EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于路径积分法的输液管道随机动态响应分析

孙诣博,魏莎,丁虎,陈立群

downloadPDF
孙诣博, 魏莎, 丁虎, 陈立群. 基于路径积分法的输液管道随机动态响应分析. 力学学报, 2023, 55(6): 1371-1381 doi: 10.6052/0459-1879-23-032
引用本文: 孙诣博, 魏莎, 丁虎, 陈立群. 基于路径积分法的输液管道随机动态响应分析. 力学学报, 2023, 55(6): 1371-1381doi:10.6052/0459-1879-23-032
Sun Yibo, Wei Sha, Ding Hu, Chen Liqun. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381 doi: 10.6052/0459-1879-23-032
Citation: Sun Yibo, Wei Sha, Ding Hu, Chen Liqun. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method.Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381doi:10.6052/0459-1879-23-032

基于路径积分法的输液管道随机动态响应分析

doi:10.6052/0459-1879-23-032
基金项目:国家自然科学基金(12072181, 12272211)和机械系统与振动国家重点实验室课题(MSV202105)资助项目
详细信息
    通讯作者:

    魏莎, 副研究员, 主要研究方向为非线性振动. E-mail:weisha1219@126.com

  • 中图分类号:O324, TE973

STOCHASTIC DYNAMIC RESPONSE ANALYSIS OF PIPE CONVEYING FLUID BASED ON THE PATH INTEGRAL METHOD

  • 摘要:随机激励下的输液管道在工程上广泛存在, 对其进行研究具有十分重要的意义. 为了预测高斯白噪声激励下输液管道系统的随机动态响应, 基于哈密顿原理建立了高斯白噪声激励下非线性输液管道的动力学模型. 采用Galerkin截断方法对输液管道的控制方程进行离散化. 采用基于Gauss-Legendre公式的路径积分法计算了输液管道随机振动响应的位移概率密度函数和速度概率密度函数. 采用Monte Carlo方法与路径积分法得到的计算结果进行对比, 验证了路径积分法在计算输液管道振动响应上具有较高的计算精度. 研究了流速、激励强度和阻尼系数对输液管道位移概率密度函数和速度概率密度函数的影响, 并确定了输液管道位移概率密度函数出现双峰时的临界流速. 结果表明, 采用路径积分法计算输液管道系统的动态响应是有效的. 流速增大会使系统可能发生的最大位移变大, 可能发生的最大速度不变; 激励强度增大会使系统可能发生的最大位移和最大速度变大; 阻尼系数增大会使系统可能发生的最大位移和最大速度变小. 此外, 研究发现流速增大是诱导输液管道发生随机分岔的因素之一.

  • 图 1高斯白噪声激励下两端简支输液管道示意图

    Figure 1.A simply-supported pipe conveying fluid under distributed Gaussian white noise excitations

    图 2路径积分法和Monte Carlo法的计算结果对比

    Figure 2.Comparison of results of path integral method and Monte Carlo method

    图 3联合概率密度的结果对比

    Figure 3.Comparison of theoretical results and simulation results of joint probability density

    图 4不同流速下的位移概率密度和速度概率密度

    Figure 4.Probability density of the displacement and probability density of the velocity with different fluid speed

    图 5不同流速下的联合概率密度

    Figure 5.Joint probability density with different fluid speed

    图 6位移概率密度峰值位置随流速的变化图

    Figure 6.The peak position of the probability density of the displacement varies with fluid speed

    图 7不同激励强度下的位移概率密度和速度概率密度

    Figure 7.Probability density of the displacement and probability density of the velocity with different excitation strength

    图 8不同激励强度下的联合概率密度

    Figure 8.Joint probability density with different excitation strength

    图 9不同阻尼系数下的位移概率密度和速度概率密度

    Figure 9.Probability density of the displacement and probability density of the velocity with different damping coefficient

    图 10不同阻尼系数下的联合概率密度

    Figure 10.Joint probability density with different damping coefficients

    10不同阻尼系数下的联合概率密度 (续)

    10.Joint probability density with different damping coefficients (continued)

    表 1输液管道基本参数[38]

    Table 1.The basic parameters of pipe conveying fluid system[38]

