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Abstract

Theoretical modelling of solitary waves in soft bars and higher harmonics in
nonlinear media

With the development of ultrasonic techniques, the influence of elastic
nonlinearity on wave propagation in solids has attracted extensive attention. In this
dissertation, several theoretical problems of wave propagation in materials and
structures involving elastic nonlinearity are investigated. The dissertation consists of
two main parts, i.e. the investigation of solitary waves propagating in soft bars under
a biasing field (Part 1), and the analysis of higher harmonic generation by material
nonlinearity arisen from material micro-damages (Part 2). The major achievements

of this dissertation are briefly summarized as follows.

In Part 1, the tunability of solitary waves propagating in soft bars is explored.
The effective material properties of soft materials can be altered significantly when
subjected to biasing fields, such as electric field or pre-stretch. In this context, two
cases are considered, 1) an electroelastic bar subjected to a biasing longitudinal
electric displacement, and 2) a viscoelastic bar subjected to a pre-stretch. An
asymptotic analysis is conducted by introducing several asymptotic expansions to
simplify the rod governing equations. The boundary conditions on the lateral surface
of the rod are satisfied from the asymptotic point of view. For the first case, by the
reductive perturbation method, we deduce the far-field equation (i.e. the KdV
equation). Then, the leading order of the electroelastic solitary wave solution is
presented. Numerical examples are provided to show the influences of the biasing
electric displacement and material constants on the solitary waves. It is found that
the biasing electric displacement can modulate the velocity of solitary waves with a
prescribed amplitude in the electroactive rod. For the second case, following the
similar procedure, the KdV-Burgers equation can be formulated, which admits
analytical and explicit solutions for kink and kink-like waves in pre-stretched
Mooney-Rivlin elastic rods with the consideration of viscous dissipation. We find
that the pre-stretch can not only make the kink waves lower and wider, but also
change the wave velocity. The competition between the effects of pre-stretch and

viscosity on the kink and kink-like waves is also revealed.
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In Part 2, several simplified theories and simple theoretical models are
proposed to work out analytical solutions to higher harmonic generations by
material nonlinearity, which can be used to assess material micro-damages. As a
starting point, we generally investigate harmonics of plane longitudinal and
transverse waves in elastic solids with up to cubic nonlinearity in a one-dimensional
setting. Some interesting and useful results for harmonic generation are uncovered.
Then, we extend our work to the investigation of wave propagating on a half-space
of isotropic incompressible material of cubic nonlinearity. The analytical far-field
solution for the cumulative third harmonic surface wave is obtained in a relatively
simple and systematic manner. The solution reveals that, in the far field, the
resonant third harmonic propagates with the classic Rayleigh wave velocity, whose
amplitude increases linearly with the propagation distance. The transmission of the
resonant wave from a half-space of nonlinear material into a half-space of linear
material is also considered. In a pipe of quadratic material nonlinearity, the
analytical solution to the mixing of axisymmetric longitudinal waves and torsional
waves are obtained using the shell theory. The resonant waves with difference
frequencies propagate in the opposite direction of the corresponding primary wave.
The nonlinear shell theory is further simplified to obtain the solution for the
cumulative second longitudinal harmonics generated by self-interaction of
longitudinal waves in an analytical form. From a practical point of view, some
theoretical models to investigate harmonic generation from an inclusion of nonlinear
material are also established. By using the continuity conditions of stress and
displacement at the interface or using the reciprocity theorem of elastodynamics, the
expressions of the reflection waves are obtained, whose amplitudes can provide
information of the material constants of the nonlinear media. The reciprocity
theorem is proven to have greater utility. As an example, the backscattering of a
torsional wave from a small zone of material nonlinearity in a pipe is investigated.
The analytical expression of the backscattered wave is obtained by using the
reciprocity theorem, whose amplitude is determined by the nonlinearity coefficient
and the size of the nonlinear region. Combining the primary wave with a higher
frequency wave is proposed to increase the magnitude of the backscattered wave.
Using the same method, we also investigate the intersection of two non-collinear

waves at a region of quadratic material nonlinearity in an elastic layer in a three-
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dimensional setting. Based on the mode expansions, the analytical solution to the

amplitudes of the Lamb wave and the SH wave are obtained.

The theoretical models proposed in this dissertation and the obtained analytical
solutions have the potential application in the design of novel acoustic devices and

the development of nonlinear ultrasonic techniques for nondestructive evaluation.

Key words: Theoretical modelling; solitary waves; higher harmonics; asymptotic

analysis; analytical solutions; soft bars; nonlinear media
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Chapter 1 Introduction

1.1 Background

Ultrasound is a useful and powerful tool to characterize defects or damages in
materials and structures, especially their sizes, locations and properties. The linear
ultrasonic technique relies on the measurement of wave velocity, attenuation and
reflection and transmission coefficients. The principle of the linear ultrasonic
technique is established within the frame of linear elasticity by the assumption of
small deformation (linear strain-displacement relation) and linear material behavior

(linear stress-strain relation).

However, modern science is undergoing profound evolution, and nonlinear
science has been in a frontier field running through mathematical science, life
science, space science and earth science. Recently, the researches about nonlinear
ultrasound revive due to the rapid development of soft materials. The capacity of
large deformation is an outstanding character of soft materials. Thus, the influence

of nonlinearity on wave propagation in soft materials has to be considered.

On the other hand, the researches on nonlinear ultrasound become very active
due to its potential application in the field of nondestructive field. Compared with
the linear ultrasound, the nonlinear ultrasound is based on the nonlinear continuum
theory by considering finite deformation (quadratic strain-displacement relation)
and/or nonlinear material behavior (nonlinear stress-strain relation), which is more
sensitive to microstructural damages, such as micro-cracks, plastic strains and
dislocations, see Figs. 1.1 and 1.2. Figure 1.1 shows that nonlinear ultrasound is
sensitive to the defects at the size from 1 nm to 1 um, while the conventional
ultrasound testing is only applicable to macroscopic defects. Figure 1.2 shows that
the linear parameters almost keep unchanged, while the nonlinear ones increase
quickly when the fatigue damages occur. Thus, the investigation of wave
propagation, which takes geometrical and material nonlinearities into account, is of

practical importance.
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Fig. 1.1 Detectable defect size of various nondestructive and destructive methods for
material characterization (Jhang, 2009)
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Fig. 1.2 Sensitivity of nonlinear parameters to micro-defects induced by fatigue load for
three different materials (Nagy, 1998)

As a special solution to the nonlinear equations of wave motion, solitary wave
is generated due to the balance between nonlinearity and dispersion or dissipation.
The physical mechanism is that nonlinearity will increase the wave amplitude, while
dispersion and dissipation will drop the wave amplitude. Solitary waves can

propagate over a long distance without distortion. Significant progresses have been
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made in the study of solitary waves related to internal water waves, nerve pulse

dynamics, ion-acoustic waves in plasma, nonlinear optics, and so on.

Harmonic generation is another important solution to the nonlinear equations of
wave motion. The effect of weak nonlinearity on a primary linear wave is the
generation of higher harmonics which propagate at a frequency that is an integer
times the frequency of the primary wave, and which may be resonant in the sense

that the amplitude may increase linearly with the propagation distance.

Recently, the investigation of nonlinear elastic waves has attracted much
academic attention due to a wide range of technical and industrial applications, such
as geophysical exploration (Sinha and Winkler, 1999), soft tissue acoustics
(Catheline et al., 2003), dynamics of elastomer (Serensen et al., 1984), and some
biomedical applications (Rudenko, 2007; Li et al., 2017). Actually, just as in fluid
and gas dynamics, which have long been the kernel of the traditional nonlinear
science, nonlinear effects are becoming increasingly critical in solid mechanics
research (Jeffrey and Engelbrecht, 1994). Nondestructive evaluation is regarded as
the most potential application of nonlinear ultrasound (Kim et al., 2006; Matlack et
al., 2011). Compared with linear waves, nonlinear waves have some distinct and
attracting properties. However, the analysis of nonlinear waves is more complicate

than the linear one from the mathematical point of view.

Research topics about nonlinear elastic waves have been pursued for several
decades. Abundant theories and experiments therefore have been proposed.
However, the related techniques still have not been widely applied in engineering
and industry. That’s why we still need further investigations of nonlinear elastic

wave propagation in terms of theory, simulation and experiment.

1.2 Wave propagation in soft materials

Soft materials such as gels, elastomers and tissues have attracted much
attention due to their outstanding static and dynamic behaviors. The capability of
reversible larger deformation is generally regarded as the most remarkable character
of soft materials. The effective material properties of soft materials can be altered

significantly when subjected to finite deformation. To describe the mechanical
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behavior of soft material, general nonlinear theories of finite deformation have been
developed. Two classic books written by Ogden (1997) and Holzapfel (2000) are
recommended, both providing an excellent guidance to solve the problems related to
soft materials subjected to finite deformation. The analysis of static and dynamic

deformations can be conducted based on the approaches described therein.

As a special kind of soft solids, soft electroactive materials (such as dielectric
elastomers) can change their shapes and mechanical properties under electric stimuli,
which behave just like biological muscles, and hence they are often called artificial
muscles. As a new kind of advanced functional materials, electroactive materials
have many attractive characteristics, such as higher response speed, lower density
and greater resilience (Bar-Cohen, 2002). Not surprisingly, they have triggered
extensive research interests in recent years. It should be noted that the development
of general nonlinear theories of electroelasticity dates back to the seminal works of
Toupin (1956, 1963) and their systematic exploration and application can be found
in the two monographs by Eringen and Maugin (2012) and by Maugin (2013),
respectively. Recently, Dorfmann and Ogden (2005, 2010) presented a nonlinear
framework for electroelasticity and investigated the superimposed linear waves in

electroactive bodies under biasing fields.

In general, the theories about dynamic behavior of soft materials can be
separated into “small-on-large” theory and “large-on-large” theory, which

correspond to the linear and nonlinear theories of elastodynamics, respectively.
1.2.1 Constitutive relations

Many hyperelastic models have been proposed to describe finite deformation of
elastic solids, which are generally expressed by the energy density function in terms
of the invariants of the strain tensor and takes the geometrical nonlinearity and the
material nonlinearity into account. For the large deformation of soft materials, such
as rubber, whose strain may be up to more than 1000%, some empirical models are
developed, whose coefficients are determined by experimental data fitting. Soft
tissues are special soft materials. Some models are also set up, which is able to

describe the outstanding characters of soft tissues.
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The energy density can be expanded for finite deformation as

powzlc. EijEk|+1'c EEqEm + (1.1)

21 ijkl 3 ijklmn =ij =kl =—mn

where ¢, and c are the second-order and third-order elastic constants,

ijklmn
respectively, and E; are the components of the Lagrangian strain tensor.

Specifically, if the terms higher than fourth-order are neglected, Eq. (1.1) can be

reduced for isotropic materials to

pW = i(trE)2 + utrE? + E(trE)s + B(trE) trE? JAueee (trE) trE?
2 3 3 (1.2)
+F (WrE)° trE? + G (trE? ) + H (W)’

where 4 and u are Lamé’s constants, A, B and C are the third-order elastic

constants introduced by Laudau and Lifshitz (1986), and E, F, G and H are the
fourth-order elastic constants. For incompressible materials, Eq. (1.2) can be
reduced to (Hamilton et al., 2004; Destrade and Ogden, 2010a)

P = utrE? + EA trE® + G (rE?)’ (1.3)

The condition of incompressibility simplifies the constitutive relation greatly.
Equation (1.3) can be used to investigate shear wave motions in incompressible soft
materials. For rubbery materials, the constitutive relations are generally treated by
statistical mechanics or continuum mechanics, wherein the material constants are
usually determined by experimental data fitting. Excellent reviews on statistical
mechanics models have been given by Treloar (1975) and Boyce and Arruda (2000),
in which the nonlinear stress-stretch behaviors of 3-chain, 4-chain, 8-chain and full-
network models were compared with each other. The continuum mechanics model is
proposed based on the basic principles and in particular the principle of material
frame-indifference. For an isotropic hyperelastic material, the strain energy density
function can be described by three invariants. Neo-Hookean model, Mooney-Rivlin
model, Yeoh model and Ogden model are all developed based on continuum
mechanics for different kinds of rubbery materials under different loading

conditions.
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Neo-Hookean model:

w :C10(|1—3)+i(J ~1)° (1.4)
Dl
Mooney-Rivlin model:
W =C,(I,-3)+C,,(1, —3)+%(J ~1)° (1.5)
1
Yeoh Model:
3 31 :
W =>"Cy(l,-3) +ZE(J ~1)* (1.6)
i=1 i=1 i
Ogden Model:
N Zﬂl Ta Ta q 2i
W=Z—2(ﬂi'+ + A0~ +Z—(J -1 (1.7)

where /; are the principal stretches and 4 =J™°4, J =444, 4, &, D, and C,
are the material constants, |, and |, are the invariants of the strain tensor, which are

given by

1 2 2
l1=trc, Iz:E[(trc) ~tr(c) | (1.8)

where ¢ is the right Cauchy-Green strain tensor. The comparison between different
hyperelastic models has been made in detail by Ali et al. (2010). These models can
be reduced to the ones suitable for incompressible materials by making use of the

condition of incompressibility, some of which were given in Kim et al. (2012).

For many soft tissues, the strain-hardening effect should be taken into
consideration. Fung model and Gent model have been proposed to capture this effect
for soft tissues (Goriely, 2017). When material incompressibility is taken into

consideration, the two models are mathematically expressed as

Fung model:
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_H —3))
W= 2 [exp(4(1, —3)) -1] (1.9)

where g >0 is a material constant which controls the strain-hardening property.

Gent model:
__H _ _
W = 5 log[1- £(1,-3)] (1.10)

The neo-Hookean model is obtained in the limit g — 0, either from Eq. (1.9) or Eqg.
(1.10). The elastic coefficients of soft tissues in these models should be determined
via experimental data fitting. The assumption of incompressibility is often taken for
soft materials. However, the effects of compressibility may be important in certain
applications (Bischoff, 2001).

Viscoelasticity is another outstanding character of soft materials. The
dissipation term has to be added into the strain density function when we consider
dissipative wave motion in soft materials. In the past thirty years, Landau and
Lifchitz model (Landau and Lifchitz, 1986, p. 107) has been widely used in the field
of physical acoustics by adding the elastic stress tensor a “viscosity stress tensor”,

which is given by
, 2 ). :
c :(g—gnj E,1+2nE (1.11)

where 7 >0 and ¢ > 0 are the shear and bulk viscosity coefficients, respectively, I
is the unit tensor, and the superposed dot of the Lagrangian strain tensor E denotes
the time derivative. Unfortunately, it is physically wrong for at least two reasons
(Destrade et al., 2013). One reason is that the first Piola-Kirchhoff stress tensor ¢ is
not symmetric while E is symmetric, which will lead to inconsistence of the
equation. Another reason is that E is frame-invariant, while ¢ is not, so that the
expression of total stress is not subjective. The corrected form of the viscous part of

the first Piola-Kirchhoff stress tensor ¢ is
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¢’ :(é’—%nj Ftr(bd) + 2nbdF (1.12)

where F is the deformation gradient tensor, b is the left Cauchy-Green strain tensor
and d is the Eulerian stretching tensor. For incompressible materials, we have
(Destrade et al., 2013; Destrade and Saccomandi, 2005)

¢’ =2nd (1.13)

Soft electroactive materials are smart soft materials, which can be used as
actuators, see Fig. 1.3. As the most remarkable character, the capacity of large
deformation of soft electroactive materials under electric stimulus has gained an
extensive academic interest. To predict the behavior of electroactive materials and to
aid the design of devices, it is necessary to develop a general theory of nonlinear
electroelasticity to understand the electro-mechanical coupling effects, especially the
constitutive relations which describe the material properties based on experimental
data fitting (Dorfmann and Ogden, 2017). Dorfmann and Ogden have conducted a
series of researches on the nonlinear theory of electroelasticity (2005), the
associated incremental equations (2010) and a theoretical framework of boundary

value problems for electro-sensitive elastomers (2006).

v
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( Y,

electrodes (on top ‘}

and bottorn
surfaces) Voltage Off Voltage On

Fig. 1.3 Electroelastic actuator (Pelrine et al., 2000a)

The energy density function for electroactive materials can be separated into two
parts: one part represents the contribution from pure elasticity and another part
represents the electro-mechanical coupling. For example, the model considering the
electro-mechanical coupling used by Dorfmann and Ogden (2010) generalizes the

well-known neo-Hookean model, and it is given by

Qzly(ll—3)+i(al4+ﬂ|5) (1.14)
2 &

0
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where
|, =E,-E,, I,=E,-(cE,) (1.15)

where E, is the nominal electric field tensor. The following energy density function

for electroactive materials is known as the generalized Mooney—Rivlin model:

W (4,4, 4, D) =U (4, 4,, 4) +V (4, 4, 4, D) (1.16)
where

2

=272, (117
25(/11,/12,13)21 . A (1.17)

C C
U =?1(ﬂf + A, + A7 —3)+?2(11‘2 + 2,7+ 24,2 =3),V

The dielectric constant &, in Eq. (1.14) is independent of deformation, which is

appropriate for ideal dielectric materials. The nominal strain-stress and strain-
electric field relation can be obtained through the differential of the energy density
function. Due to the advantages of mathematical simple structure, the above energy
density functions have been widely used to study the mechanical behaviors of soft

solids and characterize material properties.

1.2.2 Wave propagation of small amplitude superimposed on finite pre-

deformation

In some important cases, elastic wave can be viewed as an incremental motion
superimposed on static finite deformation of soft materials. In general, the elastic
waves propagating in pre-stretched or pre-stressed bodies are studied within the
linear theory of elastodynamics when their amplitudes are small. The small-on-large
motion can be accurately described by the linearized theory of the general nonlinear
elasticity. The underlying pre-stretch and/or pre-stress is the most popular and
effective mechanical means to modulate the wave propagation in soft materials,

such as the wave velocity.

Due to the significant influence of pre-stretch on wave propagation, this
research topic has attracted intensive academic interest. The history of the research

on elastic waves in pre-stressed bodies dates back to Cauchy during 1822-1828 (Guz,
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2002). The important breakthroughs have been made by Biot, Hayes and Rivlin,
Chadwick and Jarvis, and Ogden and Sotiropoulos (Chen and Dai, 2012). Biot
(1940) presented a rigorous solution to the problem of wave propagation in an
elastic continuum when the influence of the initial stress is taken into account. It is
shown that a uniform hydrostatic pressure does not change the laws of wave
propagation. Hayes and Rivlin (1961) applied the theory of small-on-large
deformations in an isotropic elastic material to study the propagation of a plane
wave of small amplitude in an infinite material subjected to a static, homogenous
deformation. Chadwick and Jarvis (1979) investigated the surface wave motion on a
half-space subjected to pre-stress. The main results are a general uniqueness
theorem and the notation of a neutral set, bounding the domain of existence of
surface waves and interpretable as the totality of standing wave solutions. The
reflection of homogeneous plane waves from a plane boundary in an incompressible
isotropic elastic solid was investigated by Ogden and Sotiropoulos (1996)
considering the influence of pre-stress and finite strain. They claimed the theoretical
model can be used to characterize the material properties, the finite deformation and
the associated pre-stress. The topics of elastic wave propagation in structures, like
cylinders, pipes and plates, also arose extensive research interest. Belward and
Wright (1987) studied small-amplitude waves propagating in a cylinder of pre-
stressed Mooney material using analytical and computational techniques. Significant
qualitative and quantitative differences were observed when the pre-deformation
varies. Shearer et al. (2013) considered the torsional wave propagation in a pre-
stressed annular cylinder of an incompressible material subjected to hydrostatic
pressures acting on the inner and outer surfaces. The pressure difference creates an
inhomogeneous deformation field along the radial direction, which makes the
coefficients of the governing ordinary differential equation spatially varying and
affects the location of the roots of the dispersion relation. The dispersion relation
was then determined by using an approximate procedure (the Liouville-Green
transformation). Rogerson and Fu (1995) investigated the propagation of small-
amplitude travelling waves in a pre-stressed, incompressible elastic plate of finite
thickness by using the asymptotic analysis; the asymptotical expansions for the
wave speed as a function of wavenumber and pre-stress were obtained. Zhou et al.

(2017) investigated wave propagation on a finitely pre-deformed elastic half-space
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overlain by a thin coating layer (or surface film). The comprehensive reviews on
small-amplitude wave propagation in pre-deformed materials were given by Guz
(2002) and Akbarov (2007). Recently, the pre-stretch was also used to control the
wave propagation in soft periodic structures by Huang et al. (2014) and Chen et al.
(2017). Galich et al. (2017) analyzed the elastic wave propagation in highly
deformable layered media and the band gap structures were calculated for the

periodic laminates.

In addition to the mechanical manner like pre-stretch, the underlying electric
field is another effective method to modulate the dynamic behavior of electroactive
materials. The electro-elastic coupling effect has been widely used in acoustic
sensors and actuators due to the rapid development of soft electroactive materials
(Pelrine et al., 2000a, 2000b). The investigations related to the small-amplitude
wave propagation in electroactive materials have been revived in recent years.
Based on nonlinear theory of electroelasticity and the associated linear incremental
equations (Dorfmann and Ogden, 2005, 2006, 2010b), the wave propagation in a
soft electroactive cylinder subjected to a finite deformation in the presence of an
electric biasing field was studied by Chen and Dai (2012). Su et al. (2016) extended
Chen and Dai’s work to the non-axisymmetric case by considering the wave
propagation in an infinite soft electroactive hollow cylinder under uniform biasing
fields like an axial underlying electric displacement and an axial pre-stretch. These
researches uncovered the significant influence of initial deformation and electric
field on wave propagation in soft electroactive materials. The Rayleigh-Lamb wave
propagation in dielectric elastomer layers subjected to large deformations was
investigated by Shmuel et al. (2012). The underlying deformation is induced by
biasing electric field and pre-stretch, which can be used to control the phase
velocities and frequencies. Shmuel and deBotton (2013) studied the axisymmetric
waves in dielectric elastomer tubes under inhomogeneous biasing field produced by
different voltages inserted on the outer and inner surfaces. For the same model, Wu
et al. (2017) investigated the guided circumferential waves by making use of the
state-space method. Galich and Rudykh (2016) analyzed the influence of external
electric stimuli on the pressure and shear wave propagation in dielectric elastomers.

Due to the tunability of material properties of soft electroactive materials like
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dielectric elastomers, related theoretical models of periodic structures or
metamaterials have been established. The thickness vibrations of a finitely deformed
infinite periodic laminate composed of two layers of dielectric elastomers were
studied by Shmuel and deBotton (2012), whose study indicates that the band gaps
can be modulated by the electric field. Then, Shmuel (2013) extended their work to
a two-dimensional system by investigating the band structure for electroelastic
waves of anti-plane mode propagating in finitely strained circular fiber-reinforced
composites with square lattice. Following their works, the nonlinear theory of
electroelasticity and the associated incremental equations have also been applied to
the investigation of wave propagation in periodic structures made of electroactive
materials. Wu et al. (2018) showed that the combination of large deformation and
electromechanical coupling can be a very flexible and efficient way to tune the band
gaps of a phononic cylinder of soft electroactive elastomer with periodic electric
boundary conditions. The concept of manipulating waves in a dielectric elastomer
film by voltage was demonstrated experimentally by Ziser and Shmuel (2017).
However, it should be pointed out that there is a lack of enough experimental results
of wave propagation in electroactive materials at present. Also, the theoretical
models have been proposed based on a series of approximations, such as the
neglecting of viscoelastic effect, which should be a very important factor in the
analysis of soft materials.

1.2.3 Solitary waves

The waves having finite amplitude propagating in elastic or electro-elastic
materials have to be analyzed within the frame work of nonlinear theory of
elastodynamics, which are often called nonlinear waves. As a special kind of
nonlinear waves, solitary waves can propagate over a long distance without
distortion. The solitary waves were first observed in the field of fluid mechanics in
1834 by John Scott Russell. In 1895, this fascinating phenomenon was successfully
interpreted by Korteweg and de Vries who developed the well-known KdV equation.
Since then, problems related to solitary wave propagation have been widely
investigated. The solitary waves can cross each other without any distortion. Thus,
such waves are often called solitons. Due to their remarkable characters, solitary
waves are a subject of considerable interest in many fields. In the field of
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superconductivity, the flux quantum in Josephus effect is actually soliton which has
been used to develop the new computers with lower power and higher speed. In the
field of biology, the investigation of propagation of soliton in protein may explain
the mechanism of the contraction of muscle. McDonald (1974) measured the
simultaneous changes in amplitude and profile of the flow and pressure waves at
five sites from the ascending aorta to the saphenous artery in a dog. The features of
the pulse wave such as “peaking” and “steepening” can be interpreted from the

viewpoint of solitary waves, see Fig. 1.4.
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Fig. 1.4 A diagrammatical comparison of the behavior of the flow velocity and
pressure pulses from the ascending aorta to the sapheneous artery (Demiray and
Dost, 1998)

The pulse waves of blood pressure and flow in large arteries have widely been
described as solitary waves (Choy, 2013). One of the successful application of
soliton is optical soliton propagating in optical fiber. When the power increases, the
nonlinearity has to be considered and the soliton forms, see Fig. 1.5. Their
advantages include lower dissipation and higher bit ratio. With the development of
high-resolution optical methods for wave detection, solitary waves have also been
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observed experimentally in elastic solids (Samsonov and Maugin, 2001; Wu et al.
1987).

Fig. 1.5 Optical soliton (Copyright 1998 American Physical Society)

There are many excellent theoretical works on solitary waves in solids. Among
them, the investigation of solitary waves in rods has gained a particular popularity
due to the simple one-dimensional geometry. Nariboli (1970) studied nonlinear
longitudinal dispersive waves in compressible elastic rods. Wright (1981) studied
nonlinear axisymmetric waves that propagate axial-radial deformation and proved
the existence of solitary waves and periodic waves in circular rods. In 1984,
Soerensen et al. (1984) numerically investigated the interaction between solitary
waves. Wright (1985) pointed out the existence of a large number of traveling wave
solutions in rods composed of incompressible materials. In 1990, Coleman and
Newman (1990) derived a one-dimensional (1D) equation from the three-
dimensional (3D) theory and obtained explicit results for incompressible neo-
Hookean materials. Dai and Huo (2002), without using the Navier-Bernoulli
hypothesis, established asymptotically valid one-dimensional rod equations, which
are consistent with the lateral boundary conditions. Besides, Yong and LeVeque
(2003) investigated the longitudinal elastic strain solitary waves in a one-
dimensional periodically layered medium. Maugin (2007) studied the possibilities of
existence of solitary surface waves travelling over a substrate. Dai et al. (2000)
studied analytically the interaction of two solitary waves in a circular cylindrical rod.
By using the method of coupled series-asymptotic expansions, Dai and Peng (2011)
investigated wave propagation in a pre-stretched Blatz-Ko cylinder and concluded
that a variety of waves can arise, including solitary waves and kink waves. A
detailed review on the study of solitary wave in solids can be referred to the paper of

Maugin (2011). For nonlinear waves propagating in bodies with multi-field coupling,
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Xue et al. (2011) made an important step by investigating solitary waves in a

magneto-electro-elastic circular rod.

The above mentioned solitary waves are usually generated due to the balance
between nonlinearity and dispersion. However, dissipation is always present in a
realistic situation. There are also many works in the field of nonlinear waves in
solids considering the effect of dissipation. Destrade et al. (2009) studied the
nonlinear shear waves propagating in viscoelastic materials whose generation is
directly linked to the nonlinear viscosity term. Hayes and Saccomandi (2000, 2004)
studied the propagation of finite-amplitude shear waves in Mooney-Rivlin
viscoelastic materials maintained in the static state of a pure homogenous
deformation. Destrade and Saccomandi (2004) then extended to the case of
inhomogeneous plane waves. They also studied the interaction of a longitudinal
wave with a transverse wave in viscoelastic materials (Destrade and Saccomandi,
2005). Zabolotskaya et al. (2004) developed an evolution equation for nonlinear
shear waves in soft isotropic solids with viscous dissipation. As is well-known, the
combination of nonlinearity, dispersion and dissipation may lead to the generation
of kink-shaped solitary waves or simply kink waves (Porubov, 2003).

For soft elastic or electroactive materials, applying a mechanical or electric
biasing field can conveniently modulate their effective properties and the
corresponding dynamic behaviors. However, there are few works on nonlinear
waves in pre-stretched structures composed of viscoelastic materials and especially

few works on solitary waves propagating in soft electroactive materials.

1.3 Nonlinear ultrasonic technique and its’ application

Since the linear ultrasonic technique is insensitive to microstructural damages
or material degradations, such as micro-cracks, plastic strains and dislocations, the
nonlinear ultrasonic technique has been then developed, which is based on the
nonlinear theory. The materials which have micro-defects or degradation behave
remarkably in a nonlinear manner. The level of the damage has a strong correlation
with the nonlinear material constants, i.e. higher order elastic constants. To measure

the material nonlinearity, various ultrasonic methods have been proposed, including



16 i RFE PR L

the so-called acousto-elastic effect, which is based on the measurement of the
variation of propagation velocity with the applied strain, just like the case discussed
in Section 1.2.2. One problem of this technique is the difficulty in measuring the
small changes in propagation time and distance accurately enough to allow the
velocity to be determined (Croxford et al, 2009). The second and perhaps most
widely reported method to measure the material nonlinearity is the harmonic
generation technique. The drawback of the harmonic generation technique is that it
is hard to separate the underlying system nonlinearity from the material nonlinearity.
To avoid such interferences, the mixing wave technique has been proposed, which
includes collinear and non-collinear mixing wave techniques (CMWT and
NCMWT).

1.3.1 Harmonics generated by quadratic and cubic nonlinearities
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Fig. 1.6 Nonlinear ultrasonic characterization of fatigue microstructures, (a)
distortion in the waveform by the elastic nonlinearity, (b) the value of measured
nonlinearity parameter as a function of number of fatigue cycles for aluminum alloy
2024-T4 (Cantrell and Yost, 2001)

In recent years, utilization of harmonic generation to interrogate material
nonlinearity has been widely reported. Higher harmonics are generated by the
distortion of waveform of the incident wave by the nonlinear response of elastic
solids, see Fig. 1.6. The resulting amplitudes of higher harmonics are related to the

nonlinearity parameter, such as the expression of 3.
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Experimental observations and an associated theory about the generation of
second harmonics due to the presence of dislocations in solids were presented by
Hikata and co-authors (Hikata et al., 1965; Hikata et al., 1966; Hikata and Elbaum,
1966). A direct correlation between material nonlinearity and the level of plasticity
in metal specimens was experimentally observed by Pruell et al. (2007) using higher
harmonic generation by Lamb waves. Cantrell and Yost (2001) carried out
experimental measurements to show a monotonic increase of nonlinear material
constants with the number of fatigue cycles, see Fig. 1.6. Kim et al. (2006)
developed a robust experimental method to enable a repeatable measurement of
second harmonics. Frouin et al. (1999) successfully carried out a real time
experiment using second harmonics to track the entire fatigue life of a dog-bone
specimen. Deng et al. (2005) and Zhang et al. (2014) made experimental
observations of second harmonic generation of Lamb waves in an elastic plate and
in long bones. Bermes et al. (2007) developed an effective procedure to measure the

nonlinearity of metallic plates using second harmonics.

Some theoretical works about the generation of second harmonics have been
reported. Ten possible nonlinear elastic wave interactions described on the basis of
three third-order elastic constants were presented by Korneev and Demcenko (2014).
All other possible interactions out of 54 combinations were proven to be prohibited.
One of the outstanding features of higher harmonics is the cumulative behavior
because their amplitudes increase with the propagation distance. The self-interaction
or mutual interaction of shear waves in the region of quadratic nonlinearity gives the

generation of longitudinal waves, which propagate with the shear wave velocity.

Although higher harmonics in non-dispersive media have attracted wide
attention, including experimental, numerical and analytical studies (Gol’dberg, 1961;
Bender et al., 2013; Matlack et al. 2015), there are few investigations of higher
guided harmonics in dispersive structures like pipes and rods. Due to the dispersion
of guided waves, which will lead to frequency-dependent phase velocities and multi-
modes, the analysis of harmonics in wave guides becomes quite complex. Recent
investigations about the generation of higher guided harmonics have been made by
Deng (1998, 1999), Pau and Scalea (2015) and de Lima and Hamilton (2003) by

using the method of normal mode expansion. De Lima and Hamilton (2005) adopted
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perturbation and modal analysis together with numerical simulation to calculate the
second harmonics propagating in cylindrical rods and shells. Liu et al. (2014a,
2014b) proposed a generalized method and used a numerical approach to analyze
the cumulative nature and the physical interpretation of the generation of higher
harmonics in hollow circular cylinders. Liu et al. (2013a) formulated a mode
selection method to consider strong higher harmonics and then simulated the
interaction of torsional and longitudinal waves in nonlinear circular cylinders.
Nonlinear finite element models have been adopted to analyze the cumulative
second harmonics in plates and shells by Liu et al. (2013b). Chillara and Lissenden
(2013) used a large radius asymptotic solution to analyze second harmonics in pipes.
They concluded that only asymptotic symmetric modes can be efficiently generated

from primary axisymmetric longitudinal modes.

Surface harmonic generation on a half-space has received considerable
attention, but adequate theoretical results have been lacking. Early theoretical results
were developed by Kalyanasundar (1981) and Kalyanasundar et al. (1982) by using
the method of multiple scales. However, there are certain serious limitations to
Kalyanasundar’s investigations, which were pointed out by Lardner (1983). As an
improvement of Kalyanasundar’s analysis, Lardner gave a more complete
investigation on nonlinear surface wave propagation. Tiersten and Baumhauer (1974,
1985) studied the second harmonic generation of surface waves in piezoelectric
solids. Harvey et al. (1992) investigated the propagation of nonlinear surface
acoustic waves in anisotropic solids, and numerical results along the particular
propagation direction for magnesium oxide, copper and nickel were obtained. An
experimental investigation of second harmonic propagation in metallic specimens
was made by Herrmann et al. (2006). They showed a linear increase of the
amplitude of a second harmonic surface wave with the increase of propagation
distance. The theoretical model used in their paper is directly related to those for
longitudinal waves and the nonlinearity parameter is assumed to be same as the
nonlinearity parameter of a longitudinal wave. This model was also adopted by
others to interpret their experimental observation (Zeitvogel et al., 2014; Walker et
al., 2012), and though it is much simpler than the results mentioned above, this

model lacks adequate theoretical validation.
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Fig. 1.7 Linear stress-strain relation and stress-strain curves for the quadratic and

cubic nonlinearities

The above mentioned references show that second harmonics have been
frequently employed to measure the nonlinearity of materials. The quadratic terms
cause, however, non-symmetry in the stresses with respect to the origin of zero

stresses.

