504doi:10.1016/j.amc.2015.01.066
    [28] Wattanasakulpong N, Chaikittiratana A. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation.Applied Mathematical Modelling, 2015, 39(18): 5459-5472doi:10.1016/j.apm.2014.12.058
    [29] Shams S, Soltani B. Buckling of laminated carbon nanotube-reinforced composite plates on elastic foundations using a meshfree method.Arabian Journal for Science and Engineering, 2016, 41(5): 1981-1993doi:10.1007/s13369-016-2051-4
    [30] Nguyen DD, Lee J, Nguyen TT, et al. Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundations.Aerospace Science and Technology, 2017, 68: 391-402doi:10.1016/j.ast.2017.05.032
    [31] Keleshteri MM, Asadi H, Aghdam MM. Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation.Thin-Walled Structures, 2019, 135: 453-462doi:10.1016/j.tws.2018.11.020
    [32] Adhikari B, Singh BN. Dynamic response of FG-CNT composite plate resting on an elastic foundation based on higher-order shear deformation theory.Journal of Aerospace Engineering, 2019, 32(5): 4019061doi:10.1061/(ASCE)AS.1943-5525.0001052
    [33] Gu L. Moving kriging interpolation and element-free Galerkin method.International Journal for Numerical Methods in Engineering, 2003, 56: 1-11doi:10.1002/nme.553
    [34] Tu S, Yang HQ, Dong LL, et al. A stabilized moving Kriging interpolation method and its application in boundary node method.Engineering Analysis with Boundary Elements, 2019, 100: 14-23doi:10.1016/j.enganabound.2017.12.016
    [35] Pasternak PL. On a new method of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstvo Literaturi Po Stroitelstuve I Arkhitekture, 1954
    [36] Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. New York Washington DC: CRC Press, 2003
    [37] Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites.Computational Materials Science, 2007, 39(2): 315-323doi:10.1016/j.commatsci.2006.06.011
    [38] Zhang CL, Shen HS. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation.Applied Physics Letters, 2006, 89(8): 081904doi:10.1063/1.2336622
  • 加载中
图(11)/ 表(8)
计量
  • 文章访问数:407
  • HTML全文浏览量:170
  • PDF下载量:61
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-13
  • 录用日期:2023-05-10
  • 网络出版日期:2023-05-11
  • 刊出日期:2023-06-18

目录

    /

      返回文章
      返回
        Baidu
        map