    Item Notation Value
    Young’s modulus E 2.07 × 1011Pa
    length of the pipe L 30 m
    outer diameter D 0.6 m
    inner diameter d 0.583 m
    density of the pipe ρp 7850 kg/m3
    density of the fluid ρf 800 kg/m3
    excitation strength Dw 0.05
    fluid speed $\varGamma$ 20 m/s
    damping coefficient η 1
    下载: 导出CSV
  • [1] 徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展. 力学进展, 2004, 2: 182-194 (Xu Jian, Wang Qianbiao. Recent advances of pipe conveying fluid models and nonlinear dynamics.Advances in mechanics, 2004, 2: 182-194 (in Chinese)doi:10.3321/j.issn:1000-0992.2004.02.003

    Xu Jian, Wang Qianbiao. Recent advances of pipe conveying fluid models and nonlinear dynamics.Advances in mechanics, 2004, (02): 182-194 (in Chinese))doi:10.3321/j.issn:1000-0992.2004.02.003
    [2] 徐鉴, 王琳. 输液管动力学分析和控制. 北京: 科学出版社, 2015

    Xu Jian, Wang Lin. Dynamics and Control of Fluid-Conveying Pipe Systems. Beijing: Science Press, 2015 (in Chinese))
    [3] 王琳, 匡友弟, 黄玉盈等. 管振动与稳定性研究的新进展: 从宏观尺度到微纳米尺度. 固体力学学报, 2010, 31(5): 481-495 (Wang Lin, Kuang Youdi, Huang Yuying, et al. Recent progress in the study of vibration and stability of pipe conveying fluid: from macroscopic scale to micro-nano scale.Chinese journal of solid mechanics, 2010, 31(5): 481-495 (in Chinese)

    (Wang Lin, Kuang Youdi, Huang Yuying, et al. Recent progress in the study of vibration and stability of pipe conveying fluid: from macroscopic scale to micro-nano scale. Chinese journal of solid mechanics, 2010, 31(05): 481-495 (in Chinese))
    [4] Chen S. Forced vibration of a cantilevered tube conveying fluid.Journal of the Acoustical Society of America, 1970, 48(3B): 773-775doi:10.1121/1.1912205
    [5] Lottati I, Kornecki A. The effect of an elastic foundation and of dissipative forces on the stability of fluid-conveying pipes.Journal of Sound and Vibration, 1986, 109(2): 327-338
    [6] 黄慧春, 张艳雷, 陈立群. 受迫振动的超临界输液管Galerkin数值模拟. 应用数学和力学, 2014, 35(10): 1100-1106 (Huang Huichun, Zhang Yanlei, Chen Liqun. Galerkin numerical simulation of the supercritical pipe conveying fluid under forced vibration.Applied Mathematics and Mechanic, 2014, 35(10): 1100-1106 (in Chinese)doi:10.1016/S0022-460X(86)80012-8

    Huang Huichun, Zhang Yanlei, Chen Liqun. Galerkin numerical simulation of the supercritical pipe conveying fluid under forced vibration. Applied Mathematics and Mechanic, 2014, 35(10): 1100-1106(in Chinese)doi:10.1016/S0022-460X(86)80012-8
    [7] 王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019, 51(2): 558-568 (Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints.Journal of Dynamics and Control, 2019, 51(2): 558-568 (in Chinese)

    (Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Journal of Dynamics and control, 2019, 51(02): 558-568(in Chinese))
    [8] Ye SQ, Ding H, Wei S, et al. Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid.Ocean Engineering, 2021, 227: 108899
    [9] 张挺, 林震寰, 林通等. 内激励型振荡衰减流作用下输流管道动力不稳定分析. 振动与冲击, 2021, 40(3): 284-290 (Zhang Ting, Lin Zhenhuan, Lin Tong, et al. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow.Journal of Vibration and Shock, 2021, 40(3): 284-290 (in Chinese)doi:10.13465/j.cnki.jvs.2021.03.037