Comparing with second harmonics, third harmonics have been less often
investigated. A mathematical model was employed by Liu et al. (2013a) to predict
the cumulative behavior of third harmonics. The increase of the amplitude of third
harmonic with the plastic strain has been experimentally confirmed by Lissenden et
al. (2014). Réier et al. (2008) presented an experimental setup to measure the
fourth-order elastic constants for shear deformation. Chillara and Lissenden (2016)
proposed a new constitutive model for third harmonic generation in elastic solids. It
appears that no mathematical model has yet been proposed to obtain the analytical
approach to the generation of third harmonics. The main advantages of third
harmonics over second harmonics are that in contrast with a quadratic nonlinearity,
a cubic nonlinearity of the constitutive relation is more generally applicable, see Fig.
1.6. This figure shows that, for both quadratic and cubic nonlinear behavior, a
positive strain requires a smaller stress than for the linear stress-strain relation. On
the other hand, for quadratic behavior, a negative strain requires a negative stress
whose absolute value is larger than for the linear stress-strain relation. This behavior
which happens for some materials is referred to as the strength differential effect,
see Hirth and Cohen (1970), Gil et al. (1999) and Rauch and Leslie (1972) for the
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corresponding curves for tensile and compressive strain. It has been shown that
dislocation dynamics can be more effectively studied by third harmonics (Hikata
and Elbaum, 1966). Experimental results have confirmed the sensitivity of third
harmonics to dislocation density and loop length (Hikata et al., 1966). There are also
materials that show quadratic nonlinearity (Hirth and Cohen, 1970; Gil et al., 1999).

The drawback of third harmonic is its smaller amplitude and higher damping.
1.3.2 Mixing wave technique

To avoid the interference from underlying system nonlinearity, the mixing
wave technique has been developed. The outstanding character of this technique is
that the frequency of the mixing wave is selectable, which is the sum or difference
frequencies of the incident waves. Another important advantage of the mixing wave
technique over the harmonic generation technique is the spatial selectivity that the
nonlinear interaction is only limited to the region where the incident beams intersect
(Croxford et al., 2009). For the collinear mixing wave, the position of the
intersection region is figured out by making use of the wave velocity and the
propagation time. The nonlinearity parameters for various elastic solids were
measured by applying the CMWT by Jacob et al (2003). Experimental
measurements were conducted by Liu et al. (2012) to demonstrate that the CMWT is
capable of measuring the plastic strain in A1-6061 Alloys. Ju et al. (2017) measured
the nonlinearity parameter by using the collinear mixing wave in concrete. The
sensitivity of the wave speed and attenuation to the damage induced by alkali-silica
reaction was proven to be lower than the sensitivity of nonlinearity parameter to the
same damage. Tang et al. (2014) used the collinear mixing of shear and longitudinal
waves to detect the localized plastic strain. When the frequencies of a pair of
collinear shear and longitudinal waves satisfy the resonant condition, mixing of
these two primary waves generates a resonant shear wave propagating in the
opposite direction of the propagation direction of the primary shear wave. Hills et al.
(2006a, 2006b) and Courtney et al. (2010) developed a special CMWT for global
crack detection in structures by employing bispectral analysis. The bispectral was
shown to be particularly useful in exacting the nonlinearity related to phase coupling.
This method was also used by Jiao (2014) to process the nonlinear response of the
samples to continuous excitation at two frequencies when they detected the fatigue
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cracks by using the CMWT. All of these researches indicate that CMWT is a
promising method for nondestructive assessment. Illustration of CMWT is shown in
Fig. 1.8. The amplitudes of the waves with the frequencies of fo-f; and fo+f; are
directly related to the defect properties.
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Fig. 1.8 Illustration of collinear mixing wave technique (Jhang, 2009)

Compared with CMWT, the intersection region can be determined directly
through a geometrical means for NCMWT in an easier way. Illustration of NCMWT
is given by Fig. 1.9. NCMWT was verified on the measurement of laboratory and
field PVC test speciments by Demcenko et al. (2012). Their results confirmed that
NCMWT is suitable to estimate the physical ageing state of PVC. Demcenko et al.
(2014) presented an experimental non-collinear wave mixing for testing of polymers
by using an immersion method. It was shown that this technique is an effective
monitoring and scanning means when applied to thermoplastic ageing, epoxy curing,
and nondestructive testing. Croxford et al. (2009) experimentally confirmed the
sensitivity of NCMWT to plasticity and fatigue damage and the potential application
to be used as a nondestructive testing technique. The deviation of the incident angle
of mixing wave has an important influence on NCMWT. NCMWT was applied by
Blanloeuil and Meziane (2015) for detection and characterization of closed cracks.
They uncovered that the angle of incidence of the shear waves can be used to
optimize the method. The relationship between the acoustic nonlinearity parameter
and the incident angle was investigated by Sun et al. (2018) by making use of
numerical simulation and experimental measurements for the non-collinear mixing
of two shear waves. The lack of theoretical investigation for NCMWT, especially

for the waves intersecting in structures, should be noted.
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Fig. 1.9 lllustration of NCMWT (Croxford et al., 2009)
1.3.3 Scattering and reflection from a region of nonlinear material

The whole body of nonlinear material behavior is generally assumed in most
published papers. From the practical point of view, the reflection, transmission and
scattering of incident waves from an inclusion of nonlinear material behavior are of
obvious interest. Recently, the research topics related to the interaction of elastic
waves with the local region of nonlinear material behavior start to arise academic
attentions. Tang et al. (2012) investigated the scattering of an incident longitudinal
wave from a region of spatially-dependent quadratic nonlinearity. The scattering of
elastic waves from a heterogeneous inclusion of nonlinearity contained in a linear
host material was investigated by Kube (2017). For the two papers mentioned above,
the geometrical nonlinearity was only assumed in the local region, which is thought
to be unreasonable. For the problem of scattering from the nonlinear region, the
assumption that only material nonlinearity exists in the local region without
considering the geometrical nonlinearity may be more comprehensible. However, it
should be noted that even very small imperfections can produce very significant
excess nonlinearity which can be orders of magnitude higher than the intrinsic
nonlinearity of the intact material (Nagy, 1998). So the excess material nonlinearity
can be dominant over the geometrical nonlinearity and the instinct material

nonlinearity and these two results will be approximately equal.
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One of the most important applications of the wave reflection from nonlinear
region is to measure the imperfect bounded interface. The nonlinear reflection of
bulk waves from an interface between two solids of quadratic nonlinearity were
reported by Zhou and Shui (1992). An experimental investigation was presented by
Donskoy et al. (2001) to observe the modulation effect of highly nonlinear material
behavior caused by weakly or incompletely bounded interfaces. Second harmonics
were used by Richardson (1979) and Biwa et al. (2004) to analyze the contact
acoustic nonlinearity of the interface between two linear elastic media. In their
papers, the nonlinear stiffness property of the interface was described as a function
of the nominal contact pressure. Achenbach et al. (1989) expressed the failure of an
adhesive bond by a cubically nonlinear elastic model. In that case the strength of the
adhesive bond can be directly measured from the reflected waves. The approach
suggested by Achenbach et al. (1989) was extended by Nagy et al. (1990) to take the
thickness of the adhesive bond into consideration. Zhang et al. (2016) made use of
the intersection of two non-collinear shear waves at an imperfect interface to assess
the bond quality. These authors claimed that their acoustic technique can avoid other
forms of nonlinearity aroused by the system. For simplicity, the interfaces or

adhesive bonds studied above were frequently modeled by nonlinear springs.

The investigations of scattering or reflection from local region of nonlinear
material behavior, which is used to model micro-damages or material degradations,
have not attracted sufficient attentions. Few theoretical and experimental results
have been reported for the problem of nonlinear scattering or reflection in structures,

such as plates, pipes and rods.

1.4 Objectives and outline

The objective of this dissertation is to develop several theoretical methods to
investigate the nonlinear wave propagation characteristics in materials and structures
with the potential application related to the design of novel acoustic devices and the
development of nonlinear ultrasound techniques for nondestructive evaluation. For
soft bars, the solitary waves can be generated in the limit of long wavelength if the
material and geometrical nonlinearities and viscoelasticity are considered. The

capacity of tunability of solitary waves in soft bars under pre-stretch or biasing
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electric field is investigated. Since materials having micro-damages or material
degradations behave in a nonlinear manner, the interaction of incident waves with
material nonlinearity is of obvious academic interest. Our goal is to develop
simplified theories and simple theoretical models based on reasonable assumptions
to work out analytical solutions, which are important for the development of

nonlinear ultrasound technique.

After a careful literature research, we find a number of meaningful and
interesting topics have not been investigated, which motivate the present work.
Specifically, they include

1. There has been no report on nonlinear solitary waves in soft electroactive
materials in the presence of electric biasing field. Our goal is to find if solitary
waves can be modulated by the underlying electric biasing field.

2. There are few works on nonlinear waves in pre-stretched structures composed of
viscoelastic materials. Our goal is to study the influence of the pre-stretch on
kink and kink-like longitudinal waves in Mooney-Rivlin viscoelastic rods.

3. No mathematical model has yet been proposed to obtain the analytical approach
to the generation of third harmonics. Our goal is to present an analysis of the
generation of higher harmonics based on quadratic and cubic material
nonlinearity.

4. Fewer results for harmonics of surface waves on a half-space of material
nonlinearity are available, especially in term of analytical solutions. One of the
main purposes of the present work is to obtain an analytical solution for higher
harmonic surface waves in a simple and elegant manner, which may be easily
understood and applicable.

5. Rods and pipes are widely used in structures such as pipelines. However,
relevant analytical solutions to nonlinear waves propagating in cylindrical wave
guides are still not available. We intend to conduct an analytical investigation of
higher harmonics in pipes based on shell theory with quadratic nonlinear
material behavior. An analytical approach based on shell theory provides a
clearer physical insight in the deformation modes. Whereas exact three-
dimensional theory has to be dealt with numerically, shell theory yields

relatively simple analytical solutions.
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6. The reflection and scattering from local region of cubic material nonlinearity are
seldom investigated. The physical mechanisms inside them are not clear. One
main purpose here is to investigate the reflection and backscattering of plane
elastic waves by a region of cubically nonlinear material behavior.

7. Analytical solutions to third harmonics propagating in pipes haven’t been
reported. We will investigate the propagation of guided waves in a pipe of cubic
material nonlinearity.

8. Little attention has been paid to the investigation of scattering of incident waves
from a local region of nonlinearity in structures. We intend to investigate the
scattering of two orthogonal SH waves of the lowest mode from a cylindrical
region of nonlinear material behavior in an elastic layer by using the reciprocity
theorem of elastodynamics.

The remaining main part of this dissertation is splitted into two parts. The first
part contains Chapters 2 and 3. In this part, solitary waves propagating in soft bars
are investigated, which can be adjusted by pre-stretch and biasing electric field. In
Chapter 2, an asymptotic analysis of solitary waves propagating in an
incompressible isotropic electroactive circular rod subjected to a biasing
longitudinal electric displacement is presented. In Chapter 3, we theoretically
investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin
viscoelastic rods. The second part contains Chapters 4-9, which deals with higher
harmonic generation by material nonlinearity. In Chapter 4, harmonics of plane
longitudinal and transverse waves in nonlinear elastic solids with up to cubic
nonlinearity are investigated in a one-dimensional setting. In Chapter 5, the
analytical far-field solution for the cumulative third harmonic surface wave
propagating on a half-space of isotropic incompressible cubically nonlinear material
is obtained in a relatively simple and systematic manner. In Chapter 6, higher
harmonics in pipes of quadratic nonlinear material behavior are analyzed using the
shell theory. In Chapter 7, two models are proposed to obtain information on the
material nonlinearity of an inclusion in a solid body. In Chapter 8, the effect of cubic
material nonlinearity on the propagation in a pipe of the lowest axially symmetric
torsional wave mode is investigated. Two cases, one that the material of the whole

pipe is nonlinear, and the second that a small segment of the pipe is nonlinear, are
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considered. In Chapter 9, the intersection of two SH waves of lowest modes with a

local cylindrical region of quadratic material nonlinearity in an elastic layer is
investigated.
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Chapter 2 Adjustable solitary waves in electroactive rods

2.1 Introduction

As a special kind of soft solids, soft electroactive materials (such as dielectric
elastomers) can change their shapes and mechanical properties under electric
stimulation. Such materials behave just like biological muscles, and hence they are
often called artificial muscles. As a new kind of advanced functional materials,
electroactive materials have many attractive characteristics, such as higher response
speed, lower density and greater resilience Cohen-Bar (2002). Not surprisingly, they
have triggered wide research interests. Recently, Dorfmann and Ogden (2005, 2010b)
presented a nonlinear framework for electroelasticity and investigated the linear
waves in electroactive bodies under biasing fields. Shmuel et al. (2012) investigated
electromechanical waves propagating in a dielectric elastomer layer with initial
deformation. Chen and Dai (2012), based on the nonlinear electroelastic theory of
Dorfmann and Ogden (2010), presented an exact axisymmetric wave solution for a
soft electroactive cylinder with both underlying finite deformation and electric
biasing field. To the best knowledge of the authors, there has been no report on
nonlinear solitary waves in soft electroactive materials in the presence of electric
biasing fields, and this fact motivates the present study. For nonlinear waves
propagating in bodies with multi-field coupling, Xue et al. (2011) made an
important step by investigating solitary waves in a magneto-electro-elastic circular
rod.

Our goal is thus to study solitary waves in soft electroactive circular rods, to
see if they can be modulated by the underlying electric biasing field. The
asymptotically valid method is employed to study the axisymmetric solitary waves
in incompressible isotropic electroactive circular rods. The similar method has been

adopted in Dai and Huo (2002). We will introduce several asymptotic expansions for
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the axial and radial displacements, the electric potential, and the hydrostatic pressure
which is associated with the material incompressibility. The 1D equations governing
the nonlinear waves in the limit of finite-small amplitude and long wavelength are
derived, with the lateral boundary conditions satisfied asymptotically. To validate
the adopted approach and the mathematical derivation, the reduced linear dispersion
relation is compared with the one directly derived from the 3D theory (2012) in the
limit of long wavelength, and perfect agreement is observed. The far-field equation,
which is known as the KdV equation, is then deduced by using the reductive
perturbation method. The leading order of the electroelastic solitary wave solution is
finally obtained from the KdV equation. Numerical examples are given to show the
effects of the biasing electric displacement and the material constants on solitary
waves in electroactive rods. It is found that the velocity of solitary waves can be
modulated by the biasing electric displacement while the amplitude keeps
unchanged. On the other hand, by keeping the velocity unchanged, we can adjust the
wavelength and amplitude of solitary waves using the electric means. Further, while
it doesn’t change the wave shape of the longitudinal strain or transverse
displacement for a prescribed amplitude, it does have an effect on the wave shape of
the longitudinal electric field. The multiple tunability of solitary waves in

electroactive rods may promote certain application of solitary waves in solids.

2.2 Nonlinear framework of electroelasticity

We consider a slender circular rod of diameter 2a with its end surfaces coated
with soft electrodes. The axis of the rod coincides with the Z-axis, see Fig. 2.1.

To study the axisymmetric motion of the rod, which is made of a homogeneous,
incompressible, isotropic, electroactive material, we shall first review here the

nonlinear framework for electroelasticity formulated by Dorfmann and Ogden (2005,

2010). Suppose that the undeformed body occupies a region I', with the boundary

o', and the outward normal N. This is taken to be the reference configuration.
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Let y describe the motion of a material point at X, the position vector in the

reference configuration, which moves to x at time T according to x= y(X,T).

The body then has the current configuration I" with a boundary oI" and the

outward normal n. We define the deformation gradient tensor as F = Grady , and

c=F'F is the right Cauchy-Green tensor. For incompressible materials, we have

the incompressibility constraint J =detF =1.
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Fig. 2.1. An electroactive rod subjected to a biasing electric field applied through the
end electrodes

The equations of motion can be written as

2
DIVE = p 5T’§ (2.1a)
where the nominal stress tensor X can be calculated by
L=2QF" +2Q,(I,F" —c-F")-PF™*+2Q,D, ® FD, (2.1b)

+2Q,[D, ®(F-cD,)+cD, ®FD,]
where D, is the Lagrangian counterpart of the electric displacement, P is a

Lagrangian multiplier associated with the incompressibility constraint,

Q=Q(F,D,) is the energy density per unit volume in I, , and
Q,=0Q/0dl,, (m=12,4,56),with |  being the scalar invariants defined by
I, =trc, IZ:%[(trc)z—tr(cz)], ,=D,-D,, I, =D, -(cD,), I, =D, -(cD,)

(2.1¢c)
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Under the quasi-electrostatic approximation, the equations governing the electric

field read
Curlg, =0 (2.2a)
DivD, =0 (2.2b)
where Curl and Div are the curl and divergence operators in I', and E, is the

Lagrangian counterpart of the electric field, which can be expressed in terms of D,
for soft electroactive materials as (Dorfmann and Ogden, 2010)
E, =2(Q,1 +Q.c)D, (2.3)
where | is the unit vector.
The mechanical boundary condition is

r'N=t, (2.4a)
where t, is defined by t,dA=t, da, with t, being the applied mechanical

traction per unit area in I', and dA and da the differential areas in I', and I,

respectively. The electric boundary condition is

D,-N=q, (2.4b)
where (q, is the surface charge density in I';. The above nonlinear framework for

electroelasticity is suitable for describing the dynamic behavior of incompressible
isotropic dielectric elastomers (Dorfmann and Ogden, 2005, 2010).

In this Chapter, we consider the case that the lateral surface is free from both

mechanical tractions and surface charges, i.e. t,=0 and q,=0. It is noted that

the influence of the electric field exterior to the rod is neglected for simplicity. Such
simplification has also been adopted in earlier works (Zhang et al., 2012; Ericksen,
2007; Suo et al., 2008) on account of the fact that the permittivity of eletroactive

materials is usually much larger than that of vacuum.
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2.3 Model equations

To study the axisymmetric motion of the circular rod, we shall adopt cylindrical
coordinate systems (R, ®, Z) and (r, &, z), which correspond to the reference
and current configurations, respectively. The Z-axis is already shown in Fig. 2.1.
The two systems completely coincide with each other, but the same material point
will mostly have different positions in them.

We assume that there exists an initial biasing electric displacement along the
Z-axis

D’ =(0, 0, D)' (2.5a)
Making use of Egs. (2.3) and (2.5a), we can get the corresponding electric field

E°=(0, 0, E)' (2.5b)
where E=2(Q,+Q.)D, which is obtained under the assumption that no
mechanical deformation (i.e. F=1) is induced along with the biasing electric
displacement. This further gives a result of the corresponding Lagrangian multiplier,

ie. p,=2Q,+4Q, which is obtained from the traction-free boundary conditions.
It should be pointed out that, Q0 are all assumed to be constant for simplicity

(especially, Q,=0) in the following analysis. This assumption is valid at least for

some simple material models, such as the Mooney-Rivlin material model (and the
neo-Hookean model as its special case), which will be considered in the numerical
part. For more complex models which contain higher-order elastic constants
(Hamilton et al., 2004), the analysis is essentially the same, though the mathematical
derivation may become more tedious.

The axisymmetric motion and the electric field of the rod are described by

2(R,Z,T)=Z+W(R,Z,T), r(R,Z,T)=R+U(R,Z,T), 6=0 (2.6)

P=p,+p (2.6b)
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i
E, =(AEg,, 0, E+AE)) (2.6¢)

where, as a convention, the subscripts inside the brackets denote components;
otherwise, they signify differentiations with respect to the corresponding coordinate
variables.

The deformation gradient tensor and the right Cauchy-Green tensor are then

given by
1+U, 0 u,
F=| 0 1+U/R O (2.7a)
W, 0 1+W,
Q+UL)? +W7 0 A+U U, + (@1+W, )W,
c= 0 (1+U /R)? 0 (2.7b)
L+U U, + @+W, )W, 0 U2 +@+W,)°

While, the incompressibility constraint J =1 can be written approximately as
uw, +UUR _

W, +UR+UE+URWZ -U,W, + 0 (2.8)

It should be noted that, for a weakly nonlinear analysis, we have neglected in Eq.
(2.8) the terms which are higher than the second order, which will also be followed

in the derivation below.

To satisfy Eq. (2.2a), we introduce the electric potential ¢ such that
AE g, =—¢, AE,, =—¢, (2.9)
In view of Egs. (2.3), (2.6¢), (2.8) and (2.9), we can get the following approximate

expressions of the nonzero components of D, :

DI(R) =-n,DU, —n,DW, —1,8x +nU ¢, + nWp b, —2nW, ¢,
UW, uu, U, (2.10a)
R — 21,1, R

~27;D—*-21;D

U
DI(Z) =D +2n,DU, —n,¢, + 2773DE+771UZ¢R + Wiy — 217U,

2
+477§DULRJR —2772773%+477§D%+2773D(URWZ -U,W, (2.10b)

uw, _ Uy,

+ —_—
R R
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where 7, =Q,/2(Q,+Q.)" , 17,=1/2(Q,+Q;), and r,=Q, /(Q,+Q;). The
relations En, =n,D and En,=D have been noticed above. In view of Egs.

(2.1b), (2.7) and (2.10), we can also get the approximate expressions of the nonzero
components of X, which are all listed in Appendix 2A.

Egs. (2.1a) and (2.2b) can be written in the following form

Z A
—PWrr +(Zry)r + Ez))z + S L=0 (2.11a)
1
—PUp + (Z(Rr))R + (Z(Zr))z +E(Z(Rr) _Z(@g)) =0 (2.11b)
DI(R)
(DI(R))R +(Dl(Z))z R =0 (2.11c)

Taking Egs. (2.10a), (2.10b) and (2A.1)-(2A.5) into the above equations, we get
—PWpp +(2Q, + 677395D2)U rz (20, +2Q, - 277395D2)WRR —115D¢er — P,

W
+(p, + Zngs)sz —21,D¢,, +(2Q, +2Q, - 2773QSD2)FR_ 773D%

+(2Q, +6773D Q ) Z + PU, — p,Ug —(2Q, + 47732D295)U Yz

+(2Q, +127D Qs)u Ug, +(2Q, +147,Q.D*)U W, — 472 D*QU W,
—4(Q, +317,Q.D*)U,W,, —(2Q, +107,Q.D*)U,,W,, — 4. D*QU W,
+(4Q, +167,Q.D*)U W, — 217.Q. DWW, —67,Q. DWW, — 277,DW.., ¢,
— (273D +17,D)W, B, + (475D =17, D)Wi by, + 217; DWieh, —217,DW, 4,
~217,DW,, ¢, —612DU o, ¢, + 452DV, ¢, — 457,DQU ooy — 417,DQ.U b

- 877§ DU.¢,, + 2773? DU, ¢, + 2Q57722¢RR¢Z + 2957722¢R¢RZ + 4772295¢z -

Uy, UW

+(20m2Q,D* +8Q.1,D* - 2Q0,) Z +(2Q, +147,D?

uwZZ W W b \UW,
5

+(4Q, +167,D°Q),) -2n,Q,D° Z +(4Q, —12n;

+(4Qz—87732D2§25) Wer +(24n.D*Q, +8Q.7,D )UURZ —877§D%

R

+(4Qz+48n§DZQS)%— p; (272D +,D) 22%e ¢ 672D E‘”R
Ug, U,¢ W ¢ ¢

—4n2D RRR — 672D RZ +2n.D EZ +2Q,17 RRZ =0

(2.12a)
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U
—PUrr — Pr + PU po 2T o RR +(2Q, +2Q, - 27,0,D* + 2Q,D*)U

+(2Q, - 2n,Q; D? We, —175Dde; — W, + p,Wg — 417,025 D*+Q I W
+(4n2Q,D? — 21,0, D? - 2Q,)U W, + (2Q, — 21,0, D* — 472Q. D*)U W,,,
+4Q,U W, +2QW,W,, —2QWW,,, +4Q.72DW W, +2Q.7,D°U U,
+ 77395D2 (6—4m,)UU,, —21,DU, ¢, + (2773? D -7,D)U, g — 27732 DU.¢x,
—11;,DUgde, + (27732 D-21,D)(U, ¢, +U,¢,,) + 27732 DWeedy + 27732 DWr s
+2n2DW,, ¢, + 272 DW,d,, — 417,DQW,, é. — 47, DOW, @, + 202Q e, b,

U W, U W,
+ 2772 Q. + 495772 Pafrr +4 ;

+ (ZQ 2D2 ZQ WR2 2 21\2 Z _ 212 UWRZ
57 D —2Q, ) —-+(677,Q2,D" — 6Q;77;D° + 292) —= -8, D" —=

Q.D* +21,0.D?

W, @2 U2 U? pu
—(2n’D+n.D Z¢R+2 D—RR 420,77 R 1420, R 20, — — R
(27D +n,D) 7D 2 o A 2 TR

—492%%92 UURR

+[4Q, +87,D°Q. (1- 773)]UUZZ —47732D%:O
(2.12h)

1
(2n,E _773D)UR2 —17,DWeg ~ 17, (Pre +¢zz)+ﬁ(773DUz —17,DW, —17,8%)

+771(_U RZ¢Z + 2UZ¢RZ +WRR¢Z +2W ¢RZ +UZZ¢R _WRZ¢R _2W2¢RR _ZUR¢ZZ)
U,d, W, UWe o o UWer U,U,
—2n’D—R—R _2p’D—RR

R thTg ~2KDTR 2D e 2D

W, U U U UU
R¢R — 21,1, ?;ZZ TfR — 21,17, e +8773

UZWZ+UWZZ+UZUR+UURZ):O
R R R R

+ (1, — 2m,15)

+277§DUURZ

- 2n, — 21,11,

+217, DU, W, +U W, U, W, -U,W,, +

(2.12c)
Since the lateral surface is free from mechanical tractions and surface charges,
we have

Zry =0 2y =0 Dk =0 at R=a (2.13)

I(R)
Making use of Egs. (Bl), (B2) and (2.10a), we get the following approximate

boundary conditionsat R=a:
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U pU Uw. u?
Z(Rr) =_p_291WZ + pOUR _ZQlE_ sz _?_ Po RZ +2Q2?

uu
+4Q, - R+ (4n;Q;D* - 217,0,D% - 2Q,)U, W, +4Q,U W, (2.14a)

+2Q.W/ +20Q.72D*W. + (2Q.17;D* - 21,Q.D*)U
+ (27732D -n,D)U, ¢, + 277§ DW.d, + 2Q57722¢F§ =0,

Z(Rz) = (2, +2Q, - ZUSQSDz)(Uz +Wg) —n,Dgy, — (22, + 477§D295)U Yz
— 413, DQU oy, — 4175 D*QU W, — (2, +27,Q,D*)U, W, +27;DU,, ¢,
— (7D + 2773? D)W, ¢, — 2773QSD2WRWZ + 2773? DWeg, + 2957722¢R¢Z +pU,

UW uu,

+ (40, ~877D’Q,) ot — 42D WP 1 (p, —8p2D°0) Sz 0,
R R R
(2.14b)
DI(R) =-n,DU, +Wg) —1,8x + 17U, 8, + nWp, —2nW, &y
2.14c
—277§DU\F/QVR—2771U§R—277§D%=0, (2149

The governing equations (2.8) and (2.12a)-(2.12c) and the boundary conditions
(2.14a)-(2.14c) derived above will be used to approximately describe the nonlinear
dynamics of electroactive rods.

For convenience, we introduce the following transformations:

W =W (Z,S,T),U =RV(Z,S,T),p=p(Z,S,T),¢=¢(Z,S,T) (2.15)

where S=R?*. Making use of the above transformations, we can obtain the

governing equations and boundary conditions in an alternative and useful form, see
Appendix 2B. The importance of the above transformations is that the factor 1/R

is eliminated from the governing differential system, as can be seen from Egs.

(2B.1)-(2B.7). Also, the square root JS =R does not appear in the resulting

system, which implies that for axisymmetric deformations or motions S =R? is a

more natural radial variable for the new unknown functions in Eq. (2.15).
For waves with finite-small amplitude and long wavelength, it is convenient to

introduce the following scales to non-dimensionalize the above-mentioned equations
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W =hw,Z =Ix,S =1%s, T ZIEt’V =|Ev, p :ﬂlhﬁ’¢= h\/ZCD (2.16a)
&y

where h is a characteristic axial displacement, | is a characteristic wavelength,

c is a characteristic velocity, x is the shear modulus of the material, and ¢, is

the permittivity of vacuum. We also transform € into the following
dimensionless constants
Q=u"Q, Q,=u"Q,, Q,=50,, Q =50 (2.16b)
In view of Egs. (2.16a) and (2.16b), from Egs. (2B.1)-(2B.4), we obtain

2V+W, + 25V, +£(2WW, + 2SV,W, — 2V, W, +V° + 25w, ) =0 (2.17a)

c? _ _ _ _
_pTWn - P +4Q, + 37737752QS)(V>< +8V,, ) +8(Q, +Q, — 773775295)(Ws +SW,)

— 4@, - 200D, +(2Q, +4Q, +2n2Q )W, —417.7,5D
+g[25pV, — 2P,V — 2P, sV, + (40n n2Q, +16Qnin, —12Q,)sv.v,
—8(Q, + 2l Q4) PV, + A(Q, + 267500 + 4Ol n;) W,
+M(Q, + 22202 Q) sw,, +8(Q, + 6721720 )S V., — 32727 QS W,
~8(Q, +37,72Q,)sV W, —4(Q, +57,72Q )sv, W, 16727, vD
+4(Q, + T2 ) (v W, +sv, W ) +16(Q, — 717inZQ,)sv.w,
+16(Q, —37272Q ) (Vw, + sVW,.) +8(Q, + 417,72 Q2 )W,
—81,172Q (W, W, + SW W, ) — (417,77, + 8121, ) (W, D +sw D_)
— 3202 n2Q s’V W, —8n, s, D, —12n2n, (v, D, +sv,, D)
— 2477377§S_QSSWSWSX + 8n§775$VXq)SX —l6n§7755VS<DXX + 477§77~,)S,VXXCDS
— 567757753VSCI)s —167732775.)52VSSCI)S - 247732775VCI)s —2n,nW, D,
+8(Q, +4n,n2Q,)sv W, — 241 nsvD  —16n2n.s°V, D
+81721, (WD, +Sw, D ) - 217.7.W, D +2m7.Q (D P +5sD D)

_ _ (2.17b)
+ 4(477;,Z — 1)1 SW, D, + ZUstsCDSCDSX + UfQSCDXd)XX] =0

2
—%vn 2P, +8(Q, +20,)(2v, +sv,)) + 4(Q, — i)W,
+ 2(521 + Qz - 773775365 + Uszﬁs)vxx - 2773775(25q)sx
+e[-2P W, + 2P, W, — 2P,V —16(7,72Q + Q, )V, W,
~16(n,72Q, +Q,)sv, W, +32Q,V W, +4Q,w W,
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—4Q,WW, +4(4n2niQ, — 2n,n2Q, —2Q,)SW,V,
+(4Q, — i Q. — 2402020 )ww,, +16Q, 5wV,

+ (2477327752525 - 8(22 )Ws2 + 477377525_25 (3—2n,)sv,v,,
+8(Q, — 73718 Q5 — 213125 )V, W, —817:775V, D
+16Q, 5V W, + 32772172 Q. SW, W, + 417,72 Q SV, V.,

+ (877377525_)5 - 6773'.27752§_25 + 2£_22 )Vf + 325_22WS + SS_EZSVS
+(4Q, +14n,02Q; = 12372 Q0 )W, — 81717,V D

+ (213105 = 213705 ) (Vo @ +V, D) — b7 (L4 2175) sV, D,
— (213175 + 127319 WD o + 4(2175775 — 115775 )V, D

+121, (24w, D +16sW, D _ +16sW,D_ + 4w, D,

(2.17c)

+ 4W5(Dxx - 47732775Wqu)s - 477;775qu)sx)
+172Q (P D, + D D, +6D°+85D D_)]=0

-5 (—2V, — 25V, +4W, +4sw,) — % n,(40, +4sD_ +D,,)
+é&[n,n, (v, @, +2sv,d , —sv, D, +sv, D, —25v. D, +2Ww,D,
+2sW D, +4sw, D —2sw, D, — 4w, D —4sw, D  —-2vD (2.17d)
—4vD, —4sv. D  —4svD ) + 1737, (—8vw, —8sv,w, —8svw, +12vv,

+4sv,V, +4sw,, ) + 21,1, (2v, W, + 2SV W, + 2VW,, + 2SV W,

SX "X

— 28V, W, — 28V, W,, + 2w, +2sV.V, +2sw_ )] =0
where 7, =1/(Q, +Q,), 7, =D/ Jue, ,and £=h/1, which is a small parameter

for finite-small waves. Making use of Egs. (2.16a) and (2.16b), we can rewrite the
boundary conditions in Egs. (2B.5)-(2B.7) as follows
—p-2Q,w, +4Q,v +4(Q, +20Q,)sv,
+e[-Pw, — PV —2QwW, +6Q,V° +8Q,sW, +8Q,sV. W, +2Q, W’
+ 2435150 — 21,1750 — 200, )V, W, + 27505 (173 —17,)V,
+ 81715 QSW, + 22075 = 17,)1758V, @, + 8177 SW, D, + 207,50 7] =0
(2.18a)
(20, +2Q, = 277204 ) (v, + 2W,) = 213577, + [ BV, +2(Q, +Q, 677205 )w,
—4(Q, + 2731306 )SVV, +8(Q, — 35175 Qg )W, — (202, + 2171720 )V, W,
_1677327752@58sz5 - 47737752(25W5Wx - 2773775WX(DS + 47732775W5q)x - 47732775qu)s
+ 20751150, D, 12777 VD — 8177V, D +17;Q D P, ] = 0

(2.18b)
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— 1
—175115 (Vx + 2Ws) - 774ch + 8[95775 (EVX(DX + qu)x) - 47]327]5VWS (218C)

- 277:;2775Wx - anﬁqu)s - 27742'£_)5WX®S] =0

at s=¢5, where §=a’/1*> is small for long waves in slender rods. Hence, Egs.
(2.17a)-(2.17d) and (2.18a)-(2.18c) govern the problem under study, which depends
on three variables (X, s, t) and involves two small parameters (&, 6).

In order to further simplify the problem, we expand asymptotically, for slender

rods, w, v, p and @ in the neighborhood of s=0 in the following way:

W =W, (X, 1) +SW, (X, 1) + S2W, (X, t) +- - (2.19a)
V=V, (X, 1)+ 5V, (X,1) + 87V, (X, t) +--- (2.19b)
P =P, (X 1) +5P, (X, 1) + 8P, (X, t) +--- (2.19¢)
D =D, (X,t) + 5D, (X, t) +5°D, (X, )+ (2.19d)

Inserting Egs. (2.19a)-(2.19d) into Egs. (2.17a)-(2.17d) and (2.18a)-(2.18c), we can
get the 1D governing equations describing the weakly nonlinear long waves
propagating in electroactive rods, which will be given in Section 5. In the following
section, however, we will first perform the linear analysis for the sake of

verification.

2.4 Linear dispersion relations

The linear part of Egs. (2.17a)-(2.17d) corresponds to the dimensionless
governing equations which describe the linear waves in soft incompressible

electroactive rods and are given as follows:

2v+Ww, +2sv, =0 (2.20a)

c? _ _ _ _
Nl W, +4(Q, + 37737752Q5)(Vx +8V, ) +8(Q, +Q, - 773775295)(Ws +SW,)
Y7, (2.20b)

+(20, +4Q, + 27:Q, )W, — 41,1, — 475D — P, — 27517:D,, =0
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2
—ﬁvtt — 2P, +8(Q, +20,)(2v, +5sv,,) + HQ, — 1,2 )W,
7 (2.20¢)

+2(Q, +Q, — 720 + QY )v — 217,170, @, =0
315 (2V, + 25V, — 4w, —4sw,) — 774 (4D, +4sD +D,)=0 (2.204d)

The corresponding linearized boundary conditions from Eqgs. (2.18a)-(2.18c) are

—Pp-2QW, +4QV+4(Q, +2Q,)sv, =0, (2.21q)
(2Q, +2Q, —21,172Q)(V, +2w,) — 21,17, =0, (2.21b)
—13775 (V, +2W,) —17,®, =0, (2.21c)

at s=9.
Substituting the expansions in Egs. (2.19a)-(2.19d) into Egs. (2.20a)-(2.20d)
and (2.21a)-(2.21c) and setting the coefficients of each power of s to be zero, we

get the 1D governing equations as

2V, +W,, =0 (2.22a)
4v, +w,, =0 (2.22b)
6v, +w,, =0 (2.22c)
pC2 ,=
_7 bt — Pox T+ 4(Q "'3773775Q Wox +8(Q +Q — 175775 25) W, (2.22d)
+ (Zﬁl + 4ﬁz + 27752(25)W0xx —4n,ns®, — 21,17,0,,, =0
pc’ ~ =
- Wy — Py +8(Q +3773775 ) + 32(91 +Q 7737759 )W
P (2.22¢)
+(20, +4Q, + 272 Q )W, —167,7,D, — 217,77, ®,, =0
yolos _ -
— W, — Py +12(Q +3773775§2 WV,, + 72(Q +Q — 115175 €2 )W,
L (2.22f)
+(2Q, + 49, + 2720, )W, —3617,17,D;5 — 217,775 D,,,, = 0
pC2 -
— Vo 2P +16(Q +20Q IV, + 4(Q — 11577525 )W, (2.229)

+ Z(Ql + Q 773775Q + 775Q Wos 2773775§5q)1x =0
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2

C _ — — — —
—p7vm — 4D, +48(Q, +2Q,)V, +8(Q, — 7,772 )W,,

(2.22h)
+ z(ﬁl + Qz - 7737752()-5 + 7752@5)le>< - 4773775@5q)2x =0
1 )
17,775 (—2Vy, +4W,) —5774 (4D, +D,,,)=0 (2.22i)
1
-1, (—4v,, +16W,) — E n,(16®0, +d,,,)=0 (2.229)
—17,775 (—6V,, +36W;) —%774 (36D, +d,,,)=0 (2.22K)
The corresponding boundary conditions are obtained similarly
— Py —2QW,, +4Q,V, + [P, — 2w, +4(Q, +3Q,)v,]
+8%[-P, —2QW,, +4(2Q, +5Q,)V,] (2.221)
+0(5%) =0
(2(21 + 2§_22 — 27737752§_25)(VOX +2wW,) — 21,1,
+ 5[(2()1 + 2522 - 277377525_25)(\/“ + 4W2) - 477377561)2] (2.22m)
+8%[(2Q, +2Q, — 21,1720 ) (V,, +6W,) — 677,17, D, ]
+0(5%) =0
—1577s (V0x + 2W1) —n,0, + é‘[_773775 (le + 4W2) - 2774(1)2]
+ 52 [_773775 (sz + 6W3) - 3774(133] (2-22n)

+0(5%) =0
There are totally fourteen differential equations in Egs. (2.22a)-(2.22n), giving a

mathematically closed system about the fourteen unknown functions w,,, v,, P,
and ®_  (m=0,1 2,3 and n=0, 1, 2).
To derive the dispersion relations, we assume
w, =A e v =B e p =C " o =y ek (2.23)

Inserting Eq. (2.23) into Egs. (2.22a)-(2.22n), we get
SX=0 (2.24)

where X=(A)1A11AZ!A3’BO'BP BZ,CO,Cl,CZ,'{’0,“}'1,“}'2,\?3)1',and

S — |:Sll SlZ :|
S21 SZZ

is the coefficient matrix with the four submatrices given by
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S11 =
S12 =
0
0
0
S, = 0
—2£_21ki
0
i 0
S22 =
where

(ki 0 0 0 2 0 0 |
0 ki 0 0 0 4 0
0 0 ki 0 0 0 6
r, 80, 0 0 A4CkKi 0 0
0 I, 32r, 0 0 8T Ki 0
o o I, 72, O 0 120 Ki
(0 4rki 0 0 I, 16(Q,+2Q,) 0
0 0 0 0 0 0 0 |
o 0 O 0 0 0 0
o 0 O 0 0 0 0
ki 0 0 2nmk®  —dny, 0 0
0 -ki O 0 2na.k>  =16m.7, 0
0 0 —ki 0 0 2n.n.k>  —36n.7,
0o -2 0 0 217,17, QK i 0 0 |
0 8l Ki 0 0 T,
—4n,15 0 0 2n K i 0
0 —167,775 0 0 Ak
0 0 361,17, 0 0
—20ksi -20ks%i 0 40,  A0,+30,)5
ar, 8r,o 12r,6°  2C ki 20T ki
“2n15  —Angd —6nap8” —nasokio —npeoKi
‘0 0 -4 0 0  —4nnQki 0 |
0 0 O %mkz 27, 0 0
0 0 0 © %mkz -81, 0
0 0 0 © 0 %774k2 ~187,
-1 -5 -6° 0 0 0 0
0 0 0 0 —2174175 —461;175 _652773775
|0 0 © 0 -1, 21,0 -31,6° |

_,002 2 ~ P 20 2
[ ==—o"—(2Q,+4Q, +2n;Q)k",
M

48(Q, +20Q0,) |
0
0
6777k i
4(2Q, +5Q,)6°
26°T ki
137150 K i
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r,= £E _ 20, + 8, — 20, + 20 K?,
7,

0=, +3n72Q,, T,=0,+Q, - n72Q,, T, =(Q, -n720;).

For nontrivial solutions, the determinant of the matrix of coefficients must be
zero, i.e.

detS=0 (2.25)

which is the dispersion equation. In the numerical part of this paper, we will

compare the results from Eq. (2.25) with the one derived directly from the 3D linear

theory so as to validate the above method and derivation.

2.5 The far-field equation

Because Egs. (2.17a)-(2.17d) and (2.18a)-(2.18c) are complex two-dimensional
(2D) nonlinear partial differential equations, it is very difficult to get an analytical
wave solution directly. We will thus focus on the far-field equation, which balances
the nonlinearity and dispersion. To do so, we shall first simplify Eqgs. (2.17a)-(2.17d)
and (2.18a)-(2.18c) to the 1D form as in the linear analysis in Section 4. Substituting
Eqg. (2.19a)-(2.19d) into Egs. (2.17a)-(2.17d) and (2.18a)-(2.18c) and setting the

coefficients of each power of s to be zero, we obtain

2V, + W, +&(2v,W,, +V;) =0 (2.26a)
4V, + W, + (AW, + 2VoW,, — 2V, W, +4V,v,) =0 (2.26b)

C2
—%Wou +4(Q, + 3,12 Qo +8(Q, + Q, — 1,12 Q5 )W, — 411D, — 217,17, D

0xx
+ (ZQ + 4Q + 277 Q ) 0xx ﬁOX + 8[_2 ﬁOXVO + 4((2 + 7773775252 )VOXWOX

+(4Q, +1047202Q, +16Q121,)V,V,, + (169, — 4812020 )V W, — 87,720 W, W,
+8(Q, + 417,775 Qg oW, — 4174775 (L+ 2173 )W, @, — 2417317V, D, — 1677577,V @

_12773 17sVox Py +8773 MWD, — 2175175 Wo, D@, — 2775775 W0, D,
+2n2Q,0,0, +177Q,0, @, 1=0

0xx

Oxx

(2.26¢)
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2

—% Wy, +8(Q, + 37,72 Q. )V, +32(Q, +Q, — 17,72 QL )W, — 1677, D,
—2n,775D,,, +(2Q, +4Q, + 22 Q )W, — Py, +E[2DVo, — 2PV + 2P, V,)
— ?>27737752§_25W2W0X — C-’>27737752§_25W1W1X + (14477577525_25 + 32(257737752 -8Q, A
—H(Q, =512 W, W, + (8Q, +176121 Q2 +32Q17.15 WV, Vs,
—4(€2, — 3174775 Qg Wo, Wy, — 2175173, D, +8(Q2, + T 1 Qg IV, W,
+32(Q, - 5722 Q. )V, W, +64(Q, —3n2n2Q VW, +16(Q, + 417,72 Q )V, W,
+8(Q, + 4115 Qo Wy, — (8113775 +121717, )Wo, @ ~16(17:775 + 2173175 )W, D

XX

+ 4U§U5V0qu)1 + 4(377§U5 - 4U§U5)V0xq)1x - 807732775\/1(1)1 - 96773?775\/0@2

- 32U§U5V1q)0xx _167732775V0q)1xx + 327732775W2q)0x + (247732775 — 4173775 ) W, D,

- 2773775 (Wlxq)OXX + WOx(Dlxx) - 2773775W1qu)0x - 2773775W0qu)1x
+ 477565 (20,D,, +D,0,,) + 775@5 (@, D, + D, @,,,)] =0

0xx

(2.264)

c? _ . — _ —
_pTVOtt —2P, +16(Q, +2Q,)v, +4(Q, - 773775295)W1x — 217517525 D
+ Z(Ql + ﬁz - 77377525_25 + 7752§_25)V
_16(773775295 +Q, Vo, W, +4(Q, — 773775295 - 6775775295)V0W1x + 42, Wy, Wi,

- 4g—22W1W0xx + (2477327752§5 - 85—)2 )W12 + (87737752(25 - 677327752(25 + Zﬁz )Vgx + 32£_22\/0\/1
+ (4()2 + 14773’75?65 —1277577555)V0V0xx — 8175115V, @, — (2175775 + 12773‘?775)V0CD1X

+&[=2P Wy, +2Pp, W, — 2PV, + 325_)2V1W0X

0xx

+ (27732775 = 2173175) (Vo Pox Vo Lo ) + n§ﬂ5 (24w, + 4w, D, + 4w D)

- 47732775W0qu)1 - 4U§U5W0x®1x + 775525 (D, Dy, + D, D, + 6(1)12 )]=0

0xx

(2.26€)

1
—175175 (—2Vg, +4W,) — E N,(40, + @, ) + &[1,775(—Vo, Doy

+2wW D, — 4w, @, —2v, D, — v, D,) + 7l (-8v,w, +12v,v, )  (2.26f)

+ 2175775 (29, W, + 2V Wy, +2V,V,, )] =0

XX

O, +8w, D,

0xx
+6w,d,, —6w, D, -16w, D, —4v, D, —2v, D, —2v,D,,, —8v,d, —16v,D,)
+ 12175 (—16V, W, — 32V W, +16V,V,, +16V,, V) + 217,776 (4V,, W, + 4V, W, , + 2V W,
— 2V, W, +4V,V,, +4Vpv,, )] =0

1
—175775 (—4V;, +16W,) — E 17,(16D, + D, )+ &[17,175 (Vo Py, +V,

0xx 1xx

XX

(2.269)

The corresponding boundary conditions are given by
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—Po— 2§1W0x + 4§_22V0 +&[—PyWox — PoVo — 2ﬁlV0W0x + 6(22\/5

~ _ _ , (2.26h)
+2Q,W; ]+ o[-p, —2Qw,, +4(Q, +3Q,)v;]+0(d,¢°) =0

(20, +2Q, — 21,1720 ) (Vy, + 24 ) = 21737735D, + [ PV,
+2(Q,+Q, - 677327752(25)VOV0>< +8(Q2, - 377327752(25)V0W1
—(2Q, + 20,112 Wy Wy, — 417,12 QW W, — (277,77 + 40 )W, D, (2.26i)
+ 2126V, @y, — 120217V, D, + A2 WD + 12 Q D, D, ]
+0[(2Q, +2Q, — 21,1720 )(v,, +4W,) — 45,7, D,]+O(de,£%) =0

113775 Vo, +2W,) — 17, D, + £[Q17? (% Vo Do, + WDy, ) — 41721V W, — 21721V V
— 20,1V, @, — 202 Q W, D, 1+ S[-1,175 (V,, +4W,) — 2717,®,)]+ O(5¢,£%) =0
(2.26))
The above ten equations give the nonlinear 1D governing equations, in which the
terms O(de,&?) will be neglected.

To derive the asymptotically valid far-field equation, we adopt here the
reductive perturbation method (Jeffrey and Kawahara, 1982) and introduce the
following transformations (Dai and Huo, 2002)

E=x-t, r=¢t (2.27a)

It is assumed that w;, v;, p; and @; (i=0,1 2 and j=0, 1) in Eq. (2.26)
have the following perturbation expansions

W, =Wy +EWy +-ooy V=V o +EV), +-or,

2.27b
Pi=Pjp+ePj+ O =Dy +6D;; +-- ( )

Substituting Egs. (2.27a) and (2.27b) into Egs. (2.26a)-(2.26j), we obtain at
0(e")
MH, =0 (2.28)

o T
where H, :(WOO§’W10’W20’VOO’V10! Poo- plo’q)oo;’q)lo’q)zo) , and

M:|:Mll M12:|
MZl M22
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where

0

32d,

-2 0

—4n,n; 0

2 0
0 4
2,2 0
0¢
0 8d, i
0¢
2
; :—52 16d,
175115 0
82
—&1531s 8_52 —1677,775
— 0
—2173775€2s % 0
3 _
2115175 % 0
0
0 41515 %
4Q, 0
20,2 0
&
0
—175175 % 0
—ely 0
1 0
_E un 6_52 Un
0 0
211,175 0
/N |
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d, :2§_2 +4Q, + 2020, — pc® | u, d, =2(Q, +Q, — .72 Q, +12Q) — pc’ |
d; = +3773775Q d, —Q +Q 7737759 d, = +2§22, d, —_ 77377595

In order to find the nontrivial solutions, we let

detM=0 (2.29)
which leads to

pc’
£E (30, +30, + 1720, (2.30)
U

It is noted that the above result is identical to the one obtained by Dai and Huo

(2002) for neo-Hookean elastic materials, for which Q, =1/2, Q, =0, Q, =0.

From Eq. (2.28), we have

1 1 1 3 1 7737759

— P i D 1 O O 9.
Poo =—2(€2, + Qz)Woo.ﬁ, Py = 2 (@, + Qz)WOO§§§  Pop; = —4C77Wep.:

Qs ) 17150
Dy = 0,0y =~ 2+ DSy,
1 2

05558

(2.31)

The left eigenvector L, of the matrix M is given by
_  _ 9 _ 0 _
= 2(Q1+QZ)%,O,1, 0,0, —4775QS,0,—%,—2,8775Q5 (2.32)

At O(g), we can get another ten equations. Inserting Eqg. (2.31) into these
equations, we obtain

MH + Ql 00&7 +Q2 os T Qs 00 Woozze T Q4W§0§§ + Q5Wooggg =0 (2.33)

where H, ( Wy, Wy,

W2]_1 01! 111 p011 p111q)01§l®111® ) ,and
o2 0 !

Q,=|0,0,4d,,d, —,-2d,~—,0,0,0,0,0 | ,
o¢ o¢

.
3 0 3 0 9
=|-=,0,-d,—,0,0,(-2n’n. —= ,0,2Q, +— Q,—Q+Q —.0
Q, (4 Pr (=2n;m5 2773775)55 5<% ( )ag j

1- 1, 3 .8 '
Q3 ( Oﬂl é: 291’0’(2773_2773)%,0,0,0]1
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)
1 1.0
~13705 +113) =5.0,0, 0}

1 0 =
Q4:(O’Z’07_ﬂz_’ O( 2 8§

o0& 4

T
QS:[O’O,O,O’O’O’O’___(Q Q)IB35 ¢ 15 aj )

85 8 77377555
where
1o 95 4.0 O, -
131:591_292_477377595_—1+£—2277377595’
3~ 1~ 1 1 Q ~
ﬁzZZQ1_Zgz+E77§77 Q 773775Q _Ef_!l:f_)z 773775295’

ﬂ3:%(§_21+§2 +2nm2Q), d, =3Q, +3Q, +1’Q,,
_ 9_ _ _
dy =€, +Egz +87732775295 +6773775295 :
To suppress the secular terms, which might arise from Eq. (2.33), we multiply the

left-hand side of it by the left eigenvector L., and arrive at

+A,W,

+ A Wy - W, hogzze =

00§r 00 YVooss =0 (2-343)
where

-3(Q, +2Q,) B 3(Q,+Q,) s
30, +30, + 720, 2 16(30, +3Q, +n2Q)

(2.34b)

1=

EQ. (2.34a) is of the type of the well-known Korteweg-de Vries (KdV) equation,

which is the asymptotically valid far-field equation for wy,. for nonlinear waves in

electroactive circular rods. Eq. (2.34a), which incorporates both nonlinearity and
dispersion, admits a single-soliton solution, namely solitary wave. A, and A, are
the coefficients of the nonlinear term and the linear dispersive term, respectively,
and they can get modulated by changing the biasing electric displacement. If we
neglect the nonlinear term, we can get the linearized KdV equation, namely

Woo sz, + ApWog sz =0 (2.35a)

From Eq. (2.35a), we can get the asymptotically valid dispersion relation as

o=k—ehk (2.35b)
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This equation will be compared numerically with Eqg. (2.25) and the one derived
directly from the 3D linear theory in the next section.

The solitary wave solution to the KdV equation (2.34a) is known to be
Wy =—Hsech? | VH/2(4&~HAr—,) | (2.36)
where H >0 is the wave amplitude, which is a given parameter in the nonlinear
analysis, Y, isa phase constant, which will be made zero without loss of generality

in the numerical part, and

g= [BCar2B) e, 42, (2.36b)
3, +Q,) 0 3Q, +3Q, +17:Q,

Inserting Eq. (2.36a) into Eqg. (2.31), we can obtain the expressions of ®,. and

Vg, as follows

Dy = 407 Hsech? | VH 12 (A& ~H Az -y, )| (2.36¢)
Vg, = % Hsech? [ VH 72 (A& ~H Az -y,)] (2.360)

From Eq. (2.36d), we recognize that the solitary wave is an expansion wave (i.e. the
cross-section of the rod expanses while the solitary wave propagates). Due to
electroelastic coupling, we can also get the electric field corresponding to the
solitary wave, as given in Eq. (2.36c). Clearly, the amplitude of the electric field
depends on the biasing electric displacement.

We then can get the leading order of the solitary wave solution from Egs.

(2.364, c, d) as

w, =—Hsech” {'H 12 [ 2,x— (4 +H &)t -y, ]} (2.37a)
®, = 407 Hsech” {(VH 2[4 X~ (4, + HA8)t - Y, ]} (2.37b)
v:%HsechZ{\/H 12[Ax— (4 + Hﬂ?g)t—yo]} (2.37¢)

Thus, after a tedious derivation, we get a simple solitary wave solution as
specified in Egs. (2.37a)-(2.37c). It is interesting that the biasing electric

displacement only affects the wave velocity but doesn’t change the wave shape of
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the longitudinal strain or the transverse displacement when the amplitude is
specified. From Eq. (2.37c), we find that the transverse displacement has its
amplitude proportional to the longitudinal strain, and its propagation velocity equal
to the wave velocity in the rod. This particular character is often used to measure the
longitudinal wave velocity (Samsonov, 2001). As expected, the longitudinal electric
field also has the same wave velocity, and this property may be used to measure the
velocity of solitary waves in electroactive rods through the electric means. More
detailed discussions based on numerical calculations will be given in the following

section.

2.6 Numerical investigation and discussions

2.6.1 The linear case

To verify the present approach and the mathematical derivation, we compare
the linear dispersion relations in Eqs. (2.25) and (2.35b) with the one derived
directly from the 3D linear theory as given by Chen and Dai (2012). For
convenience, we will adopt the same dimensionless quantities as the ones in the

paper of Chen and Dai, and they are related to those in the present paper by

0=56" |5, k=5"k (2.38)
pC

where & and k are the dimensionless wave frequency and wave number defined

in the paper (Chen and Dai, 2012). Then, Eq. (2.35b) can be expressed by k and

@ as

3W2(0,+9,) -

&=12(30, +30, + 20k - — =12 [ (2.39)
16430, +30Q, + 720,

We adopt the following energy function, which is a modification of the

classical neo-Hookean elastic model (Dorfmann and Ogden, 2010),
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1 1
inﬂ(|1_3)+g_(71|4+72|5) (2.409)

0
where g is the shear modulus of the material, and », and y, are two

dimensionless electroelastic coupling parameters. Thus, we can obtain the following

parameters

-1 - _
0, =2, 9,=0,0,=7, 8=y, (2.40b)

The components of the coefficient matrix in Eq. (2.25) in terms of k and @ for

the above modified neo-Hookean materials are given in Appendix 4C.

Table 2.1 Comparison of three dispersion relations under two different biasing electric fields

_ 17;=0.5 17, =10
k
Eqg. (2.25) Eq. (2.39)  Chen & Dai Eg. (2.25) Eg.(2.39)  Chen & Dai

0.01 0.01936 0.01936 0.01936 0.02449 0.02449 0.02449
0.03 0.05809 0.05809 0.05809 0.07348 0.07348 0.07348
0.05 0.09681 0.09681 0.09681 0.12246 0.12246 0.12246
0.10 0.19355 0.19355 0.19355 0.24487 0.24487 0.24487
0.20 0.38652 0.38652 0.38652 0.48928 0.48929 0.48928
0.30 0.57833 0.57833 0.57833 0.73274 0.73278 0.73276
0.40 0.76838 0.76840 0.76840 0.97473 0.97490 0.97482
0.50 0.95609 0.95614 0.95613 1.21469 1.21518 1.21495

It should be noted that Eq. (2.25) admits both the numerical solution and the

asymptotic solution (Dai and Huo, 2002). In this Section, however, we will only
discuss the numerical solution. We set », =05 and y,=15 in the numerical
calculation, and the results are given in Table 2.1. It is shown that both linear

dispersion relations (2.25) and (2.39) agree well with the 3D one in the reference

(Chen and Dai, 2012) for long wavelengths, which validates, at least in part, our
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approach, derivation and computation. It also should be emphasized that both &

and y, have no influence on the results in the limit of small wave number, as is

seen from Eq. (2.39).
2.6.2 The nonlinear case

In this part, we will discuss how the parameters affect the behavior of the
nonlinear solitary waves. We will adopt the following energy function derived on

the base of the incompressible elastic Mooney-Rivlin material model:
1 1
Q=§ﬂ(§+ﬁ)(ll—3) —u(——ﬂ)(l —3)+ (71 s+ 7215) (2.41)

where x4 is the shear modulus of the material, -1/2< <1/2 is the material

constant, and y, and y, are two dimensionless electroelastic coupling parameters.

The following dimensionless quantities are then obtained:

_ 1 ﬂ 1 ﬁ _
Q= 4 E Q, Z_E =1, Q5 =7, (2.42)

It is noticed that Eq. (2.41) will be degenerated to Eq. (2.40a) when S =1/2, which

represents a simpler situation, but solitary wave solutions are still obtainable, as may
be seen from Eq. (2.36b).

Since the dimensionless variable t in Egs. (2.37a)-(2.37¢) is related to the
underlying electric displacement, it is inconvenient to show clearly the influence of
the underlying electric displacement on the solitary wave. Thus, we adopt the

following new dimensionless expressions of the solitary wave

W, =—Hsech’ [\/ H/24 (x —c,t )] (2.43a)
, =40y, Hsech?| VH 124 (x—cyt,) | (2.43b)
v=%Hsech2[\/H /2/11(x—cpt0)] (2.43c)

where t,=c, T/l is the dimensionless time, with ¢, =\/u/p being the shear

wave velocity, and the solitary wave velocity can be given by
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¢, =3+ 27,1 +2Hng+—ZQZ2 (2.44)
N3+ 27,75

which indicates that the biasing electric field can modulate the solitary wave
velocity. Similar observation is also reported in the published paper (Pouget, 1986)
that the applied electric field can change the velocity of solitary waves in elastic

ferroelectrics.

UR
Fig. 2.2. Variations of wave velocity with the biasing electric displacement: thick

solid line - (=0, y,=1), dotted line - (=0, y,=1.5), thin solid line -

(p=1/2, y,=15)
Fig. 2.2 displays the wave velocity as functions of the underlying biasing

electric displacement, under different combinations of the two parameters £ and

7, for €¢=06=03 and H=1. It is shown that the wave velocity increases

monotonically with the increasing of the biasing electric displacement when the
product H-g is small enough, which can be readily seen from Eq. (2.44).

Comparing the curves with each other or referring to Eq. (2.44), we find that only
the elastic constant (£ ) and the electroelastic coupling parameter (y,) have
influences on the wave velocity. An interesting phenomenon is that solitary waves
propagating in rods of different materials, when subjected to some particular biasing

electric displacements, may have the same velocity, see the cross of the thick and

thin solid lines in Fig. 2.2. Moreover, for a large underlying electric displacement,

the material constant g almost has no influence on the wave velocity. It also
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should be mentioned that the electroelastic coupling parameters (y,) will not affect

the velocity of the solitary wave if the biasing electric displacement is absent (i.e.
n,=0), as can be seen from Fig. 2.2.

Fig. 2.3 and Fig. 2.4 show the longitudinal strains of solitary waves with
different amplitudes and/or subjected to different biasing electric displacements. The

other parameters are fixedas =0, 6=0.3, y,=1 and £=0.3. Comparing the

two solitary waves in the absence of biasing electric displacement (i.e. 7, =0) in

Fig. 2.3, we find that higher and narrower waves travel faster (see Fig. 2.3b), which

is the particular character of elastic solitary waves in pure elastic rods. This result

also can be directly seen from Eq. (2.36a) by setting 7. =0. It is known that the

biasing electric displacement can change the effective material properties for linear
waves in electroactive materials (Dorfmann and Ogden, 2010; Chen and Dai, 2012).
For the nonlinear solitary waves in electroactive rods, comparing the two waves

with the same amplitude (H =1.5) but subjected to different biasing electric

displacements (77, =0 and 7, =1), we find that the biasing electric displacement

can change the wave velocity. However, it doesn’t affect the wave shape, as shown
in Fig. 2.3. An important conclusion from Fig. 2.3 is that solitary waves with the
same shape may travel at different speeds in a rod when it is exposed to different
biasing electric displacements.

(@) (b)

15
-- 15=0, H=1
v 75=1, H=15

— 15=0, H=1.5
1 27

05

14

Fig. 2.3. Comparison of longitudinal strains of solitary waves with different
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amplitudes subjected to different biasing electric displacements at (a) t, =0 and (b)
t,=5

It is noted that the solitary waves given by Eq. (2.37) or (2.43) are

amplitude-dominant. The KdV equation (2.34a) admits another form of solution

37 / v
Wooe ZA—lseC h? 4—1\2(5—7’[— yO) (245)

which is velocity-dominant, where 2 >0 is a constant velocity. By expressing the

(Liu and Liu, 2000):

solitary waves in this form, we can see that their wavelengths and wave amplitudes
can also be modulated by the biasing electric displacement. In fact, Fig. 2.3 already
indicates that if we keep the wave velocity unchanged, different biasing electric
displacements will give rise to different wavelengths and wave amplitudes. This fact
is now more clearly shown in Fig. 2.4.

(@) (b)

weem 1520, H=1 Y verm 75=0, H=1

— =05, H=0.503169¢ & — 15=0.5, H=0503169

-Wx o5 -Wyx o5

Fig. 2.4. Two different longitudinal strains of solitary waves travelling at the same
velocity subjected to different biasing electric displacements at (a) t, =0 and (b)
t, =5

For an electroactive rod, there exists an electric field corresponding to the

solitary wave due to the electroelastic coupling. Fig. 2.5 displays the longitudinal

electric fields (at t,=0 and t,=5) of solitary waves in the rod subjected to

different biasing electric displacements (7, =0.5, 1.0,15) for =0, p,=1,
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£=0=0.3 and H=1. It is seen that the biasing electric displacement has a
significant effect on the shapes of the electric field associated with the solitary wave.
A particular point should be noticed that the longitudinal electric field of the solitary
wave is different from the longitudinal strain of solitary wave. For the longitudinal
electric field of the solitary wave, a larger biasing electric displacement will
generate a larger amplitude, while the corresponding wavelength keep unchanged,
as is clearly seen from Fig. 2.5. This is different from that shown in Fig. 2.3. To the
authors’ knowledge, there are few studies on solitary waves propagating in solids
with multi-field coupling. The above result indicates that it is important to study
other physical fields of solitary waves (e.g. the electric field considered in this work)
as well, in addition to the elastic field, which may exhibit a different characteristic
that may be utilized in practical applications.

@) (b)

-3 0 3
X

18

Fig. 2.5. Longitudinal electric fields of solitary waves with different biasing electric

displacements at (a) t,=0 and (b) t,=5

2.7 Conclusions

A simplified nonlinear dynamic model of electroactive rods was explored here
to obtain the analytical and explicit wave solutions. We established the
asymptotically valid 1D governing equations on the basis of the 3D nonlinear theory
of electroelasticity. As a degenerate case, the linear dispersion relation obtained in

this Chapter numerically agrees well with the one directly derived from the 3D
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linear theory in the limit of long wavelength. Following the procedure of the
reductive perturbation method, we got the KdV equation in which the effect of the
biasing electric field is involved. The leading order of the electroelastic solitary
wave solution was then presented for soft electroactive rods.

The analytical results show that the material constants and the biasing
longitudinal electric displacement both have influences on the solitary waves in soft
electroactive rods. We mainly paid our attention to the effect of the biasing electric
displacement, which can modulate the velocity or wavelength/amplitude of solitary
waves. For the longitudinal strain and transverse displacement, if we keep their
amplitudes unchanged, the biasing electric displacement will not change their wave
shapes. While for the longitudinal electric field, the biasing electric field can change
its wave shapes. The unique feature of solitary waves in electroactive rods is that
they can be modulated by the biasing electric displacement, which may promote the
applications of solitary waves in solids. For example, one may generate solitary
waves experimentally under different biasing electric displacements so as to
determine the electroelastic coupling coefficients.

We also would like to point out that the conclusions made above have been
obtained only theoretically, and they should be carefully examined by comparison

with experiments in a future study.