    Zhang Ting, Lin Zhenhuan, Lin Tong, et al. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow.Journal of vibration and shock, 2021, 40(03): 284-290(in Chinese)doi:10.13465/j.cnki.jvs.2021.03.037
    [10] 颜雄, 魏莎, 毛晓晔等. 两端弹性支承输流管道固有特性研究. 力学学报, 2022, 54(5): 1341-1352 (Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural charactertics of fluid-conveying pipes with elastic supports at both ends.Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352 (in Chinese)

    Yan xiong, Wei Sha, Mao Xiaoye, et al. Study on natural charactertics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(05): 1341-1352(in Chinese)
    [11] Wei S, Yan X, Fan X, et al. Vibration of fluid-conveying pipe with nonlinear supports at both ends.Applied Mathematics and Mechanic(English Edition), 2022, 43(6): 845-862doi:10.1007/s10483-022-2857-6
    [12] Liang F, Qian Y, Chen Y, et al. Nonlinear forced vibration of spinning pipes conveying fluid under lateral harmonic excitation.International Journal of Applied Mechanics, 2021, 13(9): 2150098doi:10.1142/S1758825121500988
    [13] Zhou K, Dai HL, Wang L, et al. Modeling and nonlinear dynamics of cantilevered pipe with tapered free end concurrently subjected to axial internal and external flows.Mechanical Systems and Signal Processing, 2022, 169: 108794doi:10.1016/j.ymssp.2021.108794
    [14] Guo X, Gao P, Ma H, et al. Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation.Mechanical Systems and Signal Processing, 2023, 189: 110086doi:10.1016/j.ymssp.2022.110086
    [15] Zhai HB, Wu ZY, Liu YS, et al. Dynamic response of pipeline conveying fluid to random excitation.Nuclear Engineering and Design, 2011, 241(8): 2744-2749doi:10.1016/j.nucengdes.2011.06.024
    [16] Gan CB, Guo SQ, Lei H, et al. Random uncertainty modeling and vibration analysis of a straight pipe conveying fluid.Nonlinear Dynamic, 2014, 77(3): 503-519doi:10.1007/s11071-014-1313-5
    [17] Lotfan S, Fathi R, Ettefagh MM. Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow.International Journal of Mechanical Sciences, 2016, 115: 723-735
    [18] Yang Y, Zhang Y. Random vibration response of three-dimensional multi-span hydraulic pipeline system with multipoint base excitations.Thin-Walled Structures, 2021, 166: 108124doi:10.1016/j.tws.2021.108124
    [19] Li W, Zhang H, Qu W. Stress response of a straight hydraulic pipe under random vibration.International Journal of Pressure Vessels and Piping, 2021, 194: 104502doi:10.1016/j.ijpvp.2021.104502
    [20] Qu W, Zhang H, Li W, et al. Dynamic characteristics of a hydraulic curved pipe subjected to random vibration.International Journal of Pressure Vessels and Piping, 2021, 193: 104442doi:10.1016/j.ijpvp.2021.104442
    [21] Sazesh S, Shams S. Vibration analysis of cantilever pipe conveying fluid under distributed random excitation.Journal of Fluids and Structures, 2019, 87: 84-101doi:10.1016/j.jfluidstructs.2019.03.018
    [22] Yu JS, Lin YK. Numerical path integration of a non-homogeneous Markov process.International Journal of Non-Linear Mechanics, 2004, 39(9): 1493-1500doi:10.1016/j.ijnonlinmec.2004.02.011
    [23] Yu JS, Cai GQ, Lin YK. A new path integration procedure based on Gauss-Legendre scheme.International Journal of Non-Linear Mechanics, 1997, 32(4): 759-768doi:10.1016/S0020-7462(96)00096-0
    [24] Masud A, Bergman LA. Application of multi-scale finite element methods to the solution of the Fokker-Planck equation.Computer Methods in Applied Mechanics and Engineering, 2005, 194(12-16): 1513-1526doi:10.1016/j.cma.2004.06.041
    [25] Roberts JB, Spanos PD. Random Vibration and Statistical Linearization. Courier Dover Publications, 2003
    [26] Shinozuka M. Monte Carlo solution of structural dynamics.Computers and Structures, 1972, 2(5-6): 855-874doi:10.1016/0045-7949(72)90043-0
    [27] Wojtkiewicz SF, Johnson EA, Bergman LA, et al. Spencer, response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method.Computer Methods in Applied Mechanics and Engineering, 1999, 168(1-4): 73-89doi:10.1016/S0045-7825(98)00098-X
    [28] Huang ZL, Zhu WQ, Suzuki Y. Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations.Journal of Sound and Vibration, 2000, 238(2): 233-256doi:10.1006/jsvi.2000.3083
    [29] Yue X, Cui S, Pei B, et al. Responses of stochastic dynamical systems by the generalized cell mapping method with deep learning.International Journal of Non-Linear Mechanics, 2022, 147: 104190doi:10.1016/j.ijnonlinmec.2022.104190
    [30] Wehner MF, Wolfer WG. Numerical evaluation of path-integral solutions to Fokker-Planck equations. III. Time and functionally dependent coefficients.Physical Review A,General Physics, 1987, 35(4): 1795-1801
    [31] Li X, Ding H, Chen LQ. Effects of weights on vibration suppression via a nonlinear energy sink under vertical stochastic excitations.Mechanical Systems and Signal Processing, 2022, 173: 109073doi:10.1016/j.ymssp.2022.109073
    [32] Xue JR, Zhang YW, Ding H, et al. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation.Applied Mathematics and Mechanics(English Edition), 2020, 41(1): 1-14
    [33] 王亮, 景康康, 彭佳慧等. 非光滑变换下随机碰撞系统的路径积分算法. 山东大学学报(理学版), 2022, 57(3): 68-77 (Wang Liang, Jing Kangkang, Peng Jiahui, et al. Path integration method for the stochastic vibro-impact system under the non-smooth transformation.Journal of Shandong University(Natural Science), 2022, 57(3): 68-77 (in Chinese)doi:10.1007/s10483-020-2560-6