Appendix 2A Approximate expressions of the nonzero components

of the nominal stress tensor

U pU uw u? uu
% an = =P = 20MW, + plUg =20, o — PW, — o= Py =+ 200, 5 +4Q, —
+(417;Q5D* — 217,00, D — 2Q, )U, W +4Q,U W, +2Q,W,” +2Q77; D' W,

+ (ZQSU§D2 - 277395D2)U22 + (2773?D - 773D)U2¢R + 2773? DWR¢R + 2957722¢F§

(2A.1)
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Ziroy = (20, +2Q, -21,Q,D*)(U, +W,)—7n,Dg, + pU, — (2Q, + 472 D*Q,)U U,
~(2Q, +217,Q,D*)U, W, — 47 D*QU Wy, —217,Q, DWW, —47,DQ.U .,

U
— (27, +1)n,DW, ¢, + 2773 DU,¢, + 2773 DW.¢, + 295’72 PP, — 4773 F?R

+(p —
(2A.2)

U
Z:(@«9) :_p_zgl(UR +Wz)+ Po E_ pUR + pOUZWR - sz - pOURWZ +ZQZU§

+2Q,UZ +2Q.W72 +2QW; +4Q, U\F/;/Z +4Q, U: R

(2A.3)
Zan = (29, +2Q, - 27,0, D)W, + (2Q, +2Q, — 21,Q,D* +2Q,D*)U, —1,Dg,
—(2Q, +2n,Q, D%+ 47732 DZQS)U W + (6 —41,)17,Q, DU U, —2Q.W.W,
- (773 Dz + 277; D)U R¢R + (2773? D- 2773D)Uz¢z + 2773? DWR¢Z - 4771DQ5WZ¢R

+ pW;, + 2772205¢R¢Z + [8773D295 (L,

Ug
~én DR

(2A.4)
(Zz) =2D* Q,—-p+ (877395D2 - 2Q1)U R T ( Po + ZDZQS)WZ + (8773D2Q5 - 291)%
—21,Dg, +(2Q, +815D*Q)U 7 - (2Q, +1072,Q2,D*)U, W, —875DU 4,

— pU, +(4Q, +167,Q.D*)U W, —277.Q.D*W.? +217DU, ¢, — 217,DW, b,

U U u2
+(277§D_773D)WR¢R +277295¢z _p?_ 772D F?Z +(2Q2, +24773D Q )

+(4Q, +167,D° U,

20, D? +8Q,77,D? - p,

(2A.5)

Appendix 2B. Governing equations and boundary conditions in

termsof S and Vv
The governing equations are:

N +W, +2SV, + VW, +2SV.W, —2SV,W, +VZ+25W, =0 (2B.1)
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— W, +4(Q, +317,Q,D*)(V, +SV,,) +8(Q, +Q, —1,Q,D?)(W, +SW,,)
+ (P, +2D*Q)W,, —417,D; —4n,DS s — p, —217,D¢,, +28psV, —2p,V
—2p,SV, +(4072D°Q, +16Q,D’n, —120Q,)SV,V, —8(Q, + 2n2D°Q)SV,.V,
+4(Q, +261.D°Q, +4Q, D’ )V, +4(Q, +1072D*Q, +4Q,D*1,)SVV,,
+8(Q, +672D*Q,)SVV,, +4(Q, + 717,Q,D*)V,W, +4(Q, +7n,Q,D*)SV,W,
-8(Q, +317,0,D%)SV,W,, —4(Q, +57,Q.D*)SV,, W, +16(Q, — 377 D’Q, VW,
+(16Q, —112n?D°Q, ) SV W, + (16Q2, — 4872 D°Q, ) SVW,, — 3272 D°Q, SV W,
+8(Q, +417,D°Q, ) (VW,,, + SV W,,) —321’D°Q, SV W, —247,Q,D’SWW,,
—817,Q.D* (WW, + SW W, ) —87,DSW,, ¢ — (417,D + 872 D)W, b + SW, é, )
~12n2D(V, $, + SV, 4,) +8n2DSV, g, + 412 DSV,, ¢, —5617DSV, ¢, —1672DV ¢,,
—3217,DQ, SV @, —2472DV ¢, —24n2D, SV ¢, —321,DQ SV b —1677DSV, 4,
+ 87732 D(Wg, + SWeé, ) + 4(47732 D —n,D)SW g, —2n,DW, ¢,, —217,DW,, ¢,
+8Qu11; (48, + Stss,) +8Q471; S b, +41,Q6,6,, =0
(2B.2)
— Vo —2Pg +8pVs +HQ, — 17,2 D)W, +2(Q, +Q, —17,Q.D* + Q. D?)V,,
+4p,SVes — 21,De, — 2 pW, +2p, Wy —2pgV +32Q, VW, +16Q,SV W,
~16(7,Q,D? + Q, V,W, —16(77,Q,D? + Q, ) SV, W, ++4Q W, W, — 4Q W W,,
+4(Q, —17,Q.D* —6172D°Q, VW, +8(Q, —1,Q,D* — 2772Q. D?*)SV, W,
+32Q. 72D’ SW W, +4(472Q,D? - 277,0,D* - 2Q,)SW,.V, +4Q.77,D*SV,,V,
+(24Q,72D? —8Q, WS +1,Q,D* (12 —817,) SV V,, +32Q,VV, +8Q,SV/
+16Q,SVV + (87,Q,D° —6Q,;72D* +2Q, )V, —817,DV, ¢, —817,DSV,, &
+(4Q, +14n,0,.D* —12172Q.D*WV,, +4(2172D —1,D)SV, g, + 2472 DW, ¢
—(2n,D +123 DV ¢, — (812D +4n,D)SV 4., —817,DQW,, ¢, —87,DOW, .,
+(213D —27,D) (V1 4, +V, ¢y, ) + 16175 DSWs b +1617; DSW, s + 4775 DW, ¢,
+ 4773? DW;¢,, + 4772295¢sz ¢, + 4772295¢s Py + 8957722 (3¢52 +43¢;4s) =0
(2B.3)

—1,D(=2V, =28V, +4Ws +4SWs) =17, (445 +4Sdss + 4, ) + 17, (=2V, ¢, — 25V, ¢,
+ 4SVz ¢sz + ZSsz ¢s + 4Ws ¢z + 4SWss ¢z + SSWS ¢sz - 4SWsz ¢s - 8Wz ¢s - 8SWz ¢ss
—4SV;¢p,, — 4N ¢,, —8V ¢ —8SV ¢, —8SV ¢ ) + 7732 (—8DVW, —8DSV,W, —8DSVW,
+(4+8n2)DVV, +4DSV,V, +4DSVV,,) + 2,D(2V,W, +2SV,W, +2VW,,
+2SVW,, —28V,, W, —2SV,W,, +2VV, +2S8V.V, +28VV,,) =0

(2C.4)

The boundary conditions are:
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—p—2QMW, +4Q.V +2p,SVs — pW, — pV — 2Q VW, + BV % +8Q,SVV, + 200, W,?
+2(472Q, D% — 27,0, D% — 200,)SV,W, +8Q,SVW, +2Q.D* (2 —17,)SV.2
+8Q.72D?SWZ + 2(2572D — 17,D) SV, , + 872 DSW, b, +8Q.1n2S g2 =0,

(2C.5)

(20, +2Q, - 27,Q.D?)(V, + 2W, ) — 277,Dh, + pV, + (2Q, +2Q, —12p2D’Q)VV,

— (49, +872D?Q,)SV.V, + (8, — 2472 D2 VW, —1672D?Q SV, W, —8,ZDSV, 4,
~(2Q, + 27,Q. D)V, W, — 41,0, DWW, —1272DV g, — (277,D + 4 D)W, g
+ 232DV, ¢, + 472 DW,¢, +4Qn2d 4, =0,

(2C.6)

—11,D(V, +2W,) —2m,¢; +1,(V, ¢, + Wb, — 4V ¢ _4Wz¢s)_47732DVWS

) (2C.7)
—25?DWV, =0,

at S=a’.

Appendix 2C. Dimensionless coefficient matrix in Eq. (2.25)

The components of the coefficient matrix in Eq. (2.25) in terms of k and @

for the modified neo-Hookean materials are given by

s"ki 0 0 0 2 0 0
0 s"i 0 0 0 4 0
0 0 5%%i 0 0 0 6
S, =| o« a, 0 0 12nnly,0 "%k i 0 0
0 Q 4a, 0 0 2801 y,67 K 0
0 0 @ 9, 0 0 367.7.7,6 K i
0 0 0 0 a, 8 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
S,=|-0"ki 0 0 2ok’ 411,775 0 0
0 -5¥Kki 0 0 27,156k ? ~167,7, 0
0 -5k 0 0 20,67k =361y,
i -2 0 0 -2n.1.7,0 VK i 0 0 |




62 AT RFHEFLER L
[ o 0 87178 "Ki 0 0 a, 24
0 ~4n.n, 0 0 2nn,0 ki 0 0
0 0 ~16m,7, 0 0 dnns K 0
s | 0 0 0 ~361,7, 0 0 67,70 ki
-5k ="k -5k 0 0 25 465°
1 2 1 -1 _ 1 _
0 =5 sa, —5'a, —a,"ki  —a,0"ki  —a,57ki
2 3 4 4 4
L 0 _2773775 _47737755 _677377552 _7737756’71/2E i _77377551/2E I _7737756‘3/2E I -
0 0 -4 0 0 ~4n.n.y,0 K i 0
1 _
0 0 O Em&lk P -2, 0 0
0o 0 0 0 Ly -8 0
5 u 1,
Sy = 1 _
0 0 0 0 0 > n,6"k? ~18,
-1 -5 -6 0 0 0 0
0 O 0 0 —21,77; —406m,1, —652773775
10 0 0 -1, -2n,0 —377462 )
where

o, = [(7)2 -+ 2775272)IZ2]5_11 o, = 4_8773775272 '

o, = [57)2 -@1- 277377527/2 + 277527/2)I22]5_1 )



Chapter 3 Kink and kink-like waves in pre-stretched

Mooney-Rivlin viscoelastic rods

3.1 Introduction

Solitary waves are generally produced due to the balance between nonlinearity
and dispersion. However, dissipation is always present in a realistic situation,
especially for soft materials. There are so many works in the field of nonlinear
waves in solids considering the effect of dissipation. Destrade et al. (2009) studied
the nonlinear shear waves propagating in viscoelastic materials whose generation is
directly linked to the nonlinear viscosity term. Hayes and Saccomandi (2000, 2004)
studied the propagation of finite amplitude shear waves in Mooney-Rivlin
viscoelastic materials maintained in the static state of a pure homogenous
deformation. Destrade and Saccomandi (2004) then extended to the case of
inhomogeneous plane waves. They also studied the interaction of a longitudinal
wave with a transverse wave in viscoelastic materials (Destrade and Saccomandi,
2005). It should be noted that the nonlinear elastic and dissipative behavior of rocks
has been recently observed in many experiments (Rasolofasan et al., 1997). As is
well-known, the combination of nonlinearity, dispersion and dissipation may lead to
the generation of kink-shaped solitary waves or simply kink waves (Porubov, 2003).
However, to the authors’ knowledge, there are few works on nonlinear waves in
pre-stretched structures composed of viscoelastic materials, which motivates the
present work. Pre-stretch is also regarded as an efficient mean to modulate elastic
waves in soft materials.

The present chapter focuses on the investigation of kink and kink-like
longitudinal waves in pre-stretched Mooney-Rivlin viscoelastic rods. The Cauchy
stress is split into an elastic part, which is derived from the classical Mooney-Rivlin

elastic material, and a dissipative part, which is identical to the one in fluid. In the
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limit of finite-small amplitude and long wavelength, we simplify the
three-dimensional (3D) nonlinear governing equations to one-dimensional (1D) ones
by making use of the asymptotic expansions of variables as in Dai and Huo (2002).
Then, using the reductive perturbation method gives rise to the far-field equation
(the KdV-Burgers equation). Finally, two kinds of explicit wave solutions are
presented, namely the kink and kink-like waves, which correspond to the
saddle-node heteroclinic orbit and the saddle-focus heteroclinic orbit of the equation,
respectively. Examples are given to show the influences of pre-stretch and viscosity
on the wave shape and wave velocity. The potential application of such waves is to
measure the viscosity coefficient of the material. The competition between the

effects of pre-stretch and viscosity on kink and kink-like waves is also uncovered.

3.2 Preliminaries

3.2.1 Basic formulations

Let a material point, in an undeformed body which occupies a region I", with

the outward normal N in the reference configuration, be identified by its position
vector X. After a time T, the material point is at the position vector x, which
occupies a region I' with the outward normal n in the current configuration.
Thus, the motion of the body can be described by

x=x(X) 3.1)
For an incompressible Mooney-Rivlin material with energy density function Q, the
(elastic) Cauchy stress tensor can be described by the constitutive relations (Chen

and Dai, 2012)

1 =2Qb+20,(I,b—b*)-PI (3.2)
where Q =0Q/ol, (m=1, 2), | is the unit tensor, b=FF" is the left

Cauchy-Green strain tensor with F=0x/0X being the deformation gradient tensor,
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P is the undetermined pressure related to the constraint of incompressibility

detF=1,and |, are the scalar invariants:

|f4m,g=%mmf—nmﬁ] (3.3)

Where “tr” is the trace operator.
To describe the effects of dissipation, we adopt the following viscous stress
tensor for the incompressible viscoelastic materials (Destrade et al., 2009; Destrade

and Saccomandi, 2004)
t° =213D (3.4)
where D=1/2(L+L") is the rate of deformation tensor with L =(6F/aT)F™*, n

is the viscosity coefficient which should be positive, and T is the time. A detailed
discussion of proper formation of the viscous stress tensor can be found in (Destrade
et al., 2013). Through simple combination, the nonlinear constitutive equation of a

viscoelastic material may be expressed by

1=—Pl+2(Q, +Q,l,)b—2Q,b* + 27D (3.5)
where Q, =1/2u(1/2+)>0 and Q,=1/2u(1/2-)>0, with g being the
shear modulus and /S a material constant.

The equations of motion, in the absence of body forces in T, are given by

o%x
T 2

DIVE = p (3.6)

where X =F"'t isthe nominal stress tensor and “Div” is the divergence operator.

The boundary conditions in I", are given by
EN=t, (3.7)
where t, is defined by t,dA=t_da.Here dAand da are the unit areas in ', and

I', respectively, and t, is the applied mechanical traction vector per unit area in
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3.2.2 Longitudinal waves with small but finite amplitude

To study the axisymmetric wave motion in a circular rod, we prefer adopting
cylinder coordinates, with (R, ®, Z) and (r, €, z) corresponding to the

reference and current configurations, respectively. Considering the axisymmetric

motion superposed on a finite static axisymmetric deformation:

r=AR+U(R,Z,T), =0, z=4LZ+W(R,Z,T), P=p,+p(R,Z,T) (3.8)
where A4, and A, are the pre-stretches, U and W are the displacements along

the r and z directions, respectively, p, is the pressure in the deformed state,

and p is the incremental pressure. From Eqg. (3.8), we obtain

U+ 4 0 U,
F=| o0 %ml 0 (3.9)
W, 0 W, + 4,
Furthermore, we can arrive
deth(UE+ﬂlj(—UZWR+(UR+Al)(WZ+/12)) (3.10)

and

L= 0 A, —- 0 (3.12)
A A Wer 0 AW,
To obtain Eq. (3.11), we have made use of the constraint of incompressibility
detF=1 and neglected the terms which are higher than the first order. As a
convention, here and hereafter, the subscript letter denotes partial differentiation,
while the subscript letter inside the brackets denotes coordinate direction.
With Egs. (3.9) and (3.11) substituted into Eq. (3.5), we get the expressions of

the Cauchy stress tensor including the effect of viscosity. The nominal stress tensor
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can be derived as well. It is noted that for the finite but small disturbance, it is
reasonable to neglect the higher order terms. Furthermore, for weakly viscoelastic
materials, it is reasonable to assume that the viscous stresses are much smaller than
the elastic stresses (Hamilton and Morfey, 1999). Similar assumption was adopted
by Zabolotskaya et al. (2004) and Catheline et al. (2003) Thus, for the elastic
stresses, we neglect the terms which are higher than the second order, while for the
viscous stresses, we only retain the first order terms. With the approximate
expressions for nominal stresses thus obtained (see Appendix 3A), the equations of

motion (3.6) can be rewritten as
U
- WTT + 2/1127Q2U RZ 212 p; + 221&292 FZ + (221292 + 291)WRR
W
+(2Q, + 4/112Q2 W, + (211292 +2Q)) ?R +17[(AU gz + A\Wegr )

1
+ 2A14WZZT + E (/‘L.I.U T + /leRT )] + A’.l pRU z + 2]1Q2U RZWZ

- 41192U ZWRZ - ZA‘ZQZU RRU zt legzu RU RZ /11 pz (3- 12)
_220U W, +420,UW,, — 4 P22 1420, 92
coa, I g0 W o) 0 Uz Ly Uit
R R
Uw

+420, = =0

U
_pUTT + 221}“292\/\422 - /1112 Pr (_291 - 22’2292 - 2/’[le2) ?

+(2Q, +22/Q, +212Q,) U—RR +(2Q, +24°Q, +222Q,)U

u
+ (291 + 2//{‘1292 )U Y4 + U(ZEZU RRT + 114U ZZT + /’ileZT - 2/12 R_-Iz—

+22, Yer ) + 24QW, W, —24QWW,, —41,Q,U ., W, (3.13)

- Z%Qzu Weg +44,Q,U W, +24,Q,UWe, — 4, pW,
UU ., uu,,

+41Q,

+/11pZWR _iz %*‘4/1192

2
UWe | s 0 UWs u;/\! 2219;)2

U? U’ A
+24Q,—R+220,—2%-220,—2=0
A R ek R A R
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We assume that the lateral surface is free from tractions. From Eq. (3.7), we get the

boundary conditions as
Zan =0 Zg,=0 atR=a (3.14)
which reduce to
(BAAQ, — A PIW, +(2Q, +227Q, +22Q, ), — 44, p
+(4A°Q, -4, p,) UE +2,Q W7 —21,0Q,U W, +41,Q.U W,

UW U U’ uu (3.15)
p
_21sz - po TZ_;tz ?"'Zﬂigz ?"‘4/1192 RR
+29AU, =0
2 Uy,

(4P —244,92,)U, + (2472, + 2Q )W, + p, s + 4, pY,

oW (3.16)

+ 41192 R — 2/1192U sz - Zj?QzU RUZ + 77(]1U a1 ﬂ?WRT) =0

at R=a, where p,=24Q, +24'Q,+21,Q, which can be obtained from the
boundary condition X, =0 of the rod in the deformed state.

From Eg. (3.10), the constraint of material incompressibility can be reduced to

A, AW, 430 = AW+ AU, + A, 42,208 =0 (317)

where the terms which are higher than the second order have been omitted, and the

following relation has been noticed

220, =1 (3.18)
Egs. (3.12), (3.13) and (3.15)-(3.17) can be used to completely describe the

nonlinear dynamics of viscoelastic rods in the limit of finite but small amplitude.
For such axisymmetric problems, S=R? will be a more natural radial
variable than R (Dai and Huo, 2002). Also, the transformation U =RV (Z,S,T) is

introduced. These two changes of variables are now used to simplify the governing
equations (3.12), (3.13) and (3.15)-(3.17). For convenience, we will further adopt

the following scales to non-dimensionalize the governing equations
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W=hW,Z=Ix,S=I25,T=|—t,V=|nv,p=ylnﬁ, (3.19)
C

where 4 is the shear modulus of the material, h is a characteristic axial

displacement, and | is a characteristic wavelength, ¢ is a characteristic speed to
be determined later (see Eq. (3.41)). For long waves with finite but small amplitudes,
e=h/1 is asmall dimensionless parameter. The following dimensionless material

constants will also be needed:
Q=pu"Q,Q,=p"Q,7=p" h ) = 2470, +22'Q, +22,Q,  (3.20)

Thus, in view of Egs. (3.19) and (3.20), we get the dimensionless governing

equations as follows:
2V+2sV, + W, +&(2A7 VW, —2A7SV, W, + 247 SV W, + A, A,V (3.21)
+22,,5W,) =0 '

- pTCZ W, +44LQV, +4sALQV, —A7D,

+8(A/Q, + Q)W +85(1°Q, + Q)W + (2Q, +44°Q, )W,

+ e[l (AN, + 248V, + AW, + 44,50, +24'W,,)

+22,5pV, +42,.Q,v W, +4sLQV, W, —8AQ, SV, W,
—42Q,5v, W, +84Q,vwW, +81,Q,sv.W, +164Q,vw,
+164,Q,sv.W, +164,Q,svw, —124,Q,sv.v, —81,Q,8*V_V,
+4L,Q,W, +4L,Q,5wW,, +81,Q,5°V v, —24,P,V—-24,5pV,]=0

(3.22)

—pTCZVH +A,,Q,W, — 244, P, +16(Q, + ’Q, + 12Q,)v,
+2(Q, + A7Q, )V, +8(Q, + A7Q, + A2Q,)sv,,
+¢ln7 (162,Zvst +81,8V,, + 21 Vo +24W,,)
+42Q,wW,w,, —42Q,ww  —81Q,W (3.23)
—16&2Q v,w, —164, Q LSV, W, —84,Q,5v, W,
+32,Q,v W, +164,Q,8v, W, +41,Q,vw,, +81,Q,5V.W,
— 24 PW, +24 P W, —21,P.V+324Q,W, +164,Q,5W,,
+42.Q,w,, +81Q,sv> +24,0Q,v*]=0

S

S SX
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The corresponding boundary conditions are
2(/11}”2()2 - ﬂ‘fﬁl - %SQz)Wx + 4]125_)2V
+ 4Oy + 47O, + A7Q,)V, — 42D
+e[22,77 (v, + 25V, ) + 24Q,W W, —41,Q,8V, W, (3.24)
+ 2(1‘2@2 - ﬂ‘lzﬁl - 2‘14()2)wa + SAZQZSVSWX - ﬂlﬁwx
~ A, PV+64Q,V° +81Q,5w, ]=0
240, + L, + AAQ, + Q)
+ e[l (A, + 22,0, ) + 2(4°Q, + 2w, (3.25)
+ APV, +84.Q,wWw, —24Q.v.w, —41,Q,sv.v ]=0
at s=0, where 5=a’/1° is also a small parameter for long waves. As can be

seen, the variable R doesn’t appear explicitly in the resulting system of governing
equations, and s seems to be a more natural radial variable as compared with R in
the original system.

Egs. (3.21)-(3.25) are complex two-dimensional (2D) nonlinear partial
differential equations, which are still too difficult to get an analytical solution. For a
slender rod, to further simplify the equations, we adopt the asymptotical method

introduced by Dai and Huo (2002) to tackle such a complicated system. First, the

unknowns (w, v and P ) can be expanded in the neighborhood of s=0 as

follows:
W= W, (X, ) + SW, (X, 1) +S°W, (X, t) +- - (3.26)
V=V, (X,t) + 5V, (X, ) + 87V, (X, t) +--- (3.27)
P =P (X, )+ 5P, (%, 1) + 7P, (X, ) +++- (3.28)

Substituting Egs. (3.26)-(3.28) into Egs. (3.21)-(3.25) and setting the coefficient of
each power of s to be zero, we can transform the 2D problem to the 1D problem

involving only two variables (x and t). The governing equations are

2V, + 113W0x + 8(2112V0W0x + ﬂ’lﬂ?vg) =0 (3.29)

2V, + 2V, + AW, + (AW, + 25V W, — 247V, W, +4A,V,V, =0 (3.30)
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c? ~ _ -
Wy + 47700, = 7Py, + 422D, + 20w
+ (Zﬁl + 42’12Q2)W0xx +e[7 (2A4Vy,, +42,W, + 2214W0xxt) (3.31)
+42,QV,, Wy, +84,Q,V W, , +164,Q,V,W,
+ 4ﬂzﬁzvoV0x - ZAlﬁOXVO] =0
pC2 = = 2
_TWm + 4/111292\/“ + 4ﬂ1£’zQ2V1x - ﬂj Pix
+16(24Q, +2Q,)W, + (2Q, +427Q,)W,
+ &7 (44V,,, +164,W,, + 2/114W1xxt) + 821ﬁ2V1xW0x (3.32)
- 4ﬂ1g_22V0xW1x - 42152V0xxwl +:I-(aﬂlg_zzvl\’vo + Sﬂlﬁzvowlxx
+322,Q,V,W, +641Q,V,W, —84,Q,V,V,, +8L,Q,V,V,,
+ 211§1V0x - Zﬂﬂ.ﬁuvo - 4ﬂ1ﬁo><v1] =0

XX

2
P a2 0w, +8(20, + 2220, + 2270V,

MU
=222, 0, + (20 + 227 Q) Wy, + [T (162 + AN o0 + 27 W,,)
+ 4/1162W0><W1x - 41’1(_22W1W0xx - 8ﬂL1£_)2W12 _16/12QZV0XW1 (3-33)
+ 32125_)2V1W0X + 4}”2@2V0W1x - 211 ﬁlWOX + 221 §0xW1 - 2@ EIVO
+32,Q,V,V, + 44 QVV,,, + 24,02 ]1=0

The corresponding boundary conditions are

(2/112"2(22 - 2/113(21 - Zjisﬁz)WOX - A4+ 4/112(22\/0 +&{22,17Vy
+ (2/12@2 - 2/112(21 - 2/11452)V0W0x + z%ﬁzng - 2150VVO>< - /12 ﬁovo

+ 611(_22\/5 + é[(Zﬂlﬂfzﬁz - 2213521 o 2215§2)W1x - 2122 ﬁl
&

+2(2Q, +44°Q, + 2220, ]}=0

(3.34)

(A7, + 227 Vo, + 2(24°Q, + 20,)W, + {77 (Ao, +24,W,)
+ A, PV, +8AQVW, — 24V Wy, + (24°Q, +24°Q)v,v,,  (3.35)

+ é[(Zﬂfﬁz +22°Q)Vv,, +42AQ, +2Q)w,]}=0
&
where 6/&=0(1) is assumed. The above seven equations give a set of 1D
nonlinear equations for seven unknowns w,, v, and p; (i=0,1,2 and j=0,1),

in which we have neglected O(dg,&”) terms.
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3.3 The far-field equation

3.3.1 Derivation of the KdV-Burgers equation

To derive the far-field equation, we follow the procedure of the reductive
perturbation method and introduce the following transformation (Jeffery and
Kawahara, 1982):

E=x-t, r=¢t (3.36)

and w,v; andp; (i=0,1,2and j=0,1) have the following perturbation expansions

W =W +EW, +--,
V, =V, eV +oo, (3.37)

P; =Py +ePy+--

Inserting Egs. (3.36) and (3.37) into Egs. (3.29)-(3.35), we obtain at O(&°)

M, H, =0 (3.38)
_ _ T
where H, :(Woo.»:vwlo’wzo’voo’vlol Poo> plo) ,and
PY 0 0 2 0 0 0
0 3 0 0 0 4 0 0
¢
dzi 8d, 0 4/1112()2i 0 _ ZE 0
PE Gl 4
2
M,=| 0 dza_2 32d, 0 8/11/12(22i 0 2 0
o0& o0& ol
_ 9 0’
0 4440, PE 0 d, PEd 16d, 0 244
2d, 0 0 440, 0 ~hd 0
0 4d, 0 22,2 0 0 0
og
where
d, = 4Q,+Q,,d, = —pC?/u+ 20, + 4470, dy =, + 10, + 4,Q,, (3.39)

d4 = /1122(22 _/113d1' d5

= —pc?/p+2d,
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In order to obtain the nontrivial solutions, we set
detM, =0 (3.40)

which gives

2
% =450, +20, +61°Q, (3.41)

It determines the characteristic speed c, which depends on the pre-stretch A,. This

result coincides with the one obtained in (Dai and Huo, 2002) if we set 4, =4, =1.

Substituting Eq. (3.41) into Eqg. (3.38), we obtain

ﬂf = 4A 6 ﬂ16
Voo = —?WOOSE, Poo =(2Q2, -2, — 44, Qz)WOch’WlO = Twooéé’
A — 1 105 va 1 oss
Vip = _Ewooééé' P = (Eﬂﬁ Q +4,7°Q, _Eﬂl QZ)WOOééf’ (3.42)
W,, = 31112 +—A'18 (/116__1)53‘2
P64 3240,+Q)

The left eigenvector L, of the coefficient matrix M, is

Lez(d6 0100 - 38—2 —2J (3.43)

where d, =(44°Q, +24°Q, —247'Q,)01 &
Similar to Eq. (3.38), another seven equations at O(&") can be easily obtained.

Making use of Eq. (3.42), we can simplify these equations to

M H, +Q Wy, +Q, Wy +QgWoo Wog.oo: +Q,Wego + QsWog e + Qe Wop.z: (3.44)
+Q7Wooszze + QeWoozezze = 0

where Q, ~Q, are coefficients (in vector form) given in Appendix 3B. In order to

suppress the secular term, we multiply the left-hand side of Eq. (3.44) with the left

eigenvector L, to get the following nonlinear evaluation equation

Wooer + C1W005W005.§ _C2W00555 + C3W00§§§.§ =0 (3.45)

where
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oL BRA, A 327,
D20+ 30, 42000, + 6, +34%G,
— (4/1114(22 +3ﬂ112§1 _jfg_zz) é
P 162420, +Q, +34°Q,) &

where 7, = 'c,7/h is also a dimensionless viscosity coefficient, which is
independent of the pre-stretch, and c; :m is the shear wave velocity.

Eqg. (3.45) is the KdV-Burgers type equation with the nonlinear coefficient C,,
the dissipative coefficient C,, and the dispersive coefficient C,. In this chapter, we
only consider the case of A4 >1 (i.e. the rod is subjected to a pre-stretch, not

pre-compression). Thus, we have C,>0. Due to the balance of nonlinearity,
dissipation and dispersion, there exists a steady kink (or kink-like) wave propagating
in the rod. If the dissipation is neglected, we can reduce the KdV-Burgers equation

into the KdV equation. Furthermore, when A4 =1, the KdV equation thus obtained

is identical to the one in Chapter 2 if the electroelastic coupling is neglected there.
3.3.2 Travelling wave solutions

Eqg. (3.45) is not a standard KdV-Burgers equation. We take the following

transformation

A
Wooe = o (3.46)
1

Inserting Eq. (3.46) into Eq. (3.45), we obtain
A +AA, —CA,+CA,., =0 (3.47)
Eqg. (3.47) admits both travelling wave solutions corresponding to saddle-node and

saddle-focus heteroclinic orbits, respectively (Liu and Liu, 1992). In order to obtain

the travelling wave solution, we assume

A=A(G), ¢=¢-rr (3.48)
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Substituting Eq. (3.48) into Eq. (3.47) and integrating once with respectto ¢ both

sides of the equation, we can get
1.2
—VA+§A —C A +CA, =A (3.49)

where A is an integral constant, which depends on the initial conditions. When the

variable ¢ approaches infinity, A, A, and A, should gradually become zero.

Thus, it’s reasonable to set A=0.

The solution corresponding to the saddle-node heteroclinic orbit for the
KdV-Burgers equation was first obtained in Jeffrey and Xu (1989) through a
nonlinear transformation method. Alternatively, the solution may be obtained

through the expansion of tangential function (Johnson, 1970), as follows

2
Azic—z[l—tanh C, §+£sech2&g“] (3.50)
25 C, 10C,” 2 10C,

where 7=6C’ /25C, has been determined in the process of derivation.

For the saddle-focus heteroclinic orbit, the analytical solution can be obtained

by following Liu and Liu (1992) for C,>0 as

C
724 2
21 +16% cos | L - szé, (—0,0]
C, 4C;
= (3.51)
[V
3vsech? | —(, 0, +oo
4C3§ [0, +o0)

where 77 will be a given parameter. This wave can be divided into two parts: the

right part is a solitary wave in which the dissipative term is neglected, and the left is
a damped oscillation due to dissipation.

Inserting Egs. (3.50) and (3.51) into Eqg. (3.46), we can get the expression of

W,

b » Which in turn gives rise to the following leading order of the travelling wave

solutions:
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2 2 2
W, _5G 1—-tanh <, x—(+e oC; i +£SeCh2 G, x—(+e o, i (3.52)
25 C,C, 10C, 25C,” ) 27 10C, 25C,
and
C.
2 (x=(L+eM)t) 2
Ci[zy_'_yezcg ‘cos C1_4%2 (X—(1+87/)t)}, (—00,0]
w, =4 * : (3.53)
v v
Zsech® [— (x—(L+&W)t), 0,+
. ac, (x—Q@+em)t) [0, +0)

Egs. (3.52) and (3.53) are the kink and kink-like waves, respectively. It should be
pointed out that the kink-like wave in Eq. (3.53), which corresponds to the
saddle-focus heteroclinic orbit, is often overlooked in literatures. However, such a
wave profile is exactly the same as what has been observed in fluid (Liu and Liu,
1992; Johnson, 1970). Thus, it should be important both in practice and in science
and technology. The kink wave in Eq. (3.52) corresponds to the saddle-node

heteroclinic orbit. As expected, the kink (kink-like) waves can be modulated by the

pre-stretch 4,. Substituting Eqgs. (3.52) and (3.53) into Eq. (3.42), we can get the

expressions of other physical quantities, including the expression of v,,, which is

very important to the experiment (Samsonov, 2001). In the next part, we will discuss

the influence of pre-stretch and viscosity on the wave shape and wave velocity.

3.4 Numerical results and discussions

In this part, we shall discuss through numerical examples but based on the

analytical solutions obtained in the last section how the pre-stretch and viscosity
affect the wave shape and wave velocity. In the calculation, we take g=1/6 and
e=0=0.3 for example. It is noted that the Mooney-Rivlin model can be
degenerated into the neo-Hookean model when g =1/2. In this case, the kink
wave solutions are still available, which can be proven from Eq. (3.45).

For the discussion about the influence of pre-stretch on the wave velocity, it

becomes inappropriate to use the dimensionless variable t since it depends on the
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pre-stretch, see Eq. (3.19). Thus, we employ the following new dimensionless time

variable:

=Gl (3.54)

where ¢, =./u/ p is defined below Eq. (3.45).

Then, Egs. (3.52) and (3.53) can be rewritten as

2 X—c_t X—c_t
WX:E C2 1 tann X% | Lopenz X% (3.55)
25 C.C, l, 2 l,
where
, 10 (3.56)
C2
6(322 = = 8=
= (e WAL, +20, +62°0, (3.57)
3
12 C?
H=o2 (3.58)
1¥3

are the wavelength, wave velocity, and wave amplitude, respectively, and

&x—cpzto 2
L 2V+V€2C3( )cos r_ sz (x—cpzto) . (~o0,0]
C, C, 4C;

W, = (3.59)

K% / v
~ sech® |— (x-c_t.), 0,+
C, 4C, ( p2 o) [0, +o0)

where ¢, =(1+ gv/)\/Mfﬁl +2Q, +61°Q, is also the wave velocity.

Fig. 3.1 depicts three different kink waves underlying different pre-stretches at

t, =0. It should be noted that these wave solutions have a saddle-node herteroclinic
orbit, and result from the balance of dissipation, dispersion, and nonlinearity (see Eq.
(3.55)). If the dissipation is ignored, the dissipative coefficient C, would be zero,

so the kink waves would not be generated. It is seen that the pre-stretch makes the
wave lower and wider. Therefore, the pre-stretch has a repressive function on the

wave.
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Fig. 3.1 Axial strain of kink waves underlying different pre-stretches with 7, =0.3

at t,=0
0.6
..................... = jg=035
‘.
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________________ 3
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Fig. 3.2 Axial strains of kink waves with different viscosity coefficients and
A4 =12 at t;,=0
Fig. 3.2 depicts three different kink waves propagating in the rod with different
viscosity coefficients at t, =0. Comparing these waves with each other, we find
that the kink wave with a larger viscosity will have a higher amplitude and narrower
wavelength. If the viscosity is small enough (for example, 7, =0.5 as in Fig. 3.2),

the wave will gradually become flatted. From Figs. 3.1 and 3.2, we recognize that

the pre-stretch and viscosity of the material have absolutely opposite influence on
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such kind of kink waves. So it is not surprising that waves propagating in the rod
with two different viscosity coefficients may have very similar wave shapes if the

underlying pre-stretches are appropriately applied, see Fig. 3.3.
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Fig. 3.3 Two similar axial strains of kink waves at t, =0
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Fig. 3.4 Radial displacements of kink waves at t, =0

From Eq. (3.42);, we find that the radial displacement is proportional to the
longitudinal strain with the same wave velocity. This enables us to determine the
nonlinear wave characteristics in rods through measuring the radial displacement
which is experimentally more feasible (Samsonov, 2001). Fig. 3.4 shows three
different radial displacements of kink waves propagating in the viscoelastic rod. As

expected, we find that the influences of the pre-stretch and viscosity on the wave
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shape are the same as on the axial strain. It is noticed that the radial displacements

for 4, =11 7,=05 and 4 =12, 7,=0.71 are with different shapes, unlike the

situation for the axial strains in Fig. 3.3. This is simply due to the fact that the
proportional factor in Eq. (3.42); depends on the pre-stretch.

All the results show that for kink waves, the viscosity coefficient of the
material has a dominant effect on the wave shape. Thus, we may use this property to
measure the viscosity coefficient of the material. For example, we can use the
measured wave amplitude to calculate the viscosity coefficient by

5, [AA0,+Q)(BA0, +34'0,-8,) 5
o= ﬂl\/ 2750, + 0, + 310, SUTC

° 6

where H, is the wave amplitude of the radial displacement.

Ap

Fig. 3.5 Variation of wavelength with the pre-stretch

Figs. 3.5-3.7 show the variations of wavelength, wave velocity and wave
amplitude with the pre-stretch. From Fig. 3.5, we find that, with the increase of
viscosity, the wavelength becomes smaller and with the increase of pre-stretch, the
wavelength becomes larger, which may be explained intuitively that the dispersion
is strengthened due to the decrease of the radius of the rod when it is stretched. It is
interesting that the influence of the viscosity on the wavelength becomes significant
when the pre-stretch is large enough. Furthermore, the influence of viscosity on the

wave velocity become smaller as the pre-stretch increases, see Fig. 3.6. When the
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viscosity is large enough (for example, 77, =2.0), the variation of wave velocity

becomes no longer monotonous. Thus, there should be a range where the wave
velocity will decrease with the increase of pre-stretch. This is somehow against the
intuition. On the other hand, just as expected, the influence of viscosity on the wave
amplitude will gradually become small with the increase of pre-stretch. When the

pre-stretch is big enough, the wave amplitude will approach to zero, see Fig. 3.7.

.\1
Fig. 3.6 Variation of wave velocity with the pre-stretch

20

L5

0.5

1.0 1.2 L4 1.6 1.8 20
A

Fig. 3.7 Variation of wave amplitude with the pre-stretch
Fig. 3.8 depicts the kink-like waves, which correspond to the saddle-focus

heteroclinic orbit of the KdV-Burgers equation. The other parameters are fixed as

7, =1 and ¥ =20. At the right-most part of the wave, it behaves like a solitary

wave for which the dissipation can be neglected. When the wave amplitude arrives

at the maximum point, the field is controlled by damped oscillation due to
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dissipation, and the amplitude will gradually become smaller and smaller. Finally,
the axial strain will approach a constant. This kind of waves actually reflects the
cascading down process of energy, which is an important property of turbulence
(Liu and Liu, 1992). By comparing Figs. 3.8(a), 3.8(b) and 3.8(c) with each other,
the influence of pre-stretch on such kind of waves can be uncovered. Just like the
kink waves, the wave amplitude of kink-like waves will become lower and the
wavelength will become wider with the increase of pre-stretch. Furthermore, we
also find that the left part of the wave in Fig. 3.8(a) decays more rapidly than the
corresponding ones in Fig. 3.8(b) and Fig. 3.8(c). Therefore, we can get the
conclusion that the pre-stretch can weaken the effect of viscosity on of the kink-like

waves.

50

(@) 4=1 (b) 4,=14

(©) 4=18

Fig. 3.8. Kink-like waves with a saddle-focus heteroclinic orbit at t, =0
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3.5 Concluding remarks

We studied the propagation of kink and kink-like waves in pre-stretched
Mooney-Rivlin elastic rods with the consideration of viscous dissipation. The
Cauchy stress tensor consists of an elastic part and a dissipative part. Several
asymptotic expansions were introduced to simplify the 3D governing equations for a
rod to the 1D ones. The boundary conditions on the lateral surface of the rod were
satisfied asymptotically. Using the reductive perturbation method, we obtained the
KdV-Burgers equation, which admits analytical and explicit wave solutions.

Two kinds of travelling wave solutions for the KdV-Burgers equation are given
in the present chapter. They correspond to the saddle-node heteroclinic orbit and
saddle-focus heteroclinic orbit of travelling wave solutions, respectively. For the
discussions, we mainly paid our attention to the influences of pre-stretch and
viscosity on the wave shape and wave velocity. We found that the pre-stretch will
make the kink waves lower and wider. Moreover, the pre-stretch can also be used to
modulate the wave velocity. Furthermore, a larger viscosity coefficient will lead to a
higher and narrower wave. Thus, we may use kink waves to measure the viscosity
coefficient of the material.

Last but not least, we uncover the competition between the influences of
pre-stretch and viscosity on kink (kink-like) waves. For example, for the wave with
a saddle-node heteroclinic orbit, as the pre-stretch increases, the effect of viscosity
on the wavelength will become more remarkable; while its effect on the wave
amplitude and wave velocity becomes smaller with the increase of pre-stretch.
Furthermore, if the viscosity coefficient is large enough, the variation of wave
velocity will no longer monotonously vary with the pre-stretch. For the wave with a
saddle-focus heteroclinic orbit, we uncover that the pre-stretch can weaken the

effect of viscosity, which will decrease the wave amplitude.
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Appendix 3A. Approximate expressions of the nonzero components

of the nominal stress tensor

% ey = GA4LQ, = 4P W, =44, p+(427Q, — 4, Po)—
+ 2402 + (20, + 227Q, + 222Q,)U,, — 24,Q,U,W,

uw U VE (3A.1)
+‘ngzurzwz _21sz = Py TZ_;LZ p?+2,11Q2 ?

2~ RT

Liry = = (4P —244,$2,)U, +(2/11 Q, +2Q) )W, + po

UW (3A.2)
2 R 22, Q,U W, =24,Q,UU, +1n(4U; + AWer)
200 = (BA°Q, = A, p U — A4, P+ (2Q +22°Q, +27,Q )—
+ pU Wy + (444,92, — 4, Py )W, — pU W, + ZZlQZU,i (3A.3)

+240,U% +22Q.W2 — 1,pU, —ﬂipW + 240,
uw, wy,

Z(zry = (B P = 24482, )W, + (20 +2/1129 WUz + 4, pWe

uu Uw,
+42Q, Rz+po .

+ 77(214U zr + AWer )

R _2AQWW, —2L,0UW,  (3A4)

Sy =Pk’ + 22, + A0 1,0, — 27 p+ (44,40, ﬂlpo)—

Uu,
- po )U R + (291 + 4%292)Wz (3A.5)
+4/11Q2URWZ +24,Q,U 2 r —24Q.U W, -4 pU,
uw, U 2 U
+44Q, R pR + 277]14WZT

Appendix 3B. The coefficients of Eq. (3.44)

These are given in vector form as follows:
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_ o 0 ap 0 !

Ql—(o 0 45 ﬂlﬂzaé %ﬁzag 0 0) (3B.1)

Q2=[—§Af 0 4 00 A ﬂgj (38.2)

3 11 1 11~ !

Q3=£0 —gﬂi 0 A - Q 0 oj (3B.3)

Q.=(0 34" 0 4 4 0 0] (38.4)
el .

QS—(O 0 _2’1”755 0 0 Af oj (3B.5)
Q=(0 0 000 5 B) (3B.6)
Q,=(0 000 7 0 0) (3B.7)
Q,=(0 0 0 B, 0 0 0), (3B.8)

where,
3 ..= — — 0 - = —
ﬁl = _(E /11492 + 21891 + 32’11092) % ) :32 = 2/116Q1 + Ql + 3/118927

1 — 7 — 1 —
ﬂa = (Eﬂ'lmﬂl _2/111092 _5/111692

O N
(0,+Q,) ¢’

2208903 o

240, +4,) o¢

ﬂ4:§ 10@2_/111652_§/1114§1+
4 4
— 210 _§ B3 _ 210 l e
Ps=22Q, 2/11 2 —A 1+211 21
9
o&’

55 29,15 a8 05 L ge5y 0 4 o, AU DD,
ﬂ8_2]191+2ﬂ192’:89 _4(/11 Qz"'ﬂin) ag’ﬁm 77(/11 +2(ﬂ’12§2+§_21)).
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Chapter 4 Interesting effects in harmonic generation by

plane elastic waves

4.1 Introduction

Due to elastic nonlinearity, higher harmonics can be generated by self-
interaction or mutual-interaction of primary waves, and some interesting results can
be concluded. One of the outstanding features of higher harmonics is the cumulative
behavior because their amplitudes increase with the propagation distance. The self-
interaction or mutual interaction of shear waves in the region of quadratic
nonlinearity gives the generation of longitudinal waves, which propagate with the
shear wave velocity. It is shown by Tang et al. (2012) that incident waves can be
scattered by a region of material nonlinearity, which can produce higher order

backscattered waves.

In this chapter, an analysis of the generation of higher harmonics based on
quadratic and cubic material nonlinearity is presented first. The cubic nonlinearity is
defined by fourth order elastic constants, which are stated in (Hamilton et al., 2004).
A second order perturbation method has been adopted to obtain the harmonics for
the cubically nonlinear one-dimensional problem. For the primary transverse waves,
a longitudinal second harmonics and transverse first and third harmonics are
obtained from the first and second order perturbations, respectively. The amplitudes
of the transverse first and third harmonics increase linearly with the propagation
distance. It is of interest that the amplitudes of these harmonics are determined by
the squares of third order elastic constants. Thus, comparing with second harmonics,
the first and third harmonics are more sensitive to the third order constants. The
fourth order elastic constants also contribute to the generation of first and third
harmonics. For the primary longitudinal waves, the cumulative longitudinal second
harmonics are obtained from the first order perturbation. For the second order
perturbation, the longitudinal first and third harmonics, whose amplitudes increase
quadratically with the propagation distance, are obtained. This effect in the

generation is of considerable interest.
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In the next part of the chapter, we investigate the second harmonic generation
by an interface between materials of linear and nonlinear material behaviors. Some
works have been reported on the nonlinear reflection of bulk waves from an
interface between two solids (Zhou and Shui, 1992; Deng, 1999), and the nonlinear
reflection from a free boundary (Bender, 2003). As a problem of practical interest,
we consider a case where the interface connects a half space of quadratical material
nonlinearity with a half space of linear material behavior. The linear material
properties are same across the whole space. The present model can be used to
investigate a structure where there exists a large region of microstructural damages.
We show that, in addition to the generation of a second harmonic, two
compensatory waves with double the frequencies of the incident wave will be
generated when the incident wave passes through the interface. One of the two
compensatory waves is back-propagating wave. Such a wave can be used for
nondestructive evaluation of the nonlinearity in the adjoining region. Finally, for the
purpose of amplitude amplification of the compensatory waves, we consider the

mixing of two incident waves.
4.2 Governing Equations

In this section, the governing equations of plane harmonic waves propagating
in nonlinear elastic solids are presented. It is well-known that nonlinearities due to
material behavior and due to large deformation both give rise to the generation of
higher harmonics by primary waves. When micro damage has developed, the
additional material nonlinearity may be much higher than the nonlinearity of the
basic material (Nagy, 1998; Zhang et al., 2016). For small-amplitude disturbances,
the geometrical nonlinearity is then negligible and only the material nonlinearity is
considered to give rise to higher harmonics. In this chapter, the one-dimensional
propagation of waves in a material with up to cubic material nonlinearity is
investigated. Relative to a rectangular coordinate system { x, y} the displacements
in these two directions are labeled u and v. The longitudinal and transverse waves

propagating in the x-direction are, respectively, represented by

u=u(x,t), v=v(x,t) 4.1
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Expressions for the nonlinear stresses are given in the Appendix 4A.

2 3
z’xy:,u@+(é+ BJa—u@+(§E+F+ZGj(a—uj @+G(@j (4.2)
ox \ 2 ox ox \2 oX ) OX OX

and

ou 8u2 A B 8v2
(a2 s (ar3Brc) M) L[ 2L B
T = (A+2p) 2 +(A+3B+ )[axj +(4+2)[axj

3 2
+(4F +4H +4E + 4G) a + §E+F+2G ufv
OX 2 OX \ OX

(4.3)

where A and g are Lamé constants, A, B, and C are third order elastic constants,

and E, F, G and H are fourth order elastic constants (Lissenden et al., 2014). It can
be easily checked from Eqgs. (4.2) and (4.3) that the nonlinear parts of the stresses
are totally determined by higher order elastic constants, which are independent of
finite deformation. For the problem at hand, the equations of motion are

or o%u

x P @4
or, o’V

8xy BPT (49

Substituting Egs. (4.2) and (4.3) into Egs. (4.4) and (4.5), respectively, we obtain

o%u o°u

ﬁ—(ﬁﬁ&u)y:ﬁ (4.6)
ov  o%v
LS =F 4.7
atz luaxz T ( )

where F_and K can be considered as body forces given by

2 2 A2
F =2(A+38+C) M 20U 3R +am +4E +46) | 2
OX OX OX

(4.8)
2 2 2 2
4 2 )0OX oOX 2 ox“ \ OX OX OX OX
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If the terms of cubic nonlinearity are neglected, Egs. (4.6) and (4.7) can be reduced

(4.9)

to the equations governing primary waves and second harmonics (Chen et al., 2014).
However, cubic nonlinearity gives rise to higher order harmonics that are of interest.
In addition, some materials only show material behavior of cubic nonlinearity, when
the quadratic material nonlinearity is negligible (Liu et al., 2013; Chillara and
Lissenden, 2016).

The perturbation method can be used to obtain solutions of the nonlinear
equations (4.6) and (4.7).

u=u®+u® +u®+... (4.10)
v=v? +v® 4yv@ 4. (4.11)
Here, it is assumed that
u® v o O(°)
u® y@® (OO (u“” )2 1(\,(0) )2 o« O(e) (4.12)

3 3
U(Z),V(z),(u(o)) ,(V(O)) ,U(l)V(O),U(l)U(O),V(l)V(O),V(l)U(O) ocO(gz)

where ¢ is a small quantity. Substituting Eqgs. (4.10) and (4.11) into Egs. (4.6) and
(4.7), we can split the nonlinear governing equations into three sets of linear

equations at three different orders of ¢.
At °, we have equations for the zero order displacements.

OX?

RTINS

=0 (4.13)

OO O
P H =0 (4.14)
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At &', we have equations for the first order displacements.

o*u® o°u®
p——(A+2u) =7 =F7 (4.15)
oA v
P e TH L =FY (4.16)
where
0) ~2,(0) 0) A2,,(0)
FO =2(A+3B+C) MU Hf A BV OV (4.17)
OX OX 4 2) Ox oOX
2,.(0) (0) (0) ~2,,(0)
,:Tm:(_AJrBj QU N MOV (4.18)
2 oX~  OX OX OX
At &*, we have equations for the second order displacements.
o’u® o’u®
P —(A+2 )—ax2 =F® (4.19)
oV v
T TH =F® (4.20)
where
F(Z) =2(A+3B+C) au(l) aZu(O) +8u(0) aZu(l)
- ox ox2 ox ox’
A B av® ov? v ot
+2| —+— +
(4 2)( ox ox*  ox ox°
N §E+F+2G 22u® ( ov® 2+25u(0) v 5@ (4.21)
2 ox* | ox ox ox ox°

+3(4F +4H +4E +4G) >
OX OX

au© jz 22u©
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0 A 82u(1) aV(O) aZu(O) av(l) au(l) aZV(O) au(O) 82V(1)
F“=|—=+B > +— + —+ >
2 oX°~ OX 15) GIG) ¢ OX OX OX OX

0) \2 A2,,(0) @ A2, (0 A O
+(§E+F+26j[(au ]a" poUou v ] (4.22)

OX ox? OX Ox* X
5o ov© zazv(m
OX OX?

Equations (4.15), (4.16), (4.19) and (4.20) are inhomogeneous equations governing
forced wave motions. Starting with the primary waves as the driving waves, higher
order equations can be solved one step at the time to obtain higher harmonics. In this

chapter, we consider the harmonics of primary transverse and longitudinal waves.
4.3 Primary transverse wave

For Egs. (4.13) and (4.14), we consider a harmonic solution of the following

form in an unbounded solid

U@ =0, v =V cos[w(t - é)] (4.23)

where V is the amplitude of the transverse wave and ¢, =\/u/p is the shear wave

velocity. Equation (4.23) shows that initially there is only a primary transverse wave
propagating in the solid. Substituting Eqg. (4.23) into Egs. (4.17) and (4.18), we
obtain

A @° . X
FO = —(E + BJEV 2sin[2e(t - E)] (4.24)

FP =0 (4.25)

By substituting Egs. (4.24) and (4.25) into Egs. (4.15) and (4.16), we can obtain the

solutions to the first order governing equations as

u‘l):—(§+8)/11 Sﬁvzsin[zw(t—i)], v® =0 (4.26)
+ 4 8¢, Cr
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Equation (4.26) shows that the primary transverse wave generates a second
longitudinal harmonic, which propagates with the velocity of shear waves, because
the driving body force contains the transverse wave term from the primary
transverse wave, see Eq. (4.24).

Substituting Egs. (4.23) and (4.26) into Egs. (4.21) and (4.22) results in

F?=0 (4.27)

@ LA B 13619 e cogut- X
F _L(ZJFB) G c;‘V cos[a(t )]

A 2
( “2‘) (4.28)
3 1( A 1 DA X

Substituting Egs. (4.27) and (4.28) into Egs. (4.19) and (4.20), we obtain the

solutions to the governing equations at second order as

u® =0 (4.29)

2
vo-_1 l(é+8j _t 36 23V3xsina) .
2| 4\ 2 u(A+p) 2p|c G
2 3
1 §_3(5+ Bj 1 %stsinBa) -
6|21 2\ 2 u(A+p)|c Cr

From Egs. (4.29) and (4.30), it is noted that the cubic nonlinearity gives only

(4.30)

transverse harmonics for the primary transverse waves. The amplitudes of the
harmonics generated by cubic nonlinearity are determined by both the third and
fourth order elastic constants. Furthermore, the amplitudes of the first and third
harmonics are dependent on the square of the third order elastic constants (A and B),
which implies that first and third harmonics are more sensitive than second
harmonics to microstructural changes. The fourth order elastic constants can make a
significant contribution to the transverse harmonics only if their magnitudes are
comparable to the square of the third order elastic constants. Equation (4.30) also
shows that the amplitudes of the first and third transverse harmonics will increase
linearly with the propagation distance, which is an advantage over the second

transverse harmonics, see Eq. (4.26). It should be noted that the contribution to the
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third harmonics from the mutual-interaction between the primary transverse wave
and second longitudinal wave was not included in references (Rénier et al., 2008;
Hamilton et al., 2004).

4.4 Primary longitudinal wave

In this section, we consider a longitudinal wave as the primary wave. The

following solutions to Egs. (4.13) and (4.14) are considered

u® —U cos[m(t - Ci)], vO =0 (4.31)

L

where U is the amplitude of longitudinal wave and c_=./(1+2u)/p is the
longitudinal wave velocity. By substituting Eq. (4.31) into Egs. (4.17) and (4.18),

we have
@ . X
F® =—(A+3B+C)U? —-sin[2m(t ——)] (4.32)
C. C,
F® =0 (4.33)

By virtue of Egs. (4.32) and (4.33), Egs. (4.15) and (4.16) then give the following

second harmonic

u® U 9xcos[2w(t— )], v® =0 (4.34)
c

L

where

yo - A+3B+C o* 1,

4.35
AA+2u) ¢ (4.35)
Substitution of Egs. (4.31) and (4.34) into Egs. (4.21) and (4.22) yields
o’ X o’ X
F® =(+2u) B —U’cos[o(t——)]+ (1 +2u) B, —U* cos[3a(t — —)]
CL CL CL L (4 36)

+(A+ 2y)ﬁ3i’—:u3x(sin[a)(t—Ci)]—3sin[3w(t—ci)]j

L L L
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where

_3(A+3B+C)’ 3(F+H+E+G)

181_ 2 !
4A+2 A+2
(A+24) e @
5 _3(F+H+E+G) 5(A+3B+C)  (A+3B+C)
? (A+2u) dA+2u)? T 2(A+2u)?
F? =0 (4.38)

Equation (4.36) is the expression of the driving term in Eq. (4.19), which can be
regarded as the summation of four different body forces. The higher harmonics have

been calculated below separately for each body force.

For the body force 1, we have

5
FO = (mzy)ﬁsi’—suf*xsin[a)(t—ci)] (4.39)
L L

In view of Eq. (4.39), the solution to Eq. (4.19) is considered to have the following

form

u® =UD%2 cos[e(t - )] +U Pxsin[a(t — )] (4.40)
C C

L L

Substituting Egs. (4.39) and (4.40) into Eq. (4.19), we obtain

_4(A+2 u)uf)xcﬂsin[w(t X

L L

+2(A+2p) (U @ cﬂ -u j cos wfw(t — CL)] (4.41)

L L

=(A+2u)p; Z’—:u *xsin[a(t —Ci)]

L L

Equation (4.40) has to be satisfied for the sine and the cosine terms separately. Thus,

we have

® @’
—A(A+2uUP —=(A+2u) B, —U° (4.42)
c c

L L
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U Cﬂ—ul@ =0 (4.43)

L

Through Egs. (4.42) and (4.43), the amplitudes of the first harmonics in Eg. (4.40)

can be obtained as

4
up =By, g B (440
c, 4 C

In view of Eq. (4.44), Eq. (4.39) can be rewritten as

u® =—&a)—jU3x2 cos[a)(t—i)]—& U xsm[a)(t——)] (4.45)
4 c c c

L L L L

For the body force 2, we have

F® = 3(ﬂ+2,u)ﬂ3 U xsm[3a)(t——)] (4.46)

L L

Substituting Eq. (4.46) into Eq. (4.19), the expressions of third harmonics can be
obtained following the same procedure as for the calculation of Egs. (4.40) and
(4.41).

u(2)=&w_: x2 cos[3a(t — )] bo U xsm[3co(t——)] (4.47)
4 ¢ ¢ 12¢c L

For the body force 3, we have

4
FP =(+2u)p %U *cos[e(t - CL)] (4.48)
L L

The generated harmonic has the following form

u® = ﬁl = U xsm[co(t——)] (4.49)

L L

For the body force 4, we have

F® = (/1+2,u),6’2 u cos[3a)(t——)] (4.50)

L L
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The solution to Eq. (4.19) is obtained as

u® = 1862 = U xsm[3a)(t——)] (4.51)

L L

Summation of Egs. (4.45), (4.47), (4.49) and (4.51) yields the total solution as

2 Ao U3X2[C03[3w(t_c_)] cos[w(t——)]}

4 ct L L

BB B _x
+( > "2 j 3 U xsin[o(t — CL)]+(12 5 J & U3xsin[3a(t L)]

(4.52)

where B, B, and S, are coefficients expressed in terms of elastic constants, which

are defined by Eq. (4.37). For the primary longitudinal wave, the cubic nonlinearity
gives two first and two third longitudinal harmonics. We obtain two quadratically
cumulative harmonics in addition to the linearly cumulative harmonics. When the
propagation distance is large enough, the waves whose amplitudes increase
quadratically with the propagation distance will be dominant. It should be pointed

out that the amplitudes of the dominant waves are independent of the fourth order

elastic constant (i.e. E, F, G and H), see the expression of f, in Eq. (4.37). Making
a comparison between Eq. (4.30) and Eqg. (4.52), it can be concluded that the

transverse primary waves are more suitable than the longitudinal primary waves to
detect the fourth order elastic constants. To the knowledge of authors, not much
research has been devoted to harmonics whose amplitudes increase quadratically
with the propagation distance, which can amplify the amplitudes of the first and
third harmonics quickly. Another advantage over second harmonics is that they are
more sensitive to the changes of third order elastic constants.

4.5 Reflection of second harmonics from an interface

Of practical interest for applications to quantitative non-destructive evaluation
is the case that the region defined by x>0 displays nonlinear material behavior due
to damage of the material. For some cases such a damaged region may not be

directly accessible, and ultrasonic waves for detection of the nonlinear behavior
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have to propagate through the undamaged material and cross the interface between
linear and nonlinear material behavior. The geometry is shown in Fig. 4.1. In this
section, it is shown that the interface at x =0 gives rise to a returning wave motion

which contains important information on the nonlinearity of the adjoining material.

Incident waves u‘® or v©

c
Compensatory waves u‘ Linear half space

Y. v

Compensatory waves u’ v
\ Vi Second harmonics u®

Nonlinear half space

Fig. 4.1 Wave propagation in a linearly elastic half space and a nonlinearly elastic

half space with the same linear material properties
45.1 Incident longitudinal wave

Since the materials on both sides of the interface x =0 display the same linear
behavior, an incident longitudinal wave of the form given by Eq. (4.31) passes
through the interface without interference. However, as soon as it enters the
damaged region x>0, a second harmonic is generated, which is given by Eq. (4.34)

as

u® —U Wxcos[2em(t — Ci)] (4.53)

L

where

o A+3B+C w2U2

C4(A+2u) ¢ (4549

This displacement vanishes at x=0", but 7" has the following value at x =0"
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2
7 =(A+2u)U " cos(2at) —%(A+3B +C) f—zu * cos(2at) (4.55)

L

The static stress term is not considered here. The following identity has been used
1-2sin* @ = cos 20 (4.56)

For stress equilibration at x=0, this stress generates two compensatory second

harmonics which propagate in opposite directions from x=0" and x=0" as

U =U jsin[za)(t—ci)] (4.57)

L

u° =U° sin[2a(t +Ci)] (4.58)

L
Equality of displacement at x=0" and x=0" yields
Uf=U° (4.59)
Dynamic equilibrium of stress at x=0" and x=0" requires

2
U® cos(2amt) - % a)_z %U 2 cos(2mt) —U ¢ 20 cos(2amt)
G At “ (4.60)

=U° Z—a)COS(Za)t)
CL
It should be noted that the stresses higher than second order are omitted. Equations
(4.54), (4.58) and (4.59) yield

ue -y —_Ar3BC 0, (4.61)
16(A+2u) c,

45.2 Incident transverse wave

As an incident transverse wave of the type given by Eq. (4.23) crosses the
interface, it generates a second longitudinal harmonic of the form given by Eq. (4.26)

as
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uo = 1(5+ B)Lﬂvz sin[Za)(t—é)] (4.62)

+ 7 gl2 A+

The displacement and the stress do not vanish at x=0, and % has the following

value at x =07

2
0= %(?Jr Bj(l; 2 _ j%VZ cos(2at) (4.63)
+p

To equate the displacements and stresses at x =0", two compensatory waves are

generated propagating in opposite directions

ue =V° sin[zm(t—ci)] (4.64)

L

u° =V sin[2a(t + Ci)] (4.65)

L

Equality of displacements at x = 0" yields

—1(5+Bj L O\vesin@aot)+Vesinat) =V sin2at)  (4.66)
8\ 2 A+uc

Dynamic equilibrium of stress at the interface yields

2
%(ng B)[/1 ! 7 12 Jw—zvz cos(2wt) —V?° Z—wCOS(Za)t)
, TH o ATep “ (4.67)
=V° —wCOS(Za)t)
L
Equations (4.64) and (4.65) can be solved for V° and V| as
v°=i(5+ BJ L of _# & 4l (4.68)
161\ 2 A+puc, \ A+2uc;

Ve 1£A+Bj ! “’( H CL+1jv2 (4.69)

“T16\ 2 Jatuc \A+2uc,
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4.5.3 Incidence of two longitudinal waves

To increase the amplitude of the back-propagating compensatory wave, the
incidence of two waves is considered. The combination of two longitudinal waves is
considered as an example. The total displacement of the primary waves can be
written as

u® =U, cos[a,(t —Ci)] +U, cosf, (t -] (4.70)

L L

Substituting Eq. (4.70) into Eq. (4.17) yields the expression for the related body
force as

3 3
Zw—éuf sin[2a (t —i)]+2“’—23u§ sin[2a, (t - )
L L L L

2 2
o - a(mraoc) o 428 oy o |
2c; 2c; C

2 2
o, OO, : X
—| 22— U, sin[(@, - o,) (t-—)]
I (Zcf ZCEJ e O

We select the following body force from Eq. (4.71) for further consideration

2 2
FO =(A+BB+C)[wl—3w2_ e juluzsinuwl—wz)(t—i)] (4.72)
CL

L L

Equation (4.72) generates a resonant wave in the form

1 A+3B+C ow X
u® == 12 U.U.xcos[(w —w, )(t —— 4.73
2 dxou @ b [(@ —o,)( CL)] (4.73)

The displacement vanishes, but the stress has a value at x=0. Therefore, two

compensatory waves are introduced

ut =Ussinf(e, - ,)(t~)] (4.74)

u* =U°sinf(e, - ,)(t+ )] (4.75)
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The equality of displacement at the interface x =0 yields
Uf=U° (4.76)

Continuity of stress at the interface x =0 gives

A+3B+C -
%( T ) a)l?z U,U, cos(w, —w,)t —U° Mcos(a)l —w,)t
e G “ 4.77)
=U° Mcos(a)l —,)t
CL
It follows from Eqgs. (4.76) and (4.77) that
A+3B+C
ue -y =2 ) o0,y (4.78)
4 A+2u c (0 -w,)
If we consider
w, =3w,, O—-w0,=20 (4.79)
U, =U,=U (4.80)
Equation (4.78) then becomes
A+3B+C
UC:U°:§Q2UZ (4.81)

fTTTT8 A+2u

Comparing the expressions for the compensatory waves, the ratio of the amplitudes

given by Egs. (4.61) and (4.81) for the two cases is obtained as

U,| _|U),|_¢ (4.82)
U°),| U,

It is noted that the amplitude of the compensatory wave has been increased six times,
while its frequency remains unchanged, i.e., 2 @ . Compensatory waves can be
generated through any other body force given in Eq. (4.71). Since the procedure is

much similar to the one shown above, specific expressions are not presented here.

In summary, the interface between regions of linear and nonlinear material
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properties generates two additional compensatory waves. The analysis of this

section can be used to measure the third order elastic constants of the nonlinear
region near the interface. The compensatory wave u‘ provides a simple method to

the evaluation of nonlinear region by using higher harmonics.
4.6 Conclusions

In this chapter, we have investigated the generation by primary waves of higher
harmonics due to quadratic and cubic material nonlinearity, related to third and
fourth order elastic constants, respectively, in the stress-strain relation, as well as the
effects of wave incidence on an interface between regions on linear and nonlinear
material behaviors. Due to the quadratic nonlinearity a transverse wave generates a
second longitudinal harmonic, which, however, propagates with the velocity of
transverse waves, as well as resonant transverse first and third harmonics due to the
cubic and quadratic nonlinearities. A longitudinal wave generates a resonant
longitudinal second harmonic as well as first and third harmonics whose amplitudes

increase linearly and quadratically with the distance propagated.

We have also considered the case that a region has quadratic nonlinear material
behavior only on one side of an interface, while it has the same linear terms in the
stress-strain relation on both sides. This case is relevant to a region, a part of which
has suffered from the microstructural damages. The second harmonic in the
nonlinear part generates two compensatory waves at the nonlinear interface. These
waves have twice the frequency of the incident wave, and their amplitudes correlate
with the nonlinear material behavior. Even though a back-propagated compensatory
wave in a linear material is not resonant when compared with the higher harmonics
propagating in nonlinear materials, such waves can still be used for a test technique
to obtain material properties using an appropriate measurement method. To increase
the amplitudes of the back-propagating compensatory waves, the single incident
wave is replaced by two incident waves of different frequencies. The method of this

chapter should be useful to measure the higher order elastic constants.
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Appendix 4A: Cubic nonlinear constitutive relation for small

deformation

The expansion of the energy density up to fourth order was presented in
(Hamilton et al., 2004) as:

pW = %(trE)z + ptrE? +%(trE)3 +B(trE) trE” +§trE3+E (trE)trE? A
+F (WE)" trE2 + G (1rE?) + H (trE)’

where A and x are Lamé coefficients, A, B, and C are third order elastic

coefficients, E, F, G and H are fourth order elastic coefficients, E is the Langrange

strain tensor, the component of which for small deformation can be given by

U,
E, - l(% , _JJ (4A2)
2 da; Oa

where U; and a; define components of displacement and a rectilinear coordinate,

respectively. Thus, the Cauchy stress tensor, which is the same as the first Piola-
Kirchhoff stress tensor, can be given by

7= A(rE)l + 24ET + C(trE)21 + B(rE?)1 + 2B(trE)ET + A(E?)"
+E(trE®)1 +3E(rE)(E?)" + 2F (rE)°E” + 2F(rEY)(rE)I ~ (4A.3)
+4G(rE2)E" +4H (trE)°
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Substituting the expression for the strain into the above equation, we obtain the

relation of stress and displacement. The stress has the following form

oU;
f=1g 4 V1,2
oq, oa, 8a

JA[2U,Y; auau, U 0U, au, v, |, L aY, Y,
4\ oa, oa, Oa oa, aaI oa aai oa, da, oa,

BfoU, oU, oU, ou, ou, aU, au, dU;
+— + 6; +B +
2\ 0a, Oy Oa, Oa, Ja, da; 0Oa Oa

1_(oU,oU, oU oU, oU oU, oU, oU, |[oU, U,
+=E + + + + J;
8 |\ 0a, oa, oa, ca, oOa 0Oa  Oa o0a, )\ 0a  Oa,
3_,0U,0U, oU,oU, oU,dU; oU,adU; oU,

+—E( + + +
4 "oa oca; Oa oca; OJa Oa Oa OJa  da,
F ou, ou, U, dU, ou, ou, +8Um ou, oy,

(—+—=)+F( i
da, Oa, 0a, 0Oa da, oa, 0Oa, Oa =~ 0a

oy, oy, oy, Yy s

- oU,
+G(6Um ouU, +6Um aum)(@u, + &y an ij
da, oa, Oa, O3 '~ da; O oa, 8an oa,

(4A.4)

Here, a repeated index defines a summation. As a choice, we decompose the
expression of stress into the linear and nonlinear parts, which can be written in the

following vector form.