    Wang Liang, Jing Kangkang, Peng Jiahui, et al. Path integration method for the stochastic vibro-impact system under the non-smooth transformation.Journal of Shandong University (Natural Science), 2022, 57(03): 68-77(in Chinese)doi:10.1007/s10483-020-2560-6
    [34] Zhu HT, Duan LL. Probabilistic solution of non-linear random ship roll motion by path integration.International Journal of Non-Linear Mechanics, 2016, 83: 1-8doi:10.1016/j.ijnonlinmec.2016.03.010
    [35] Zan WR, Xu Y, Metzler R, et al. First-passage problem for stochastic differential equations with combined parametric Gaussian and Lévy white noises via path integral method.Journal of Computational Physics, 2021, 435: 110264doi:10.1016/j.jcp.2021.110264
    [36] Zan WR, Jia WT, Xu Y. Reliability of dynamical systems with combined Gaussian and Poisson white noise via path integral method.Probabilistic Engineering Mechanics, 2022, 68: 103252doi:10.1016/j.probengmech.2022.103252
    [37] 徐严钢, 朱海涛, 刘治国. 三维路径积分法的积分区间以及子区间数目选取方法研究. 应用力学学报, 2021, 38(4): 1358-1365 (Xu Yangang, Zhu Haitao, Liu Zhiguo. Path integration method for the stochastic vibro-impact system under the non-smooth transformation.Chinese Journal of Applied Mechanics, 2021, 38(4): 1358-1365 (in Chinese)doi:10.11776/cjam.38.04.C028

    Xu Yangang, Zhu Haitao, Liu Zhiguo. Path integration method for the stochastic vibro-impact system under the non-smooth transformation. Chinese Journal of applied Mechanics, 2021, 38(04): 1358-1365 (in Chinese))doi:10.11776/cjam.38.04.C028
    [38] Zhang YH, Li YY, Kennedy D. An uncertain computational model for random vibration analysis of subsea pipelines subjected to spatially varying ground motions.Engineering Structures, 2019, 183: 550-561doi:10.1016/j.engstruct.2019.01.031
  • 加载中
图(11)/ 表(1)
计量
  • 文章访问数:505
  • HTML全文浏览量:185
  • PDF下载量:111
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-03
  • 录用日期:2023-03-28
  • 网络出版日期:2023-03-29
  • 刊出日期:2023-06-18

目录

    /

      返回文章
      返回
        Baidu
        map