T=T+1+7° (4A.5)

where

=A(V-U)l+u(VU+(VU)T) (4A.6)

1’ = ZA(VU VU] +VU-VU+[VU]" -[VU]" +[VU]" -VU)

+§(vu VU+VU:[VUT ) 1+B(V-U)(VU+[VUT)  (4A7)

+C(V-U)2I
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VU-VU+VU-(VU)
+(VU)" -(VU)+(VU-vU)'

r3=%E (vus(vu) )i

+%E(VU-VU +(vu)T -(vu)+vu-(vu)T +(VU-VU)T)V-U (4A.8)
+F(V-U)’(VU+(VU) |+ F(VU:VU+VU:(VU) )(V-U)I

+G(VU:VU+VU:(VU)' )(VU+(VU)' )+4H (V- U)'I



Chapter 5 Far-field resonant third harmonic surface wave
on a half-space of incompressible material of

cubic nonlinearity

5.1 Introduction

In the present chapter, we consider the waves propagating in a material which
displays incompressibility and cubic nonlinearity. As pointed out by Destrade and
Ogden (2010), incompressibility applies for some soft materials (such as a
biomaterial), but also to some hard materials like fully saturated soils in undrained
condition. We consider cubic nonlinearity because quadratic material nonlinearity
cannot produce second harmonics, as mentioned by Fu and Devenish (1996). It was
pointed out by Zabolotskaya et al. (2007) that, on a half-space of incompressible
material, second surface wave harmonics can only be generated by geometric
nonlinearity. Another reason for cubic nonlinearity is that the stress-strain relation is
symmetric with respect to the unloaded case.

There is limited information on higher harmonic surface wave generation due
to material nonlinearity on a half-space of incompressible material. The main
purpose of the present work is to obtain an analytical solution for higher harmonic
surface waves on a half-space of incompressible material of cubic nonlinearity, in a

simple and elegant manner, which may be easily understood and applicable.

Using the perturbation method, a set of zero-order homogeneous differential
equations and a set of first-order inhomogeneous differential equations are obtained,
which can be uncoupled, based on the assumption that the amplitudes of the primary
waves are much larger than the amplitudes of the generated harmonics. After
solving the differential equations at different orders step by step, a simple analytical
solution for the resonant third harmonic surface wave is obtained in the far field,
whose structure except for the frequency of 3 @ and the dependence of the

amplitude on a multiplication factor X is exactly the same as the structure of the
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primary surface wave of frequency @ . It is shown that the velocity of the resonant
third harmonic wave is the classic Rayleigh wave velocity, and the amplitude
depends on the nonlinear material constant (i.e. the fourth order elastic constant G)

and increases linearly with the propagation distance.

As an application, we consider the transmission of the third harmonic surface
wave through an interface between quarter-spaces of nonlinear and linear material.
The interface is located at x =L, where L is assumed to be large. The harmonic
surface wave which is transmitted into the linear material is obtained using the

continuity conditions of stress and displacement at the interface.
5.2 Constitutive relations for nonlinear material behavior

The expansion of the energy density up to fourth order has been presented in

the Appendix in Chapter 4, which is given by

/1 2 2 C 3 2 A 3 3
=—(trE trE° + —(trE B(trE)trE* + —trE°+E (trE)trE
o 2(r)+,ur +3(r)+(r)r +3r (trE)tr 6.

+F (trE) trE? + G (rE?) + H (WE)*,

where A and x are the Laméelastic constants, A, B, and C are third order elastic

constants, E, F, G and H are fourth order elastic constants ,and the Langrangian

strain tensor is given by

1/
E:E(F F-1) (5.2)

where F is the deformation gradient. For small strains the components of the strain

tensor simplify to

. au, ~ou,
Eij :i %4__]_’_%% zi %4__] (53)
2( 0x;  Ox  Ox OX, 2{ ox; O

In Eq. (5.3) u; and X; define the components of the displacement and a Cartesian

coordinate system, respectively.

In the present chapter we consider small deformations. Since the geometrical
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nonlinearity is negligible for small deformation, the micro-damage correlates only
with the higher order elastic constants of the material nonlinearity. This correlation
can be determined by investigating the higher harmonics generated by material

nonlinearity.

The propagation of surface waves on a half-space of an isotropic
incompressible material was considered by Destrade (2001), Destrade et al. (2002),
Ogden and Vinh (2004) and Zabolotskaya et al. (2007). For an incompressible

material, the following condition has to be satisfied.

ou,

trE=—2=0 54
o (5.4)
Substituting Eq. (5.4) into Eq. (5.1) yields
2 AL 3 2\?
PW = utrE +§trE +G(trE?) (5.5)

Equation (5.5), which is the energy density expanded to fourth order for isotropic
incompressible materials, was also employed by Destrade and Ogden (2010) and

Hamilton et al. (2004). The expression for the stress tensor can be represented by

r=p0F-aa—Vl\E/-FT—pl (5.6)

where p is the pressure, which is introduced to accommodate the internal constraint
of incompressibility (Destrade and Ogden, 2010). It should be noted that the
incompressibility condition is not only justified for certain kinds of soft materials
(such as biomaterials) but also for some hard materials (like fully saturated soils in
undrained condition) (Destrade and Ogden, 2010).

Substitution of Eq. (5.5) into Eq. (5.6) gives the stress-strain relation as
T=—pl+2uE" + A(E*)" +4G(trE?)E’ (5.7)

Hence the stress components are defined by
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(ﬁuj au.] A(&ui ou; ou, ou, Ou; ou, au, 8u,]
po +u| —L+— |+~ L L+ L L]

% Ox; | 40X OX OX OX; OX OX 0% OX; (5.9)

au,, ou 6u ou au; |
G(—*—* m)( =)
X, OX, axk X, axi

As usual repeated subscripts denote a summation.

5.3 Equations of motion of a surface wave

A\

Surface wave

Fig. 5.1 Surface wave on a half-space

Surface waves, whose amplitudes decay exponentially with distance from the
surface, are confined to a region near the surface. We investigate surface waves in a
two-dimensional plane strain setting of plane waves propagating in the x-direction,

see Fig. 5.1. The displacement components are
u=u(x,zt), w=w(x,zt) (5.9)
The incompressibility condition, Eq. (5.4), can be written as

% +é—a2/ =0 (5.10)

It has been noted that quadratic material nonlinearity (third order elastic
constants) does not generate a second harmonic of surface wave propagation in an
incompressible material (Fu and Devenish, 1996; Zabolotskaya et al., 2007). This
has also been shown analytically in unpublished related work by the authors. In the

present chapter, we consider cubic material nonlinearity, which produces first and



Chapter 5 Far-field resonant third harmonic surface wave on a half-space 113

third harmonics. Second harmonics generated by quadratic nonlinearity have
received much more attention than third harmonics caused by cubic nonlinearity.
However, cubic nonlinearity of the constitutive relations is required for materials

with symmetric tension-compression behavior, see Fig. 1.7.

For cubic material nonlinearity (fourth order elastic constant), the use of Egs.
(5.9) and (5.10) in Eq. (5.8) yields

NL.
XX !

NL.
7z

ou ow
T, =—P+2u—+7,; 7, =—p+2u—+7
OX oz

ou ow NL
=4 —+— |+ 5.11
TXZ ILI( az axj z—XZ ( )

where the nonlinear parts are given by

2
P 0
0z OX OX 07 | OX

g (a_uﬂjz_ﬁ_@ (@ﬂ)
X 0z OX ox 0z |\ oz  ox

It is noted that only one nonlinear material constant, G , appears in Egs. (5.12).

(5.12)

5.4 Surface wave propagation
The stress equations of motion for plane strain are given by

or, Ot ou_ or, or o’w

XX XZ — : XZ y24 — 513
x a Pt x a P 6.13)
Substitution of Eq. (5.11) into Eq. (5.13) yields
_6_p+ Vu - @—F' —@+ VW — aZ—W—F (5.14)
ox TP T T T e T |

where Laplace’s operator is defined by V = 6?/dx? +?/6z% , and the right-hand side

nonlinear terms are defined by
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NL NL NL NL
F,(u,w) = 9% 0% , F.(u,w)= 9% + O (5.15)
OX 0z OX 0z

The surface (z=0) is free of tractions, hence the boundary conditions can be

written as
z=0: 7, =—p+2yg—W+TZNZL =0,
Z

T, =y(6—u+@j+r:} =0
0z OX

(5.16)

Since the nonlinear terms appearing in the governing equations are assumed to
be small, the material nonlinearity can be treated as a weak perturbation. The
perturbation method is therefore adopted to solve the boundary-value problem for
nonlinear material behavior, and the pressure and the displacement components are

expanded as

p= p(°)+ p(l)+...-
u=u® +u®+...; (5.17)

w=w? +w® ...

©

where |-|(1) is sufficiently smaller than . Substituting Eq. (5.17) into the

governing equations, Egs. (5.10) and (5.14), and the boundary condition, Eq. (5.16),
yields the zero-order governing equations as:

0 (0)
U= W g (5.18)
15)4 0z
apw) © 2,,(0)
-+ VU —p—=0 5.19
o TH P (5.19)
ap(o) 0 82 (0)
-t v - =0, 5.20
o7 T P (5.20)
and the zero-order boundary condition as:
(0)
2=0: 7, =—p9+2u =0 (5.21)

“ 0z
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(0) (0)
r =y[a"" LA ):o (5.22)

The first-order governing equations are obtained as:

@ ®
LT LW (5.23)
OX 0z
@) 2y®
op® o*w®
_%+ VW — pat—wz —FO (5.25)

where F® =F u® w®) and E® =F,u®,w®) . The first-order boundary

conditions are

@ (0) 02
2=0: rz‘?:—p(l’+2yaw _ge M [T g (5.26)
0z OX 0z
@ @
7=y | M W (5.27)
0z OX

It should be noted that Egs. (5.26) and (5.27) have been simplified by the use of Eq.
(5.22).

We first solve the zero-order equations which govern linear surface wave
propagation. Taking the derivative with respect to x of Eq. (5.19) and the derivative

with respect to z of Eq. (5.20), and summing the resulting two equations yields the

following uncoupled equation for p©.

3*p®  2p©@
2 + 2
OX 0z

=0, (5.28)

where the incompressibility condition, Eg. (5.18), has been used.

The displacement and pressure variables for the linear surface wave

propagation are taken as
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P = uP® (2) cos(kx - at); u® =U®(2)sin(kx - at);

5.29
w® =W ©(z) cos(kx — wt) (5.29)
Substituting Eq. (5.29) into Eq. (5.28) yields
d?p@
——k?P@ =0 5.30
dz’ (5:30)
The solution to Eq. (5.30) is
PO = Ae™ (5.31)

where A is a constant. Substituting Eqgs. (5.29) and (5.31) into Egs. (5.19) and
(5.20), we obtain

_ 1 —
UQ(z)=Be ™ -— Ae ™ 5.32
(2) e (5.32)
and
_ 1 —
WO (z)=Ce™ - — Ae ™, 5.33
(2) ke (5.33)

where B and C are unknown constants, and
b=k(1-¢)", c==, ¢ =f, ¢ =c*/e? (5.34)

Substituting Egs. (5.29,) and (5.29;) together with Egs. (5.32) and (5.33) into the
incompressibility condition, Eq. (5.18), yields

B==-C (5.35)

x|

By virtue of Egs. (5.29), (5.31)-(5.33) and (5.35), the boundary conditions, given by
Egs. (5.21) and (5.22), can be written as

(1—§jﬂ+ 2k(1-¢)"“C =0 (5.36)
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?K—k(Z—g)C—:O (5.37)

The secular equation is obtained by setting the determinant of the coefficient matrix
of Egs. (5.36) and (5.37) equal to zero, which yields

(2-¢) -4(1-¢)" =0 (5.38)
Equation (5.38) was obtained by Rayleigh by considering the Ilimit of
incompressibility (A1 — oo) of the classic equation for the velocity of surface waves
for an isotropic linear elastic material. Using Egs. (5.35)-(5.37), the zero-order

pressure and displacement solutions (the primary wave) can be represented by

p® = uAe™ cos(kx — at) (5.39)
(0) 1 —bz 1 -kz | A o
u® ==| pe™ —=e™ | Asin(kx— wt) (5.40)
k g
1(k 1 =
O -2 2pe™ _Ze™ | Acos(kx — wt 5.41
w k(bnle ge j cos(kx — at) (5.41)
where
2-¢ b2
n, = - (5.42)
b2 k-9

By virtue of Egs. (5.12), (5.15), (5.40) and (5.41), the nonlinear terms in Egs. (5.24)
and (5.25) can be represented by

FO = [6k772e’3bZ +4k (774e_(2b+k)Z + 1,8 72 )} GA®’sin3(kx—at)

S [ B (43)
+2k {7y7e‘3bZ — e P e R ?e‘m } GA®sin(kx — wt)
FO = [—Gknae‘3bz + Ak (17, 207 g (B0 )} GA® cos3(kx —at )
(5.44)

12k {nloe-gbz 4 nllef(zmk)z n nlzef(zkm)z + z_ie-akz }GA‘? COS(kX _ a)t)
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where

1b 1 b 1 1
=== = —m-= |- 5.45
'72 (’71 ;k]["l sz L [k" cj(" cJ (545

Since the dimensionless coefficients 7, —7,, will not be used in the sequel, their

expressions are omitted here. Only the terms containing e, which in combination
with the trigonometric functions generate the resonant harmonic wave with
frequency 3w, are retained in Egs. (5.43) and (5.44). Resonant waves increase in
amplitude when they propagate and they become dominant at a sufficiently long
distance. Since they have a different frequency from the primary wave, the resonant
waves can be effectively isolated. It should be pointed out that the term containing
e ¥ can be left out because it does not generate of a resonant wave in combination

with a trigonometric function of frequency .

Thus, the following nonlinear terms are taken into account

FO U@, w®) = 6k,GA% % sin 3(kx — ot ) (5.46)
FO U@, w®) = —6kn,GA% ™ cos3(kx — wt) (5.47)

By differentiating Eqgs. (5.24) and (5.25) with respect to x and z, respectively, we

obtain
2 (1) 2D
9 P +;N£u(l)—pia%:£|:u“),
OX OX oX ot OX (5.48)
_82 p(l) +luvgw(1) _pg aZW(l) ZQF(l)
0z° 0z oz ot* oz "

In view of Eqgs. (5.23), (5.46) and (5.47), the summation of the above two equations
yields
82 p(l) 62 p(l)

+ =—
OX? 0z°

18k? (772 +En3jGK3e‘3bz cos3(kx—at) (5.49)

The full solution to the inhomogeneous differential equation Eq. (5.49) is in the

form of
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p® = p¥ + p¥ (5.50)

g

where p;” represents a solution of the homogenous equation and ps‘” represents the

solution of the inhomogeneous equation. The special solution p® of Eq. (5.49) is

S

obtained as

pl = ?(772 - EijﬂSe‘%z cos3(kx — at) (5.51)

For the homogenous version of Eq. (5.49), we consider a solution of the

following form

p$ = uP® (x)e** sin3(kx — ot ) (5.52)

where Pg“)(x) is a function of X. Inserting Eq. (5.52) into the homogenous form of
Eq. (5.49), it follows that the expression given by Eq. (5.52) can be considered as an
approximate solution, provided

1 2P(1) dp(l)

ke Fd—xgsin3(kx—a)t)+E dj( cos3(kx—wt) |[=0  (5.53)

Hence P (x) must be assumed to be a function which varies slowly with x, which

means that

—7— =0, 1>——2-~0 (5.54)

The physical meaning of Eq. (5.54) is that the variation of the amplitude is very
small within a wavelength. Using Egs. (5.51) and (5.52), Eq. (5.50) can be written

as
p® = uPYe % sin 3(kx—a)t)+§(772 +En3jGﬂ3e‘3bz cos3(kx—at) (5.55)

In view of Egs. (5.46), (5.47) and (5.55), Egs. (5.24) and (5.25) can now be

rewritten as
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vy~ o*u®
atZ
: 1(b G (5:36)
=3KkPVe* cos3(kx —wt ) — 6b—(—772 + ngJ— A’e ™ sin3(kx— ot)
g\k U
vw® -2 oW
atZ
H (5.57)

=—3kPYe* sin 3(kx — wt ) — 6k %(E 1, + 773)2 A’ cos3(kx — wt)
Y7,

The right-hand sides of Egs. (5.56) and (5.57) give rise to a resonant surface

-3bz

harmonic wave due to the combination of the decay term e and the harmonic

terms sin3(kx—wt) and cos3(kx—at). The amplitudes of the resonant surface

harmonics increase with the propagation distance X . So the solutions to Egs. (5.56)

and (5.57) are considered to be in the form

u(l) _ (U(l) (X)ef3kz +U @ Xe73bz )Coss(kx _ C()t) (558)
w®h = (VV @ (x)e 2 +W Dxe )sin 3(kx—at) (5.59)

where U® (x) and W®(x) are functions of x, and U® and W® are constants.

Inserting Eq. (5.58) and (5.59) into Egs. (5.56) and (5.57) and equating the terms on

both sides results in

_ b1l(b G -
U(l) p(l)(x) U(l) [ +7 j_A3’
3k¢ ’ ke k) u

wo -1

kg 4

(5.60)

1(b G+
I A
y7i

Here the assumption defined by Eq. (5.54) has been used. In terms of Eq. (5.60),
Egs. (5.58) and (5.59) can be rewritten as

u® = Ei[gm +773jE A’xe " cos3(kx— at)
3 H (5.61)

1
+—PY(x)e cos3(kx — mt
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w® = —1(9772 +773J9 A’xe " sin3(kx — wt)
¢k H

. (5.62)
———P®(x)e**sin3(kx—at)
ke

The unknown quantity P® can be determined from the first-order boundary

conditions, Egs. (5.26) and (5.27).

Substitution of the pressure, Eq. (5.55), and the displacement expressions, Egs.
(5.61) and (5.62), into the expressions for the stresses defined by Egs. (5.26) and

(5.27), and leaving out the terms whose amplitudes are independent of X, yields

0 = P(% _1J PWe e 4 Gb%(gnz + 773]6,5\3xe‘3bz }sin 3(kx—amt) (5.63)

7 = {—#? S —3%(2—4 ) (b, + kns)Gﬂsxegbz}COQ(kX—wt) (5.64)

Equations (5.63) and (5.64) are valid approximately when the surface waves have

propagated a sufficiently large distance. The stress free conditions on the surface

z =0 imply that
Fretfun o
2 2-C (b G~
—E Pg(l) =3k —é’g (Eﬂz +773j; A3X (566)

Equations (5.65) and (5.66) both give solutions for the unknown quantity P\ The

solution to Eq. (5.65) is

6b (b G -
pw :__[_ + j_A3x 5.67
[¢] 2_4/ k772 ’73 lu ( )

while the solution to Eq. (5.66) is

3 b G~
Py =——k(2—§)(gnz+m];A3X (5.68)
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Since these two solutions should be the same, we have

6b (b G - 3 b G -
e a2 A3 =2k (2= =1+ | = A3x 5.69
2—§(k772 Ugjﬂ 5 ( ()(kﬂz 773]# (5.69)

After some simple manipulation, Eq. (5.69) can be rewritten as

(2-¢) -41-¢ =0 (5.70)

Equation (5.70) is the same as the secular equation (5.38), which implies that the
resonant third harmonic propagates with the classic Rayleigh wave velocity, which
can be obtained from Eq. (5.38) or (5.70) as

£ =0.9126 (5.71)

Based on Egs. (5.67) and (5.71), we check that the assumption defined by Eq.
(5.54) is reasonable for the far-field solution. The first equation is obviously
satisfied in that

2p()
g (5.72)
ox?

The second equation can be rewritten as

dP® _
ozg s _1277948 & <<1 (5.73)

dx u

It may be assumed that the amplitude of the primary surface wave A is a small

quantity. Thus, A® is expected to be very small. It is known that the ratio of the

nonlinear material constant to the linear material constant (i.e. G/x) will not be too

large. So the assumption given by Eq. (5.54) is reasonable.

Since we only consider terms that increase with x, the second term in Eq.
(5.55) can be omitted, and using Eq. (5.67) in the first term, Eq. (5.55) can be

rewritten as

p® = uA (X)e™ sin[3e(t —%)] (5.74)
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where

A (%) =3bn%(gnz+n3j%/?x (5.75)

By combining the two terms in Egs. (5.61) and (5.62) where P is given by Eq.
(5.67) or (5.68), we obtain

yo = i (,713-%2 _ % e 3k j A\, (x) cos[3a(t - %)] (5.76)

w® = 1 (k nefabz _le—Skz

: X
=2 o7 ; jAN(x)sm[Sa)(t—E)] (5.77)

Equation (5.75) is the important term in the amplitude of the resonant third surface
harmonic, since it increases with the propagation distance x, due to the effect of
material nonlinearity. Such a harmonic surface wave may become measurable when

the propagation distance is sufficiently large.

5.5 Transmission through an interface with linear material

(0
u u®
— —>
u” u® u’

Nonlinear material Linear material

Fig. 5.2 Half-space with interface at x =L

As an application, we investigate the transmission of the harmonic, which is
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defined by Egs. (5.74), (5.76) and (5.77), through an interface with linear material,
where the interface is located in the far-field at x = L. Because of its location in the

far-field the quantities which do not contain a multiplicative L are neglected at the

interface. The geometry is shown in Fig. 5.2. The incident wave, u® , is not affected

by the interface, since it propagates in both the linear and the nonlinear material.

In general, the incidence of a wave on an interface will generate both a
reflected and a transmitted wave. For the present case, however, only a transmitted

wave is generated. The transmitted wave is a linear wave of the form

0" = uH e ¥ sin[B(t— = - X5 (5.78)
c ¢

.1 T + L x-L
u'=—|ne’”—-——e H™ cos[3aw(t————— 5.79
3k[n1 ; j Bot-=->=)] (679

P A O S R I L x-L
W =—|—ne’—-——e H" sin[3w(t ————— 5.80
3k(bn1 ; Bot-=-2)] (580

The above expressions for the transmitted wave should satisfy the linear equations
of motion and the boundary conditions at the free surface. By comparing Egs.
(5.78)-(5.80) with Egs. (5.74), (5.76) and (5.77), it is evident that continuity of

pressure and displacements at x = L is satisfied by
H*:AN(L)=3bil(9nz+n3j9A3L (5.81)
m ¢ \k H

The stresses z,, and 7,, corresponding to Egs. (5.74), (5.76) and (5.77) at

X=L" are represented by
—3kz —3bz 1 -3kz : L
T, = ,u{—e + Z(me —Ee H A, (L)sin[3m(t _E)] (5.82)

. ﬂ{i(—sbme*bz 43K %e-skz j —[Eme-sbz —%e*kz H A, (L) cos[3a(t —%)] (5.83)

It should be noted that the terms that are independent of L and have much smaller



Chapter 5 Far-field resonant third harmonic surface wave on a half-space 125

values, have been ignored in Egs. (5.82) and (5.83). The stresses z,, and 7,,

corresponding to Egs. (5.78)-(5.80) at x > L are

T, = y{—e?"‘%zime?’bz ; SkZHAN(L)sun[M(t—E—X—L)] (5.84)

1 1
— | —3bn,e* + 3k —e¢
3K [ i

Xz = H
_ Enle—fsbz _ie—Skz
b ¢

Clearly, at x=L", Egs. (5.84) and (5.85) are the same as Egs. (5.82) and (5.83),

T

A, (L) cos[3a(t - % _ X%L)] (5.85)

respectively. So the continuity of stresses is also satisfied.

The system of the transmitted waves can then be written as

o' = uA, (L)e* sin[3a)(t—%—x%l')] (5.86)
c 1 e _ L o3k L x-L
U= (771 g“ jAN (L) 005[360('[————)] (5.87)
W=t [5 e __e¥ j A, (L)sin[3w(t—— - —)] (5.88)
AU ; |

The exact analysis of the continuity of pressure, stresses and displacements located
at an interface at arbitrary value of x is quite complicated. However, for large X,
the incident harmonic near the interface in the far field is simple, which simplifies

the transmission problem significantly. The transmitted wave has the same form as

the incident harmonic for t > L/c, x> L and the constant A (L) is defined by Eq.

(5.81).
5.6 Concluding comments

For a half-space of isotropic incompressible material of cubic material
nonlinearity, a perturbation method has been used to determine the resonant third

harmonic surface wave, which is generated by the propagation of a linear surface
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wave. For a trigonometric primary surface wave of amplitude A and frequency o,

the frequency of the resonant third harmonic shows a frequency 3 @, and an

amplitude A, which depends on A® and the nonlinear material constant G, and

which increases linearly with the distance of propagation, X. It has been shown that
the resonant surface wave harmonic propagates with the velocity of classic Rayleigh
waves of the corresponding linear material. Measurement of the third harmonic can

provide information on G .

As an application, we have investigated the transmission of an incident
resonant third harmonic surface wave by an interface located at x =L between
regions of nonlinear and linear behavior. The required continuity of pressure,
stresses and displacements shows that no reflected surface wave is generated, only a
transmitted surface wave. The transmitted surface wave, which is of the same

general form as the incident harmonic surface wave propagates with a constant
amplitude defined by A, (x) at x=L, and a phase which for t > L/c is centered at
x=L. The linear dependence of the amplitude on both L and G suggest that

measurement of the transmitted surface wave can be used to determine these

quantities.



Chapter 6 Analysis of Harmonics Propagating in Pipes of
Quadratic Material Nonlinearity using Shell

Theory

6.1 Introduction

Higher harmonics in non-dispersive media have attracted wide attention,
including experimental, numerical and analytical investigations (Gol’dberg, 1961;
Bender et al., 2013; Matlack et al. 2015; Chen et al.; 2014), which have also been
investigated in Chapters 4 and 5. However, there are few investigations of higher
guided harmonics in dispersive structures like pipes and rods. Due to the dispersion
of guided waves, which will lead to frequency dependent phase velocities and multi-
modes, the analysis of harmonics in wave guides becomes quite complex. Recent
investigations about the generation of higher guided harmonics have been made by
Deng (1998, 1999), Pau and Scalea (2015) and de Lima and Hamilton (2003) by
using the method of normal mode expansion. De Lima and Hamilton (2005) adopted
perturbation and modal analysis together with numerical simulation to calculate the
second harmonics propagating in cylindrical rods and shells. Liu et al. (2014a,
2014b) proposed a generalized method and used a numerical approach to analyze
the cumulative nature and the physical interpretation of the generation of higher
harmonics in hollow circular cylinders.

Since rods and pipes are widely used in structures such as pipelines, it is highly
desirable to increase our understanding of nonlinear waves propagating in
cylindrical wave guides on the basis of a theory that allows relevant analytical
solutions (Morsbd and Sorokin, 2015). In this chapter, we present an analytical
investigation of higher harmonics in pipes based on shell theory with quadratic
nonlinear material behavior. An analytical approach based on shell theory provides
physical insight in the deformation modes. Whereas exact three dimensional theory
has to be dealt with numerically, shell theory yields analytical solutions.
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The work presented in this chapter consists of three parts: the derivation of
nonlinear equations of axisymmetric material behavior of a shell, the mixing of
axisymmetric longitudinal and torsional waves, and the self-interaction of
axisymmetric longitudinal waves. To verify the accuracy of the present linear
version of the shell theory, the dispersion curves of longitudinal waves have been
compared with the corresponding curves obtained from thick shell theory and three
dimensional theory. For axisymmetric longitudinal wave propagation in pipes, the
dispersion curves agree very well with the curves for the exact theory. For
axisymmetric torsional waves, we only take the lowest torsional wave mode,
derived directly from the three dimensional theory, into consideration. It is shown
that for mixing of longitudinal and torsional waves, no resonant longitudinal waves
with sum or difference frequency exist. Using the perturbation method, analytical
expressions for the resonant torsional waves have next been obtained. The resonant
torsional waves with difference frequencies propagate in the opposite direction of
the primary waves, which may have potential application to the inspection of pipes.

For the self-interaction of longitudinal waves in pipes, we have employed a
more simplified shell theory for thin-walled pipes. A nonlinear displacement
equation of motion with uncoupled linear part was obtained, which is used to obtain
analytical expressions of cumulative second longitudinal harmonics. Since
longitudinal waves according to this theory are dispersive, the phase velocities are
frequency dependent. The phase-match conditions have been obtained, which,
together with the dispersion relations, have been used to determine the phase-match
points. At the phase-match points, the phase velocity of the second harmonic is the

same as the corresponding phase velocity of the primary wave.

6.2 Basic equations of axisymmetric motion in a pipe derived from

nonlinear shell theory

Consider a pipe of thickness h and radius of the middle surface R, see Fig. 6.1,
where r is the distance from the middle surface, thus ¥ = R+r is the radial position
of any particle in the pipe. In this paper, axisymmetric wave propagation in the pipe

will be investigated. The displacements for the shell theory are taken in the form:
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o =u(x,t), V:%v(x,t)F, W =W(X,t)+rg(x,t), (6.1)

where u and w are the displacement components in the middle surface, in the radial

and axial direction, respectively, and ¢ is the slope of the axial displacement in the
Xx—r plane. The forms of @ and w in Eq. (6.1) can also be found in Herrmann and
Mirsky (1956). The expression of the circumferential displacement v in Eq. (6.1) is

chosen to represent the lowest torsional mode, see Wang and Achenbach (2016).

=

\ Nonlinear material behavior

Fig. 6.1 An elastic pipe

The simple form of the radial displacement given by Eq. (6.1;) has advantages,
but it also poses a problem in that it yields a zero radial strain, ¢, =ou/or =0. As

proposed by Herrmann and Mirsky (1956), a much better assumption is that the
linear radial stress is zero through the thickness of the shell, i.e.

T- = (6.2)

This equation yields

-2 63
where v is Poison’s ratio. Here the linear stress-displacement relation (Achenbach,
1999, page 74) has been used. In this paper, we use Eq. (6.3), except when the
thickness behavior of the shell is irrelevant, when we use Eqg. (6.1;). Substituting Eq.
(6.3) into the general linear axisymmetric stress-displacement relations, the resulting

linear parts of stresses are
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(6.4)

where 1 =[(1-2v)/(1-V)]A, and A and , are Lamé’s elastic constants. The
superscripts “L” and “NL” denote the linear and nonlinear parts of the stresses,
respectively. The nonlinear parts of stresses are caused by the nonlinear material
behavior, which is given by Egs. (Al1)-(A6) in Appendix 6A. Employing Eq. (6.3)
into the nonlinear stress-displacement relations, the nonlinear parts of the stresses

can be written as

(B—ﬂ,a,} gl W (‘Mﬁ“j (6.5)
1-v r 1-v ox [\.or ox
) _ 2 _\2
NL u U@W 1 avj
- ) i Z 4= 6.6
Tw =St (8xj 2 ( j (6x (6.6)
L oW av2
_ uow . u- o _ oW 6.7
B ﬂl(ax) ﬂzr 6x { +8r axj} 6.7)
NL av
1 N 6.8
=% (ax ja ©8)
rny_(A L BJ(:+ Ja" (6.9)
2 1-v r Ox)ox
where
- _ 2
PO oY L LT W W - - s WA S
(1-v) (1-v) v 10
1-2v + 212 2v A 1 .
—— = "~ (B+C)-—C, 4,=—+>B
% (1_V) (B+ )1 v Y

Here, A, B and C are the third-order elastic coefficients, and the relation
V/T -V, =0, which follows from Eq. (6.12), has been used.
Since we only take axisymmetric motion into consideration, the differential

equations of motion are given by
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62-rr az-rx T —Too aZU
+ =
or X T ot?
0r,, Oty 21, oV
a xR (6.11)
or or T O*W

Al SAT . J,
or ox T Ot?

where p is the material density. To obtain the equations of motion for the shell, we

multiply the three equations in Eq. (6.11) by ¥ on each side, and then integrate the
equations at both sides through the thickness of the shell. We obtain

ON,, N, o’u

x R "o (6.12)
N w  ph’ &%
x o TR (6.13)
N, N, 1 he o
Mo Neo L pp[10 |9V 6.14
x R 27 [ 12R? ) ot? (©.14)

We also multiply the third equation in Eqg. (6.11) by rr, and integrate over the

thickness of the shell to obtain

3 3
M, _\ _phiO ph ow (6.15)
OX 12 ot 12R ot
where
h/2 h/2
NHB = J- (79€+T&9 - J‘ xx T ( Ejdr’
—h/2 ~h/2
h/2 r h/2 r
N, = I(Tr';+z'r’:")(1+—]dl’, M, = I (TXLX+TX“LL)r(1+—]dF. (6.16)
—h/2 R —-h/2 R
h/2 h/2 r
N, = J- (rr"€+r r, N, = J Ty +Th ( +—Jdl’
—h/2 ~h/2 R

Equations (6.12)-(6.15) are the equations governing axisymmetric motion of the
shell. The justification for these multiplications to obtain these equations stems from
energy considerations (Herrmann and Mirsky, 1956). By the use of Egs. (6.4)-(6.9),
Eqg. (6.16) can be written as

=(Z+2y)ﬁu+1h%+|\|y; (6.17)

_ ow  h op "
N, = (1 +2u) h Y+ Th Ny 6.18
o =2 “){ ox 12R6x] R+ (©.18)
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> h® (ow  _o¢ NL
M, =(L+2y)—| —+R—|+M 6.19
= u)m(ax axj x (6.19)
ou NL
N, =xuh(—+¢)+ N, (6.20)
OX
1 ov h?
N ==—u—Rh|1+—— [+ N 6.21
ox zluax ( +12R2J+ ox ( )
N,, = N,N; (6.22)
where
1+h/2 - h
=In———, h=— 6.23
P 1-h/2 R ( )

Here « is the shear coefficient, which is introduced to modify the shear stress of the
shell or plate theory. The motivation is to make the velocity of very short waves in
the lowest mode coincide with the corresponding velocity of the three dimensional
theory. Here « is taken as 0.86 when the Poisson’s ratio v is 0.3 (Herrmann and

Mirsky, 1956). The nonlinear parts of the resultant forces can be expressed as

h/2 h/2 r hi2 ;
Ny = J rydr, N = '[ r;“XL(l+—jdr, N = J TSL[1+—)dr,
—hi2 “h/2 R b2 R (6.24

h/2 r h/2 h/2 r
M= | ﬂﬁ[uajdr, N, = [ zhdr, N, = | ﬂ;(uﬂm

—h/2 —-h/2 —h/2
where the nonlinear stresses are given by Egs. (6.5)-(6.9).
Substitution of Egs. (6.17)-(6.22) into Egs. (6.12)-(6.15) yields the following

displacement equations of motion.

o’u op, - u ——ow o°u o
ah(CY Y (T2 8L - T M on %Y CEruvw
uh(7+=) ( ﬂ)ﬂR & PNz = Fl ]
——ou - o*w o'w - h® 0°¢p ph® 0% o
Ah—+(A+20)h—-ph—+ (1 +2 - =F[u,v,w

o TA TS e mph A2 e e TR e - el W
- h® o°w ou ph®o’w  — h® 6’6 ph® 0%¢
T2 O (M) P OW T2yt 0 PN OO ey
A2 R NG ) Hrae T2 e e -
1 h? \oiv 1 h? \o%v
2 Rh|1+ 9V _ L Rh1+ 9V _E[uV.W
2" ( 12R2j6x2 2" [ 12R2j8t2 o[, W]

(6.25)
where

h/2 NL NL
Fluvw= [ {’ﬁ——arm (1+Lﬂdr (6.26)
JIR R

)

v, w]
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h/2 GTNL r
Fz[u,V,W]=—_[ . (1+—jdr (6.27)
by OX R
h/2 NL
Fluv,w]= | L (1+Ljdr (6.28)
o OX R
h/2 NL NL
Fu,v, @] =- | %(uLjﬂ—@ dr (6.29)
ol OX R R

Equations (6.26)-(6.29) define the nonlinear parts of Eqgs. (6.25). If they are omitted,
Egs. (6.25) reduce to the linear equations governing the propagation of
axisymmetric waves in a pipe.
Since Egs. (6.25) are a set of nonlinear equations, the perturbation method is
used to determine the effects of nonlinearity. Thus, we consider
u=u®+u®, w=w +w®, v=v® +y® (6.30)

2

and oc

where it is assumed that |.|(°)

(1) H H (13 2
lo| ‘ are satisfied, where “e

o]

denotes u, v and w. Based on these order of magnitude considerations, we can
obtain zero-order and first-order linear governing equations. The zero-order
equations are the ones presented in Eqgs. (6.25) if the right-side terms are omitted.

The first-order equations are given by

62u(1) o (@) _ u(l) _ aW(l) aZU(l) _ _
Kuh( PV + gx )—(ﬂ—i—Z,u)ﬂ?—ﬂh > — ph e =Fu®,v® &"]
——du [h) _ 82W(1) azw(l)
Ah +(A+2u)h - ph
ox TG rah e
_ h3 aZ (1) h3 82 (1) _ _
HAr 2R afz 1o a?z = Rl 7 W]
_ he o ou® ph?® 52w
A+2 — kuh(——+ ¢ - Z—
Ar2u) e o NG ) "R o
_ 3 A2, 3 A2 40
+(/1+21u)h_8¢ _ph” ¢ = F[u®, 7O, 7]

12 0Ox? 12 ot?

2,,(1) 2,,(1)
l LRh 0 v2 1 0 v2
2 OX 2 ot

(6.31)
Here, it has been assumed that terms of orders h?/R? <<1 can be omitted.

The solutions to the zero-order equations are taken in the forms:
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o . d ot io )
u(o) :Uel(wt kx)’ W(O) :Wel( t kx)’¢(0) :Eel( t kX)’V<0> =De Cr (6.32)

where ¢, =./u/p is the shear wave velocity, o is the circular frequency and K is

the wave number. Equations (6.25) show that, for the axisymmetric case, linear
longitudinal waves are uncoupled from linear torsional waves, as is evident from the
left-side of Eq. (6.254), which is uncoupled from the linear parts of the other three
equations. Substituting Eq. (6.324) into Eq. (6.314) and omitting the right side-term,
the resulting equation governing torsional wave motion is satisfied by

v :%(R+ r)D cos a)(t—é) (6.33)

where D is a constant. Equation (6.33) is the well-known representation of the
lowest torsional mode in a pipe.
The following relations are introduced.

0= (2F (6.34)
2 P

where ¢ = w/k is the phase velocity and A is the wavelength. After substituting the

first three expressions of Eq. (6.32) into the first three zero-order equations, the

equations governing the relation between U, W and ® become

(nzl_v—xl_v— - zﬂﬁju it woik L Ro=o

2 2 4n%s 275 2 275

= 1 1-v
—vhi——U +| —Zn*~1|W =0 6.35
" ons (2 j (6:35)

2 270 2 12 2 4750 12

2
1-v. 1 KU+h(1 v’ -y 1 1}1)20
where n=c/c, and & =h/A are the dimensionless phase velocity and the reciprocal
of dimensionless wavelength. For simplicity, the approximation has been made in
the calculation that the terms containing h®/R in the zero-order equations are

negligible. The validation will be shown by comparison with the exact solution, see
Fig. 6.2. As a consequence, part of the rotary inertia and flexural stiffness are

neglected. For non-dispersive structures, the value of n equates to ¢ _/c, , where

¢, =+/(A+2u)/p is the longitudinal wave velocity.
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The determinant of the coefficient matrix of Eq. (6.35) must vanish, which
yields the dispersion relation (also called the characteristic equation), which relates
the dimensionless phase velocity and the reciprocal of the dimensionless wavelength.

The dispersion curves are shown in Figs. 6.2a and 6.2b for two values of h/R.

3
= = = Thick shell theory
Present theory
2.5 1 ® Three dimensional theory
Second mode
2 - \
'_
L O - 6-9 9 -
7 L5 7Y
c First mode
1 .
0.5 -
0 T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
6 =h/\
(@) h/R=1/10
3
= = = Thick shell theory
2.5 - Present theory
5 . Second ® Three dimensional theory
e \O =
Q Rl T Ty
S 15 - Y
1
c . First mode
0.5 -
0 T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
6 =h/\
(b) h/R=1/4

Fig. 6.2 Comparison of phase velocity versus the reciprocal of wavelength with
the corresponding results obtained from thick shell theory (Mirsky and G. Herrmann,
1958) and three dimensional theory (Herrmann and Mirsky, 1956) for x =0.86 and
v=03
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Figures 6.2a and 6.2b show the comparison of the dispersion curves obtained
from Eq. (6.35) with the ones obtained from three dimensional theory (Herrmann
and Mirsky, 1956) and thick shell theory (Mirsky and G. Herrmann, 1958). When

the ratio of shell thickness to wavelength is small, h/4 <0.4 in this case, which can

be called a lower frequency region, the dispersion curves for the first and second
mode agree very well with the curves obtained from the other two theories. As the
wavelength becomes smaller, the difference becomes larger for the second mode,
while the first mode still remains sufficiently accurate. The results confirm that shell
theory is more suitable in the lower frequency region, where the wall thickness of a
pipe is sufficiently smaller than the wavelength. As shown in Li and Rose (2006), at
higher frequencies (i.e. shorter wavelengths), guided waves in pipes can be treated
as Lamb waves. The separation line between higher and lower frequencies depends
on the ratio of the wall thickness to the diameter. Pipes of the same wall thickness
with larger diameter will have a lower frequency value as the separation line. As
shown in Fig. 6.2b, the present shell theory is still valid for fairly thick pipes. The
dispersion curves show that the curve obtained from the present theory is more
accurate for the first mode than the curve from the thick shell theory. One possible
explanation is that the assumption used in Eq. (6.2) releases the restriction due to the
assumed form of the displacement given by Eq. (6.1;), which increases the stiffness.
However, the discrepancy between three theories is very small for a small ratio of
the thickness to wavelength.

We can express the radial displacement and the angle of rotation of the normal
to the middle surface in terms of the axial displacement of the middle surface. The
relations between the amplitudes can be obtained from Egs. (6.352) and (6.353) as
follows:

U=inW, ®=npW (6.36)
where

2r (1-v ,
=——0|—n"-1
n vh ( 2 j

127 (1-v)xs
h 22%6%(1-v)n’-6(1-v)x—47°5

n,= >Th

It follows that the expressions of u® and ¢ can be written as
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0@ =u® =igw®, ¢ = %w‘o) (6.37)
We then obtain
WO = w® 4 rg® =(1+%772)W‘°) (6.38)

6.3 The mixing of longitudinal and torsional waves

Let us consider the case that a longitudinal wave and a torsional wave are
excited at the same time. As mentioned in the previous section, these two waves will
not interact with each other within the linear theory. However, when nonlinear
material behavior is taken into consideration, resonant waves and higher harmonics
will be generated. In this section, we are interested in investigating mixing primary
longitudinal and torsional waves, to obtain a resonant wave with difference or sum
frequency.

We consider the axial displacement in the middle surface in the form
w® =W cos(et —k,x) (6.39)
The primary longitudinal wave with frequency @, and wave number k; can then be
determined through Egs. (6.37;1) and (6.38) as
u® = Re[imWe““’lt’le)] =-nW sin(mt -k x),

: (6.40)
w® = Re{(1+%772)e"“’““)} =1+ %772 )W cos(at —k,X)
where 7, and 7, are defined by:
2 J(1-v ,
=——0,| —n -1 6.41
U oh 1( 5 1 j (6.41)
12~ 1-v) 9,
M= U-v)es, (6.42)

h 27767 (1-v)2 —6(1—v)x —4z257 "
Here &, =h/4,, with 4, = 2xz/k, being the wavelength of the longitudinal wave, and
n =, /(k,c;). The primary torsional wave with frequency @, and wave number k,

is given by

v© :%D(R+r)cos(a)2t—k2x) (6.43)
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where @, /k, =c; for the lowest torsional wave mode.
It is noted that there are no terms in the expressions (6.26)-(6.28) of F,, F, and
F, containing the coupling of v with u or w, which is evident by the absence of

products of v with u or w in the nonlinear stress-strain relation (6.5)-(6.7). Thus,
we can conclude that the mixing of primary longitudinal waves and torsional waves
will not give rise to nonlinear terms with sum or difference frequency for the first
three equations in Eq. (6.31), which govern the generation of resonant longitudinal
waves. Thus, resonant longitudinal waves with sum or difference frequencies cannot
occur through the mixing of primary longitudinal waves and torsional waves in a
pipe. A similar conclusion that the mixing of primary transverse waves and
longitudinal waves in an unbounded nonlinear media cannot give rise to a resonant

longitudinal wave with difference or sum frequency, was stated in Korneev and

Demcenko (2014). However, a different condition exists for the expression of F,.

Substituting Egs, (6.40) and (6.43) into Eqgs. (6.8), (6.9) and (6.29), we have
F, = % Y WDK* sin(w't —k*x) —%,u‘PZWDk sin(wt—k™x) (6.44)

where 0" = +®, and o =w, —w,, also k™ =k +k, and k™ =k, -k, , and

‘P1=[A+1_2VEJ‘PO—15 hs, (2;@%“72),

2u 1-v u 8u(5,+5,) h (6.45)
p, [ A 1-2vB, 1A hs, (27551771+an
2u 1-v u 8u(o,-0,)L h
where
.
Y, =-no,m, +21° §1h_§2 +Z h65152 (1+2n,) (6.46)

and 5,=h/4, ,and 4, =2x/k, is the wavelength of the torsional wave. It should be

noted that the special condition 6, -6, =0, for which the resonant wave with
difference frequency does not exist, is not considered here. The quantities
Y.(i=0, 1 2), as defined by Egs. (6.45) and (6.46), defines three coefficients for
the specified primary waves. In view of Egs. (6.314) and (6.44), we have

2,,(1) 2,,(1) + -
0 v2 _iza v2 =‘P1WDk sin(w't—k'x)— ¥, WDk
ox~ ¢ ot

sinwt—-kx)  (6.47)
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The resonant waves have to meet the phase-match conditions, which are given by

"

c

a)+

o

:k+

(6.48)

=|k| or

For case one: ‘af/cT‘z‘k“, the longitudinal phase velocity can be expressed

by
C = % =nC, (6.49)

1
Then, the first resonant condition in Eq. (6.48) becomes
@ _Ntl (6.50)
® 20
For this case, we assume n, #1. Thus, the wave solution to Eq. (6.47) will have the
following form
v® =a’sin(w't—k*x)+a xcos(wt—k x) (6.51)

Substituting Eqg. (6.51) into Eq. (6.47), we can get the following equality

2

+2
a’ (m —k* jsin(a)*t —k*x)+ 2k a sin(ot—k x)

(6.52)
oy, WOK Ginort—kx) - %, WP inot—k-x)
The values of amplitudes in Eq. (6.52) can then be calculated as
Y, Dk* w ¥Y,DW
a+ — 1 — a = 2 (653)

(o) h T R

In view of Eq. (6.50), the phase velocities of the generated waves are given by

o 3n+1 o
ch=—=—"% , 0 =—=— 6.54
k+ 3+ nl CT k— CT ( )

The minus phase velocity in Eq. (6.54,) means that the corresponding wave travels
in the opposite direction of the primary waves. Finally, by virtue of Egs. (6.51)-
(6.54), the generated torsional wave can be expressed by

¥ WDk * : _3+n x, ¥Y,DW

. . X
—sin@" (t —)- —XCos® (t+—)
Rh(m+2/c$—k+) 3n,+1c;” 2R h C

1
VO == (R+r
2( )

(6.55)
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which shows that there is no cumulative behavior for the wave with sum frequency.
For the wave with difference frequency the amplitude increases, however, linearly
with the propagation distance. It should be noted that the waves with difference
frequency propagates in the opposite direction of the primary waves. This back-

propagating resonant wave may be useful for nondestructive testing purposes.

Table 6.1 Values of ¥, and ‘¥, calculated from Eq. (6.45) for several

combinations of primary torsional wave modes with the first and second modes of

longitudinal waves

Group &, =h/4 n=e/kec) J,=h/4 Y, VY,
With the first mode of longitudinal waves
1 0.025 1.000 0.05 1.191 1.188
2 0.1 0.383 0.05 9.717 10.101
3 0.2 0.511 0.10 44,355  48.808
4 0.3 0.633 0.15 109.220 124.499

With the second mode of longitudinal waves

5 0.1 1.692 0.05 -4.086  -4.086
6 0.2 1.691 0.10 -16.283 -16.283
7 0.3 1.691 0.15 -36.669 -36.669
For case two: co*/cT‘: k*|, the value of n, must be equal to 1, which is

possible for longitudinal waves propagating in pipes, see Fig. 6.2. The wave solution
has the following form

v® =axcos(wt —k*x)+a xcos(w t—kx) (6.56)
Substituting Eq. (6.56) into Eq. (6.47) and following the analysis procedure (i.e. Egs.
(6.52)-(6.54)) used in case one, the expression of the generated torsional wave for

case two is obtained as

7O = %(R + r)[\leD VFchos o' (t —é) —\I;—ZF?VFVXCOS o (t +é)} (6.57)
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To obtain this kind of resonant waves, the phase velocity of the primary longitudinal
wave ¢, has to be equal to ¢;, which implies that the primary longitudinal wave has
to propagate at a frequency where its velocity equals to the shear wave velocity.

The analytical expressions of resonant waves with sum and difference
frequencies are shown in Egs. (6.55) and (6.57). The coefficients ‘¥, and ‘¥, can be
calculated through Eq. (6.45) for the specific primary longitudinal and torsional
waves.

As examples, we determine the numerical values of ‘¥, and ‘¥, for several
combinations of primary longitudinal and torsional waves, see Table I. The ratio of
thickness to mean radius h/R is taken as 1/10. The material constants are the same
as used in Liu et al. (2013b), i.e.
4=116.2 GPa, 1 =82.7 GPa, A= -325 GPa, B =-310 GPa,C =-800 GPa  (6.58)
The Poison’s ratio v is 0.3 and the shear coefficient « is 0.86.

It is noted that the combination of primary waves in group 1 applies to case two

(i.e. n,=1). The analytical expressions presented in this section are not limited to

the combinations in Table 6.1. They are applicable to any combination of primary

longitudinal and torsional waves, except the case that 6,=06,. It can be noted from

Fig. 6.2 and Table 6.1 that the change of phase velocity is very small for points
lying on the dispersion curve of the second longitudinal mode. This means that the
dispersion effect of the longitudinal wave is weak in these regions. So the group
velocity is very close to the phase velocity and the longitudinal wave is undistorted
in these regions.

6.4 The self-interaction of longitudinal waves in a pipe

In this section, we analyze the self-interaction of axisymmetric longitudinal
waves propagating in a thin-walled pipe. Compared with the equations of motion of
plates in rectangular coordinates, the equations of motion of pipes in cylindrical
coordinates become quite complex and require a numerical approach. Here, we will,
however, investigate the second longitudinal harmonics propagating in thin-walled

pipes using shell theory with nonlinear material behavior. For thin-walled pipes, we
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further simplify the nonlinear governing equations (6.12)-(6.14) by neglecting

rotatory inertia (the terms containing ph® /12 ). We then have

N, Ny o%u

x R (6.59)
ON o°w
x o (6.60)
52/|x ~N_=0 (6.61)
X

Substituting Eqg. (6.61) into Eq. (6.59), we obtain
o°M, N, o°u
X — = ph 6.62
a R (6.62)

For thin-walled pipes, we also assume that the shear deformation is very small and

may be neglected, which implies

grx=a—u+@=0 or ¢:—@ (6.63)
oX or OX

Using Eq. (6.63), the nonlinear stresses for longitudinal waves given by Egs.
(6.5)-(6.7) are further simplified to

2 oW ow')’
Ne—g N U_+2 E—+ v
Trx Top = 72 A, T ox A X

N R (6.64)
r?ﬁa(@j vo, 0 W, 0

——
OX r ox r
In this section, the definitions of N/, N)- and M “are the same as stated by

Eqg. (6.24), while the expressions of the nonlinear stresses (6.5)-(6.7) should be
replaced by the corresponding stresses in Eq. (6.64). Substituting Egs. (6.17)-(6.19)
into Egs. (6.60) and (6.62), with consideration of zero shear deformation (i.e. Eq.

(6.63)), we obtain the displacement equations of motion as

- h®o'u - u =how oy PMM NN
A4+2u)——+(A1+2 —+A——+ph—= X
A2y g oat(Evap) fordg = phog ==

o’'w = h ou o°w  ONJ'
cghou  Low_ 0N, 6.66
e “Roax o ox (6.66)

(6.65)

(2 +2u)h

Here, the terms containing h2/ R’ have been neglected. The corresponding linear

homogenous equations of Egs. (6.65) and (6.66) are the Donnell’s equation for
axially symmetric motion of a thin shell given by Junger and Feit (1986, page 217).
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After some simple manipulations, Egs. (6.65) and (6.66) can be written as two

equations with uncoupled linear parts.

ow_ 1 o’u - h®o'u - u o°MM  NJ-
h——-(A+214)———(1+2 — 6.67
ox /lh( o Ry rr GOl e R] (067)
and
o'u h® 8°u 2 o'u, h o
—Ph——5 - ( 24) — £ h=—F+p ==
ox%ot 2o¢  1+2u ot P12 otox
A% h? h)é’u ., héu (6.68)
+| = — —(A+2u)= |—+ = F[u,w
(/1+2,u o ﬂ)RJaxz Prog vl
where
7 h A2 NL 4 NL 2
Flu. @] = EaNZXX+_p 8IZ\/IX 1°N }
Z+2uh o  A+2ul otox’ R at
(6.69)

~ o'M "t _i&zNe’,“gL
ox* R ox°

Note that for a thin shell (i.e. h <<1), we have
B~h (6.70)
To solve Eqg. (6.68), we consider in the usual manner.
u=u®+u® w=w+w® (6.71)
Substituting Eq. (6.71) into Eq. (6.68), we get a zero-order and a first-order equation.
The zero-order equation is the same as Eq. (6.68) when the right-hand side term F
is omitted.

The first-order equation is obtained as

64u(l) hs aGU(l) p2 64u(1) h3 aGU(l)
—phﬁ ( 2u)— h P S
ox“ot 12 ox° /1 +2u Ot 12 ot*ox (6.72)
R o R R e |
+| = ——(A+2u)—= +p— = F[u®,w®
(ﬁ.+2,uh ( ﬂ)R] o PR L ]
The solution to the zero-order equation is taken in the following form.
u® =U cos(et - kx) = Re[ Ue!“* ™ | (6.73)

where “Re” denotes the real part of the quantity in the bracket. Substituting Eq.
(6.73) into the zero-order equation, we obtain the following dispersion relation for a
thin pipe.
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—27%(1-v)6°n® + 7 (1—v)2 on* +%7r454

5 1 (6.74)
J— —V J—
~=r*(1-v)n’s* —(v* ~1)h* -=—=h’n* =0
3 2
where n and ¢ are defined in Eq. (6.35).
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Fig. 6.3 Dispersion curves and phase-match points for v =0.3

Figure 6.3 shows the comparison between the dispersion curves obtained from
the Donnell equation and thick shell theory (Mirsky and Herrmann, 1958). When the
ratio of wall thickness to wavelength is small, these two results agree very well with
each other. The thick shell theory fits well with the exact theory for small values of
0, as shown in Fig. 6.2. Therefore, on the basis of dispersive behavior, the
governing equation (6.68) is acceptable for waves with long wavelengths in a thin-
walled pipe.

By the use of Egs. (6.13) and (6.63), the following relations can be obtained.

oW

0)
— - ¢ = Re[kiu(o)} (6.75)
.

In view of Eqs. (6.67) and (6.73), the relation between w® and u®® can be written
as

w® =Re[iCu® | (6.76)

where
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C=rtVins 2pllsp 11gl (6.77)
v h 3 v h 2rv O
We can then express the axial displacement by
w? =iCu® +ikru® = Re[ (C, +kr)u(°)] (6.78)

Using Egs. (6.73) and (6.78), together with Eqs. (6.24) and (6.64), the nonlinear

resultant forces become
U 2
NN-=T" 4, . cos’ (ewt —kx)
MM =T,2U? cos®(at —kx)

2
Ny =T34, UTcos2 (wt —kx)

where

F1=4712/1152[C +=7°5° +17zﬁcl5j+47zclﬁ5+§ﬁz,
4 3 3 z

r,= 4 c:2 += ;z05+— *he? |62+ ;r2h52
12 20 3

A 3

r,= A 2 +4zﬁcl5+§(4zch§2 +ﬂ72'454j
YR y) 3

2

(6.79)

(6.80)

(6.81)

(6.82)

These expressions define three coefficients for the longitudinal primary wave.

Substituting Egs. (6.79)-(6.81) into Eq. (6.69), we obtain

2

F=4;z2522{_2/1 ﬁrl{ a n2—1](32r2n252+2ﬁr3)ﬁ—4

Let us consider a solution to Eq. (6.72) in the form

u® =Uxsin 2(ot —kx)

—kx)

(6.83)

(6.84)

Substituting Egs. (6.83) and (6.84) into Eq. (6.72), we get the following equation:

2 o2
3f”ﬁAstmZ(aﬁ kx)
h*(1-v)

-V

2

= 872624, {vﬁrl +(1_TV n’ —1] (16r,7°5° + ﬁrs)}l;—[lcos 2(wt —kx)

_ﬂ;z“é“ +6—;ﬂ454n2 ~h*(v +1)}Ucos 2(awt —kx)

(6.85)
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where

A=-8(1-v)z2oint + L a6 4 4n? (1-v ) 5°n*
3
32 —, 1-v— (6.86)
~Z(1-v)z's'n® - (v* -1)h* - =—=h"n’
3 2

Equation (6.85) has a solution which does not depend on time when A =0, which
implies

2022 64 4c4 2 2 o2 4

—8(1-v)z*5°n +?7z 5*+4r*(1-v) &°n

(6.87)

—3—?)2(1—v)7r454n2 —(v2 —1) h? —1_Tvﬁzn2 =0

Since A =0, we can obtain the amplitude of the second longitudinal harmonic, Eq.
(6.84), from Eq. (6.85) as

_ u?
U=, (6.88)
where
ﬂﬂzé{vﬁﬂ +(1_2V n2 —1)(4F247r252 + ﬁrs)}
¥, = (6.89)

2u{—8ﬂ252n2 —6:72'454n2 +1647r454 +(1+v) ﬁz}
—v

Basically, Eq. (6.87), which gives the relation between 2w and 2k, is the
dispersion relation for second harmonics. For a non-dispersive structure like an
unbounded medium, the dispersion relation for the primary wave is the same as the
corresponding relation for the second harmonics, and the phase velocities keep
unchanged when the frequencies vary. For waves in dispersive structures, there exist
only limited phase-match points where the phase velocities of primary waves are the
same as the corresponding phase velocities of second harmonics. If we plot the two
dispersion relations (6.74) and (6.87) in the same figure, the intersections of the two
curves are phase-match points. In this paper, we obtain a relation between 6 and n

by subtracting Eq. (6.74) from Eq. (6.87). The resulting equation can be reduced to

{5;;252 —3(1_—an2}(1—11 nzj =0 (6.90)
2 2
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which gives rise to the following relations

nz;z/ 10 5 (6.91)
31-v)

and

n=,[— (6.92)

Equations (6.91) and (6.92) are phase-match conditions, which are independent of
the ratio of the thickness to radius of a pipe. Equation (6.91) defines a straight line in
the o —n plane, shown in Fig. 6.3. The intersections of the line with the dispersion
curves yield the phase-match points. The numerical values of the phase-match
points have been verified by substitution in Eqgs. (6.74) and (6.87). Another two
phase-match points can be obtained by substitution of Eq. (6.92) into Eq. (6.74) or
Eq. (6.87) for the two different ratios of wall thickness to mean radius considered
here. For the pipes with the ratio of thickness to mean radius of 1/10 and 1/30, the
phase-match point lying on the dispersion curve of the first mode is in the region of
accuracy of the Donnell theory, see Fig. 6.3. The dispersion curves of the second
harmonics are neglected in Fig. 6.3. Since the ratio of thickness to wavelength of the
second harmonic is 20, the region of accuracy of the second harmonic is smaller.
The phase-match points lying on the dispersion curve of the second mode are out of
the accuracy region shown in Fig. 6.3. Considering the second longitudinal
harmonics in the pipe with ratio of thickness to mean radius of 1/10 and 1/30, we
can determine the phase-match points by using the present theory, which lie on the
dispersion curves of the first mode in Fig. 6.3. Once the phase-match points have
been calculated, the amplitudes of the second harmonics can be obtained through
Egs. (6.89) and (6.94). The phase-match points and the corresponding amplitude
coefficients of the second harmonics in Egs. (6.89) and (6.94) are given in Table 6.2.
The material constants used here are given by Eq. (6.58).
Substitution of Egs. (6.80), (6.81), (6.84) and (6.88) into Eq. (6.67) yields the

expression for the axial strain as
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ow U?x . u? u?
= :\P4Fﬁsm2(a;t—kx)—\115Fcos,Z(a)t—kx)—\PGF (6.93)

where the amplitude coefficients in Eq. (6.93) are given by

v 3 vh v
3 — —_—
g =80y ap Ve IV A (6.94)
3 wvh uh v dv u
g, -1V
v u

As the propagation distance increases, the cumulative second harmonic with the

amplitude coefficient ¥, will be dominant in Eq. (6.93).

Table 6.2 The phase-match points and the corresponding coefficients of the
amplitudes of second harmonics

h/R  s=h/4 n=c/c; ¥, Y, Y. ¥

6

1/10 0.065 0.445  1.80x102 -5.11x10* -2.80x10° -8.77x107?

1/30 0.037 0.252  2.45x10° -3.67x10° -1.53x10" -9.34x10°

From Table 6.2, we observe that the amplitudes of second harmonics in the
thinner-walled pipe are smaller than the amplitudes of second harmonics in the
thicker-walled pipe. That means a lower power flux from the primary wave to the
second harmonic occurs in the thinner pipe.

To validate the analysis in this section, the phase-match point lying on the
dispersion curve of first mode is compared with the corresponding point given by
Liu et al. (2013b). The ratio of thickness to mean radius is 150/975. Our result is
(0 =0.080, n=0.546) compared with the result of Liu et al. (6 =0.086, n=0.536).

The discrepancy between the two results is small.
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6.5 Conclusions

In this chapter, guided waves propagating in pipes with quadratic material
nonlinearity have been investigated. This chapter is composed of three main parts:
the derivation of the shell equations, the mixing of longitudinal and torsional waves,
and the self-interaction of longitudinal waves. Analytical expressions of cumulative
second harmonics have been obtained based on shell theory.

The derivation of governing equations of axisymmetric motion of a pipe with
nonlinear material behavior has been given in the first part. By use of the
perturbation method, the zero and first order equations have been derived. The
dispersion curves obtained from the linear version of the present theory, the linear
thick shell theory and the linear three dimensional theory show excellent agreement.
It was shown that no resonant longitudinal harmonic with sum or difference
frequency exists. Analytical expressions of the resonant torsional harmonics with
difference and sum frequencies were obtained. The resonant torsional harmonics
generated by the mixing of longitudinal and torsional waves propagate in the
opposite direction of the primary wave.

For thin-walled shells, the shell theory has been further simplified to yield
uncoupled linear and nonlinear parts of the governing equations. The simplified
shell theory has been used to analytically investigate the self-interaction of
longitudinal waves in thin-walled pipes. To validate the thin shell theory, the
dispersion curves for longitudinal waves were compared with the corresponding
curves obtained from thick shell theory. It was shown that the dispersion curves
agree very well with each other when the ratio of thickness to wavelength is small.
For second longitudinal harmonics in pipes, analytical expressions for the phase-
match conditions are presented, which together with the corresponding dispersion
relation, have been used to determine the phase-match points. The analytical
solutions presented in this paper may provide a benchmark to numerical and
experimental investigations.

Appendix 6A: The nonlinear parts of the Cauchy stress

In cylindrical coordinates, the nonlinear parts of the Cauchy stress components

only including quadratic material nonlinearity for axisymmetric wave fields are

given by
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Equations. (Al)-(A6) can also be reduced from the corresponding equations in
Liu et al. (2013a) if we only consider axisymmetric motion with small deformations
(but considering material nonlinearities). The subscript letter following the comma

denotes the corresponding differential derivative.



Chapter 7 Reflection of ultrasound from a region of cubic
material nonlinearity due to harmonic

generation

7.1 Introduction

In recent years, the researches about elastic waves propagating in solids of
nonlinear material behavior occupying unbounded bodies have attracted intensive
attentions. From the practical point of view, the reflection, transmission and
scattering of incident waves from an inclusion of nonlinear material is of obvious
interest. The reflection of second harmonics from a stress-free boundary was studied
by Bender et al. (2013). An experimental investigation was presented by Donskoy et
al. (2001) to observe the modulation effect of highly nonlinear material behavior
caused by weakly or incompletely bounded interfaces. Achenbach et al. (1989)
represented the failure of an adhesive bond by a cubically nonlinear elastic model.
For that case the strength of the adhesive bond can be directly measured from the
reflected waves. For simplicity, the interfaces or adhesive bonds studied above were
frequently modeled by nonlinear springs. Using a Green’s function, the analytical
solution to the scattering of elastic waves from an inclusion of quadratic nonlinearity
was obtained by Tang et al. (2012).

The main purpose of this work is to investigate the reflection and
backscattering of plane elastic waves by a region of cubically nonlinear material
behavior. The constitutive relation is obtained from the expansion of the elastic
energy function by only retaining the second and fourth order elastic constants, for
which the condition of symmetric tension and compression material response is
satisfied. The analytical solutions to cumulative first and third harmonic generation
have been derived by using the perturbation method. Two simple models of practical
interest are proposed to obtain the nonlinear elastic constants (i.e. the fourth order
elastic constants) of the region by making use of reflection and back-scattered waves.
In the case where the region is large, incidence of ultrasound on the interface
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between the regions of linear and nonlinear material behaviors, which are perfectly
joined, yields very useful information. Making use of the continuity condition of
stress and displacement at the interface, expressions for the compensatory waves
have been obtained, whose amplitudes contain the nonlinear material constants near
the interface. When the nonlinear region is an inclusion, the nonlinear body force
induced by the material nonlinearity generates a backscattered wave. The reciprocity
theorem is employed to obtain an analytical solution for the backscattered wave. The
nonlinear material constants and the size of the inclusion can be obtained from the
amplitude of the backscattered wave. For a small nonlinear region, the superposition
of back-propagated compensatory waves generated from the two interfaces gives an
expression for the backscattered wave, which is of the same form as the one

obtained by the reciprocity theorem.
7.2 Governing Equations

In this section, the equations governing the propagation of plane elastic waves
in an unbounded elastic solid are presented. The material displays material
nonlinearity which has a strong correlation with material degradation. For small-
amplitude waves propagating in solids with high material nonlinearity, the
geometrical nonlinearity is negligible. For most materials, their tension-compression
material response is symmetric (Rauch and Leslie, 1972). However, the even order
material nonlinearities, due to quadratic nonlinearity appearing in the stress-strain
relation, lead to asymmetry of tension and compression. In this paper, we consider
cubic material nonlinearity of the stress-strain relation, which leads to a symmetric

stress-stain relation.

For plane elastic waves propagating in the x -direction, the displacement fields

can be represented by
u=u(x,t), v=v(x,t) (7.1)

for longitudinal and transverse waves, respectively. Considering only cubic material
nonlinearity, the one-dimensional stress-strain relation can be derived from Eq. (2)
in (Liu et al., 2013)
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3 2
T, :(ﬁ,+2y)a—u+4(F +H+ E+G)(a—uj +(§E+ F +2G)6_u(@j (7.2)
OX OX 2 OX \ OX

and

2 3
T, :y@+(§E+F+ZGj(a—uj @+G(@j (7.3)
Y ox \ 2 oX ) ox OX

where E, F, G and H are fourth order elastic constants. Equations (7.2) and (7.3)
indicate that the third order elastic constants in the stress-strain relation which are
related to quadratic nonlinearity have all been set equal to zero. The constitutive
relations given by Egs. (7.2) and (7.3) agree with the Taylor expansion of stress
presented in (Chillara and Lissenden, 2016) when the deformation is small.

7.2.1 Primary longitudinal wave

wn
&
Cubic @
/
/ Strain
™ Linear

Fig. 7.1 Linear stress-strain relation and stress-strain curve for cubic nonlinearity

under tension and compression

The stress-strain relation for pure longitudinal deformation follows from Eq.

(7.2) as
3
TXX:(/1+2y)a—u+4(F+H+E+G)[a—u) (7.4)
OX OX

where the fourth order elastic constants E, F, G and H are defined as negative

guantities, which indicates a softening effect. A symmetric stress-strain relation has
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been obtained by neglecting the quadratic material nonlinearity, see Fig. 7.1. The

second harmonics caused by the quadratic material nonlinearity have disappeared.

For the problem at hand, the equation of motion is

0T, o°u
x o (7.5)

Substituting Eq. (7.4) into Eq. (7.5), we obtain

gtij—(ng)g—;‘j: F (7.6)
where the nonlinear term F_ is given by
ou'\ o%u
FL:12(F+H+E+G)(&j Pl (1.7)
Making use of the perturbation method, the displacement can be expanded as
u=u®+u® +... (7.8)

where we assume |u®|>>|u®® ‘3. Substitution of Egs. (7.8) into Egs. (7.6) gives rise

to the following equations

ou® ou®

P e —(/1+2,u) v =0 (7.9)
82U(1) aZU(l)

P —(A+2pu) " =F" (7.10)

where

(7.11)

© ) 22,0
FL“):12(F+H+E+G)(au }a“

ox?

For the homogeneous equation (7.9), we have the longitudinal wave solution,

which is given in the following form:
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u® —U cos[a(t —Ci)] (7.12)

L

where U isaconstant and ¢, =/(1+2u)/p is the longitudinal wave velocity.
Substituting Eq. (7.12) into Egs. (7.11), we obtain

F® =3(F+ H+ E+ G) ‘;’—:u 3 {cos[&o(t —Ci)] —cos[o(t - Ci)]} (7.13)

L L L

In view of Eq. (7.13), evaluation of Eq. (7.10) yields the resonant harmonic

u® =%KL ‘;—:us‘x{sin[sa)(t—Ci)]—ssin[m(t—i)]} (7.14)

L L L
where the nonlinear tensile coefficient is defined by

» _ F+H+E+G
: A+2u

(7.15)
7.2.2 Primary transverse wave
The stress-strain relation for transverse deformation can be obtained from Eq.

(7.3) as

3
Ty :y%+6£%) (7.16)

Equation (7.16) indicates that the nonlinear shear stress is symmetric with respect to

the origin. The equation of motion for the transverse wave is given by

0T, o*v
x Far @17
Substitution of Eq. (7.16) into Eq. (7.17) yields
o’v 0%
? - y = FT (718)

where
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v o
F=3G|—| — 7.19
T (axj X2 (7.19)
By taking the perturbation method, the displacement is expanded as
v=v®4v® 4. (7.20)
where [v©|>> ‘v(o)‘a is satisfied. Substituting Eq. (7.20) into Eq. (7.18), we get
o2y %y
P atz —H axz =0 (721)
a2y 2y
pE TH ST = FO (7.22)
where
v @ ) 52y©
E® - 3G 7.23
! ( X J X’ (7:23)
The primary transverse wave solution to Eq. (7.21) can be taken as
VO =V cos[m(t —é)] (7.24)

where V is a constant and ¢, =./u/p is the shear wave velocity. Substitution of Eq.
(7.24) into Eq. (7.23) gives rise to

FY = ge %:V : {c05[3w(t - é)] —cos[e(t - é)]} (7.25)

By virtue of Eq. (7.25), evaluation of Eq. (7.22) yields the resonant harmonic

3 3
Vo %KT %v?’xsin[ew(t —l)]—g;q Y \ixsinfot-2)]  (7.26)

where the nonlinear shear coefficient is defined by
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=2 (7.27)
Y7,

Equations (7.14) and (7.26) show that the first and third longitudinal and transverse

harmonics depend on the nonlinear tensile coefficient x, and the nonlinear shear

coefficient x; , respectively. The nonlinear tensile coefficient is the sum of all four

fourth order elastic constants, while the nonlinear shear coefficient only depends on
one fourth order elastic constant, G. The amplitudes of the higher harmonics, Egs.

(7.14) and (7.26), increase linearly with the propagation distance.

7.3 Generation of compensatory waves at the interface

o ,V
Incident wave #® or v | &
| |

| )4

| 4 |4
Higher harmonic «" or v""
—
o

X, u

)

Compensatory wave #° or v | Compensatory wave u; or v:

Linear material Nonlinear material

Fig. 7.2 Compensatory wave generation at an interface between a linear and a

nonlinear material

Due to the strong correlation of microstructural damage with material
nonlinearity, the generation of a higher harmonic has a potential applicability to the
nondestructive evaluation of structures and materials. It is, however, desirable to
develop a simple model, which can be easily used for practical purposes. If the
region of nonlinear material is large, the model presented in Fig. 7.2 can be used to
obtain the nonlinear material properties from a wave reflected by the interface. This
model is suitable for the structures where the nonlinear region is not accessible. In
this section, it is shown that the back-propagated wave is a compensatory wave

which is introduced to meet the conditions of continuity of stress and strain at the
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interface. The linear material properties (i.e. A and ) are assumed to be same

across the whole body. The nonlinear material behavior only exists in the region for

X >0 where the micro damage has developed.
7.3.1 Incidence of a longitudinal wave

It can be checked that due to the generation of a higher harmonic for x>0 the
displacement and the stress are not automatically continuous when the incident wave
reaches the interface connecting the regions of linear and nonlinear material. To
obtain the required continuity, compensatory waves are proposed to compensate the

continuity conditions at the interface.

For the incident longitudinal waves, the displacement fields on both sides of

the interface at x =0 are

©

u =u" +u’ (7.28)

u, =u® +u® +u’ (7.29)

where the incident and harmonic waves were defined by Egs. (7.12) and (7.14),
respectively. The compensatory waves propagating in opposite directions are
assumed to have the following forms

U° =U % cos[(t + )] +U % cos[3e(t + )] (7.30)
CL L
¢ ol X c3 X
u; =U; cos[a(t - C—)] +U ;" cos[3a(t — c_)] (7.31)
L L

Since the linear waves can pass the interface without interference. The displacement

field at x =0 should meet the following continuity condition
u® =u® +u’ (7.32)
In view of Eqgs. (7.14), (7.30) and (7.31), we obtain

us=us u®=U? (7.33)

+ 1
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For the continuity of stress at x =0, we have

e c 3 c
UT M. | g [} SO (7.34)
OX OX OX OX
Substitution of Egs. (7.12), (7.14), (7.30) and (7.31) into Eq. (7.34) yields
1 @ 5. : O q 30, 5
— =Kk, — U’[sin(8at) —3sin(awt)] + —U ;" sin(at) + —U " sin(3wt)
2 "¢ C, C, (7.35)

— — 2 U sin(at) - 22U sin(3at)
CL CL

The stresses with smaller amplitudes in Eq. (7.35) are omitted. The following

decomposition relation has been used for the calculation in Eq. (7.35).
sin®(at) = %[3sin(a)t) —sin(3wt)] (7.36)

In view of Egs. (7.33) and (7.35), we obtain

2 2
U =éKLZ’—2U3, Ufl:—%KLZ)—ZUS (7.37)
L L

Using Eq. (7.37), the expressions of the compensatory waves can be given by

2 2
e = _%KL U3 cosm(t +i)]+iz’ﬂ £U® cos[3at 2] (7.39)
c c ¢

L L 1 L L
2 2
0t =3 2 U cosfolt— )]+ 2k, LU cosfBalt- )] (7.39)
4 CL CL L CL

7.3.2 Incidence of a transverse wave

For an incident transverse wave, the total displacement fields in the negative

and positive regions can be separately given by
v =vO e (7.40)

— O Ly® 4y
V, =V VT 4V (7.41)
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where the incident transverse wave and the generated harmonic wave were defined
by Egs. (7.24) and (7.26), respectively. The displacements of the compensatory

waves are taken to have the following forms

Ve =V cos[m(t + —)] +V * cos[3e(t + )] (7.42)
C C

Ve =V cos[@(t — )]+ V. cos[Bat — )] (7.43)
C C

In view of Egs. (7.26), (7.40) and (7.41), the continuity of the displacement at x=0
yields

° =V (7.44)
Substituting Egs. (7.42) and (7.43) into Eq. (7.44), we obtain

Vfl =V+C1, V7C3 =V+C3 (745)

The continuity of stress at the interface x =0 gives rise to

av(l) avc aV(O) E avc
+—+ K =— (7.46)
ox  OX OX OX
Substitution of Eqgs. (7.24), (7.26), (7.42) and (7.43) into Eq. (7.46) yields
3 3
L © V3sin(3at) S ©V3sin(ot) + -2V sin(et) + 30\ sin3at)
4 ¢ 4 ¢ G G
3 (7.47)
=~ 2 vesin(wt) - 22V @ sin(3et)
C;
In view of Egs. (7.45) and (7.47), we obtain
2 2
VRS PRCRVERRVE I B AVE (7.48)
8 24 c;

In view of Egs. (7.48), (7.42) and (7.43), the expressions of the compensatory waves

can be expressed by
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. 3 o X 1 & X

V. = —§ K; EV 3 COS[C()(t + E)] + z K EV 3 COS[3a)(t + a)] (749)
. 3 & X,y 1 o X

vV, = —§ K; EV‘O’ COS[C()(t - —)] + ﬂ K —2V 3 COS[SCO(t - a)] (750)

It is of interest to note that the amplitudes of the back-propagated compensatory

waves given by Egs. (7.38) and (7.49) contain the nonlinear material constants, x,

and x; , respectively.

7.4 Backscattering from a small zone of cubic material

nonlinearity

.V
Incident wave ' or v d
L k)
| 4
X=d
0
Scattered wave ' or v* X, U

Linear material Nonlingar material Linear material

Fig. 7.3 Scattering of an incident wave from a small zone of cubic material

nonlinearity

In this section, we assume the region of nonlinear material is small enough
compared with the wavelength, which is defined by 0 <x<a, see Fig. 7.3. For this
case, the problem can be converted into a scattering problem, whereby the nonlinear
term in the equations of motion is regarded as a body force. In the following, we
will investigate the backscattering from a small zone of cubic material nonlinearity

using the reciprocity theorem of elastodynamics.

7.4.1 Incidence of a longitudinal wave
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A longitudinal wave, defined by Eg. (7.12), is incident on the region of
nonlinear material behavior depicted in Fig. 7.3, and gives rise to a backscattered
wave. The total displacement is represented by the superposition of the incident

wave u‘® and the scattered wave u®
u=u®+u’ (7.51)

where it is assumed that |u®

<<|u®]. Using the perturbation method, we can obtain

the equations governing scattering problem as

o’ o’

e —(A+2u) PV =0, x>aor x<0 (7.52)
ou® Ut o
1% 8t2 _(/1—'_2#)? = FL y 0<x<a (753)

where the nonlinear term F® on the right-hand of Eq. (7.53) is defined by Eq.

(7.11), which is in terms of the known incident wave. The inhomogeneous equation
(7.53) remains a linear equation governing the scattered wave. The problem
described by Egs. (7.52) and (7.53) is suitable to be solved by the reciprocity
theorem (Achenbach, 2003), where the nonlinear term in Eq. (7.53) is regarded as a
body force. For the use of the reciprocity theorem, we rewrite the body force as a

sum of exponential terms

FO=f+f,+f+f, (7.54)
where
3 604 3 icﬁx —iot
fl=_§(/1+21u)KL —4U et -e (755)
L
3 0)4 3 _icﬁx iot
f2 :—5(14'2#)/(1 C—4U e t .e (756)

L

3 AN
f3 :E(/’i,'i'ZILI)KL C—4U3e @ 'e73|wt (757)

L
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3w

3 o' 3, ¢ 3ot
f4:§(l+2ﬂ)KLC—4U e -e (758)

L

The body forces listed in Eq. (7.54) should be separated into two groups, namely,
f,, f, and f,, f, in conjunction with the harmonic time terms e and €. The

harmonic-time terms are omitted in the following calculation.

i V
S, InC|Ident wave) 5, 3 S,
State A Sta'tekA
e >
N | 4
X = l] X=a X = .x2
0 X, U
State B ’
N
I )
| 4
Linear mdterial Nonlinear material Linear material

Fig. 7.4 Scattered and virtual waves for State A and State B

The reciprocity theorem is given by

i vij i Yij i Yij

[ (£u® = £2uMdv = Ll Utz —uPz)n dS + Lz Uz —uPz)n,dS (7.59)

where n; is the component of the outward normal of the region. Equation (7.59) is

an integration over a region V with boundary S which relates two waves labeled
state A and state B, respectively. For the problem under consideration, we label the
scattered wave as state A. For the configuration shown in Fig. 7.4, Eq. (7.59) can be

simplified to

A, B A_B B_A A_B B_A
[ FAuPdl =—(ues —uPz)),  +(Uis —uP), (7.60)

s XX

where the integral domain is defined by x, <x<x,. Next we apply Eq. (7.60) to

investigate backscattering from the body forces, defined by Egs. (7.55)-(7.58).

For the body force f,, state A can be defined as:
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Body force:

. @

A 3 o' 3.0
f =—f1=§(ﬂ,+2ﬂ)KL—4U e, 0<x<a
CL

The forward scattered wave is defined by

. .

i—x w . i—x

X>a: USA:Age “ ) T:;:(ﬂ,+2‘u)c—lﬂe “
L

where A, is the amplitude of the scattered wave.

Backscattered wave:

. @ .
—j—X —i—

x<0:ul=Ae *, rx’;:—(/1+2,u)2iAse o
CL

(7.61)

(7.62)

(7.63)

To use the reciprocity theorem, we have to select a virtual wave for state B, which is

a longitudinal wave propagating along x-direction. This wave is a free wave which

is independent of the problem under consideration. That is to say there’s no body

force for the virtual wave. State B can be defined as:
Body force:

f°=0
Virtual wave:

‘o,
CL

u®=Ae

Substituting Egs. (7.61)-(7.65) into Eq. (7.60) yields

(7.64)

(7.65)
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al 3 o’ ix i
[ S(A+2u)k U™ |Ae ™ dx=

0
L

—i%x i Zey i —i%x
—[&e i (i+2y)?iﬁ\,eq +Ae °LX1(1+2,u)CﬂiAge i ] (7.66)
L L

@,

iﬁx2 i&x2 i—x, iﬂx2
+[A5e o (/1+2u)%iﬁe “ —Ae“ (ﬂ,+2y)cﬁiAse o J
L L

The frequency of the virtual wave is selected as

@, =0 (7.67)

Then, Eq. (7.66) reduces to

4 izﬂx

J?ﬂg(i—ka)rcL i’—ﬁuﬁ‘e dx =—2(/1+2,u)§iA,& (7.68)
It is evident from Egs. (7.66) and (7.68) that the third set of terms vanishes and that
the interaction of the virtual wave and the scattered wave only yield a contribution
when they propagate in opposite directions, as shown by the second set of terms in
Eq. (7.66). Evaluation of Eq. (7.68) then yields the amplitude of the backscattered

wave as follows

4 2 izﬂa
A =§KL‘§—4US%(e . —1] (7.69)
L

Substituting Eq. (7.69) into Eq. (7.63) and adding the time term e, the full

expression of the backscattered wave can be rewritten as

A .3 @t G et
u; =i—x, —U”—sin(—a)e o (7.70)
4 "¢ o C,

For the body force f,, we have

3w
i—x

A 3 o' sl
f :—f3:—5(/1+2y)KLC—4U e, 0<x<a (7.71)

L

The same procedure is used to obtain the backscattered wave as
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1 > 3 . Bt
ul =-i—x —U’sin(—a)e o
12 "¢ C,

For the body force f,, state A can be defined as:

Body force:

A 3 o' 3. o
f :—fzzz(/l+2y)KL—4U e, 0<x<a
CL

Forward scattered wave:

o)
I—X

x>a:ut=Ae o rx’i:—(/1+2y)£iAse_
CL

X
CL

Backscattered wave:

@
X

x<0:ut=Ae™ 'rx’*x=(/1+2y)£iAseZ
CL

State B can be defined as:
Body force:
f8=0

Virtual wave:

W oo =—(4+ 2,u)C£iA,e_iCLX

L

i
u®=Ae

Substitution of Eqgs. (7.73)-(7.77) into Eq. (7.60) yields

i@

a3 o',
-[O E(ﬂ,—FZﬂ)KL?U A\/e CL

Evaluation of Eq. (7.78) yields

4 2 -2i%a
ASZSKL%USC—LZ(e h —1}

U dx = 2( A+ 2u) A A

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)
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Substituting Eq. (7.79) into Eq. (7.75) and adding the time term e*', the full

expression of the backscattered wave is given by

iot+X"2
C

3 o' s
ul=—i=x —U°’Lsin(—a)e *© 7.80
S 4KL CALI. a)z ( ] ) ( )
For the body force f,, we have
A 3 oty
f :—f4:—§(/1+2y)KLC—4U e *, 0<x<a (7.81)

L
Making use of Eq. (7.81), the backscattered wave is obtained as

2 i x-a
W i3o(t+ . )

ul = iéKLC—ZU‘?sin(S—ma)e L (7.82)

L CL

Summation of Egs. (7.70), (7.72), (7.80) and (7.82) yields the total displacement of
the backscattered wave as

S

3 w? W Cio(® Rty Cie(PRa
UA:—ZK‘L—ZUSSIH(—a) e * —ie
C

L C
2 i3o(X"241t) “i30 (X8 4t)
e ZussinCPaylie e ie e (7.83)
12 "¢ C.

Equation (7.83) can be further simplified to

2 —
0, =2 2 Utsin(2 a)sin[w(* =2 1 1)]
L L L

2 —
—%KL i’—2u3sin(3—“’a)sin[3w(ﬂ+t)] (7.84)

L L L

7.4.2 Incidence of a transverse wave

In this section, the scattering of a transverse wave by the inclusion of nonlinear

material is investigated. In the usual manner, the total displacement field is
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v=v® 4y (7.85)

where v(@ represents the incident wave, which was defined by Eq. (7.24), and v*

represents the scattered transverse wave. Here it is assumed that |v°

<< ‘V(O)‘ .
Substituting Eq. (7.85) into the displacement equation of motion Eq. (7.18), the

equations governing the scattering problem are obtained as

2,,S 2,,S

paat\g —/JZTVZ=O, X>aorx<0 (7.86)
2,,S 2,,S

paat\i _ﬂ%; =F", 0<x<a (7.87)

where the nonlinear term F in Eq. (7.87) is defined by Eq. (7.25), which can be

rewritten as

FO=f+f,+f+f, (7.88)
where

f 3 0)4 3 i§X —imt 7.89
IZ_Z:UKTEVE € (7.89)
f o3 e @yse g 7.90
2 = —Zﬂ’fr g € € (7.90)

3 CO4 iiﬁx —i30f
f3 :ZIUKT Evse T o.e 3ot (791)

3 CO4 7i?x i3
f4 :ZﬂKT EVSG i 'e3 t (792)

The reciprocity theorem can be used to calculate the backscattered wave. The
procedure is analogous to the one used in Section 7.4.1. The detailed derivation is

not given here. The total scattered displacement is obtained as:
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2
v, = §KT w—zv3sin(2a)sin[a)(t+ﬂ)]
4 ¢ Cr Cr

2
L e 2 vsinC2aysinBot + X)) (7.93)
127" ¢ ¢ o

The advantage of the scattering model of this section is that the amplitudes of the
backscattered waves not only depend on the nonlinear material constants but also on

the length of the nonlinear region.

7.5 Determination of the backscattered wave based on the

compensatory wave model

Linear material Nonlinear marerial Linear material

Fig. 7.5 Compensatory waves generated by the two interfaces of a strip of nonlinear

material between regions of linear material

In an alternative approach, the compensatory waves generated by a first and
second interface are determined. In this approach, the back-propagated wave is the
superposition of two compensatory waves generated by the interfaces at x=0 and
x=a shown in Fig. 7.5. The solution to the compensatory waves generation at the

first interface (x =0) has been given in Section 7.3.

When the incident longitudinal wave and the higher harmonic reach the second
interface (x=a), see Fig. 7.5, the total displacements for x<a and x> a of the
interface are
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u =u®+u® +u+u” (7.94)
u, =u® +u® +us (7.95)

where the incident wave and the higher harmonic are defined by Egs. (7.12) and
(7.14), respectively. The compensatory waves propagating in opposite directions are

taken to have the following form

X—a X—a

ust =U* cos[af(t _a, )]+U €2 cos[3m(t - 2. N (7.96)
L C C, C.
ut=ugy COS[a)(t—i— X_a)]+Uf3 cos[3a)(t—i_ x—a)]
o LR (7.97)
+Uflsin[a)(t _a_x= a)] +Uj3 sin[3m(t _a_x- a)]
L C C, C.

The last two terms in Eq. (7.97) are introduced to cancel the displacements of the
harmonic waves, which is a different condition from the first interface at x=0
where the displacements of the harmonic waves is zero, see the expression of Eq.
(7.14). In view of Egs. (7.94) and (7.95), the displacement field on both sides of the

interface at x = a should meet the following continuity condition
u®(a)+u(a)=u(a) (7.98)

Substitution of Egs. (7.14), (7.96) and (7.97) into Eq. (7.98) gives

3 3
8k ZUssinBot -] -2 & 2 Ussin[(t )]
2 "¢ c, c c.

cl a c3 a

+U " cos[aw(t ——)]+U " cos[3m(t ——)]
c c
) L (7.99)
=U % cos[a(t — AN+u % cos[3am(t — )
c c

L L

+ U sin[w(t —Ci)]m @ Sin[3e(t —Ci)]

L L

Equation (7.99) is satisfied by



Chapter 7 Reflection of ultrasound from a region of cubic material nonlinearity 171

UCl:Ucl UC3:Uc3

B 3 _ 3 7.100

g2 =2 2 U3, o=, 2y (7.100)
2 "¢ 2 "¢

For the equality of stress at x =a, we obtain

ou® oyt (GU(WT out
+ +4K,

= (7.101)
OX OX OX OX

In view of Egs. (7.12), (7.14), (7.96) and (7.97), Eq. (7.101) can be rewritten as

1 &, ;. a., 3 o 5. a
—k, —U’sin[3o(t——)]——x, ——U’sin[o(t ——
s [Beo( L)] s [eo( CL)]
3a o' . a. 3a o , a
-—k, —U’cos[3w(t——)]+—«, —U"cos[o(t ——
s [Ba( CL)] s [( CL)]
3 3
+4KL(%f—gu3sin[a)(t—E)]—%Z)—Sussin[i%a)(t—Ci)]j (7.102)
L L L L
_ 805 gintBa(t =21+ 22U sin[a(t - )]
CL L L CL
3a o' . a. 3a o , a
—-—k, —U’cos[3w(t——)]+—«, —U"cos[o(t ——
s [Ba( CL)] s [( CL)]

where Eq. (7.36) has been used. Using Eq. (7.100), evaluation of Eq. (7.102) yields

2 2
ue :_é,qi’_zus, Uglz%qi’_zw (7.103)
L L

Substituting Eq. (7.103) into Eq. (7.96), the expression of the back-propagated

longitudinal compensatory wave is obtained as

a_ 3 X—a X—a

2 2
0] a 1 10} a
u® ==« =U3cos[ow(t-—+ ——x, —U?*cos[3w(t —— +
STaN g [o( y CL)] 12" [Beo( y CL)]
(7.104)

The summation of Eqgs. (7.38) and (7.104) gives the full expression of the

displacement of the back-propagated longitudinal waves as follows
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u® =u® +u®
3 @ X 1 @ X
=——k, U’ cos[o(t + —)]+-—x, —-U"cos[3m(t + —
3 gV eosloltr Ol e U cosfa(t+ )]
3 @ a x-a., 1 * , a x-a
+—x — U cos[ot ——+ )——x, —U”cos[3a(t ——+ )] (7.105)
4 "¢ c. ¢C 12 "¢ c. ¢C
2 _ 2 _
=3k 2 Ussin@D)sinfwt + X2 - L k. 2 Usin(C2Y) sinf3w(t + X=2)]
2 CL L L CL L L

The expressions for the back-propagated waves given by Eqgs. (7.84) and (7.105) are
of the same form, which shows the validity of obtaining the back-propagated wave
using the two approaches. In comparing the two methods presented in Sections 7.4
and 7.5, the reciprocity theorem has an advantage over the method used in Section
7.5. When the geometry of the inclusion of nonlinear material becomes more
complicated, the reciprocity theorem has greater utility.

7.6 Conclusions

Based on the generation of higher harmonics by cubically nonlinear material
behavior, the results of this paper may have utility for the detection of micro damage
in materials, which is often caused by fatigue and plasticity. The constitutive model
of cubic nonlinearity is symmetric with respect to the tension and compression,
which is an advantage over the quadratic model. In an unbounded solid, the
analytical solutions to the cumulative first and third harmonics generated by plane
elastic waves have been obtained in this paper. Two simple models have been
proposed to determine the nonlinear elastic constants (i.e. the fourth order elastic
constants). When the region of nonlinear material behavior is large, the interface
between the perfectly joined regions of linear and nonlinear material behavior yields
very useful information. Compensatory waves are introduced to meet the continuity
of stress and displacement at the interface in conjunction with higher harmonics.
The amplitudes of back-propagated compensatory waves depend on the fourth order
elastic constants. For a nonlinear inclusion, the nonlinear body force induced by the
material nonlinearity generates a backscattered wave. The reciprocity theorem of
elastodynamics was used to obtain the analytical solution to the backscattered wave.

The amplitude of the backscattered wave depends on the nonlinear material
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constants and the size of the inclusion. In addition, compensatory waves which are
generated when the incident waves and higher harmonics have multiple interactions
with the two interfaces have been investigated. The total back-propagated waves can
be represented by the superposition of all back-propagated compensatory waves.
Agreement of the expression of backscattered waves with the back-propagated
compensatory waves shows that both methods are of equal utility. It should,
however, be noted that the use of the reciprocity theorem has greater utility for more

complicated configurations of the inclusion.
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Chapter 8 The effect of cubic material nonlinearity on the

propagation of torsional wave modes in a pipe

8.1 Introduction

Due to their efficiency and sensitivity, ultrasonic guided waves are widely used
in nondestructive testing to detect defects in pipes. They can be used to inspect the
whole cross sectional area for long distances, including inaccessible zones. There
are three kinds of wave mode in pipes, torsional modes, longitudinal modes and
flexural modes. The lowest axially symmetric torsional mode is most frequently
selected as an incident wave for many tests due to its simple wave structure and low
interference with the surroundings. Ratassepp et al. (2010) investigated the
scattering of the lowest axially symmetric torsional wave mode by an axial crack in
a pipe using a finite element simulation and experimental results. A study of the
reflection of the lowest torsional wave from two or three small holes in pipes was
presented by Levstad and Cawley (2011). For a practical application, Rose et al.
(1994) explored the use of guided waves to increase the efficiency and sensitivity of
nuclear steam generator tubing evaluation. They also introduced a guided ultrasonic
nondestructive system to rapidly detect and quantify the reduction of wall thickness

caused by corrosion (Rose et al., 1996).

The references mentioned above are concerned with the interaction of guided
waves with macroscopic defects, such as holes, cracks and thickness reduction. It is,
however, also desirable to develop a technique to detect the deterioration of material
properties, which can provide an early warning of possible structural failure. In this
context, the use of higher harmonics was proven to be efficient for sensing
microstructural changes of material properties (Hikata et al., 1965; Hikata et al.,
1966).

This work provides new results for the propagation of guided waves in a pipe
of cubic material nonlinearity, which may be caused by material deterioration. This

chapter is split into two parts. The first part deals with the propagation of the lowest
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axially symmetric torsional wave mode in a pipe, where the material of the whole
pipe is of cubic nonlinearity. It is shown that such a material generates a third
harmonic, but also a first harmonic. Using a perturbation method, analytical
expressions of the first and third cumulative harmonics have been obtained. It is
perhaps surprising that cubic nonlinearity gives rise to a harmonic whose frequency
is the same as for the primary wave but whose amplitude increases linearly with

propagation distance.

The different condition for the second part is that only a small region of the
pipe is nonlinear, which leads to a scattering problem. The nonlinear term in the
governing equation of motion is regarded as a distribution of body forces. We
employ the elastodynamic reciprocity theorem to obtain an analytical expression for
the backscattered wave. The amplitude of the scattered wave is determined by the
nonlinearity coefficient, the size of the nonlinear domain and the geometry of the
pipe. Due to the weakness of the scattered waves, we use another wave of higher
frequency in combination with the primary wave to increase the overall amplitude.
An example whereby the originally scattered wave is amplified by a factor of 50 is
presented.

8.2 Governing equations

Nonlinear material behavior

Fig. 8.1 The geometry of a pipe and corresponding coordinate system

In this paper, we consider the propagation of torsional waves in a pipe. The
geometry and corresponding coordinate system {r, 6, z} are shown in Fig. 8.1,

where ry and r; are the outer and inner radii of the pipe, respectively.
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For time harmonic axially symmetric purely torsional waves propagating in the

z-direction, the single displacement component is
v(r,z,t) =V (r)e** (8.1)

where ¢ is the phase velocity and « = kc . The corresponding stress components are

T =T, (8.2)
where
dav Vv
T,= U ——— 8.3
Tro ﬂ( ar I’] (8.3)
and
Ty =T " (8.4)
where
T, =1kuv (8.5)
The stress equation of motion is
2
or,, N 07,y 2 o°v (8.6)

o e re P

Substitution of Egs. (8.1), (8.2) and (8.4) into Eq. (8.6) yields the displacement

equation of motion
fr kv =—k2c2 Ly (8.7)
The general solution of this equation is
_ 1
v ZE[CJJl(quCYYl(qr)] (8.8)

where J, and Y, are Bessel functions of the first and second kind, respectively, C;

and Cy are constants, and
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=2k, =X
2 ]

(8.9)
C p

By a careful limiting process, it can be shown that for q =0, Eq. (8.8) reduces

to

V=

N |-

Ar, 7,,=0 and fw:ik,u%Ar (8.10)

where A is a constant. Equation (8.10;) defines the lowest axially symmetric
torsional mode. It can be checked that Eq. (8.10,) satisfies the displacement equation
of motion (8.7), provided that

2.2
kzv:k?cv, e, c=c (8.11)

2

The set of governing equations can now be extended to the case of nonlinearity
in the constitutive relation. In this paper, we select the displacement as

U= {0, v, O} for pure shear deformation of a pipe. For the case of axial symmetry,
small deformations and nonlinear material behavior and omitting quadratic terms,
the expressions for 7, and z,, follow from the relations presented in the Appendix

4A in Chapter 4 as

m=u[@—¥]+e(@_!) (@_!T+(@)Z (612)
' or r or rjl\or r 0z

v (v vY (ovY
—u | & 2L L&A 8.13
fr =1, [82(& rj (azj:l (8.13)

where G is the fourth order elastic coefficient. In view of Egs. (8.1) and (8.10;), we

have ov/or —v/r =0 for the lowest axially symmetric torsional mode. Thus, Egs.

(8.12) and (8.13) can be further simplified to

z,=0 (8.14)
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T, =y;—a\zl+G(é—a\zlj3, G<0 (8.15)
A stress-strain relation of the type Eq. (8.15) is shown in Fig. 1.7, together with a
stress-strain relation of the quadratic type. This figure shows that, for both quadratic
and cubic nonlinear behavior, a positive strain requires a smaller stress than for the
linear stress-strain relation. On the other hand, for quadratic behavior, a negative
strain requires a negative stress whose absolute value is larger than for the linear
stress-strain relation. This behavior which happens for some materials is referred to
as the strength differential effect, see Hirth and Cohen (1970), Gil et al. (1999) and
Rauch and Leslie (1972) for the corresponding curves for tensile and compressive

strain.

8.3 Higher harmonics

In this section, we study the lowest torsional wave mode propagating in a pipe
considering cubic material nonlinearity, see Fig. 1. Substituting Egs. (8.14) and
(8.15) into the equation of motion (8.6), we obtain

o’v 0%
L 8.16
el e (8.16)
where
2 A2
i =—3G(@j oy (8.17)
0z ) oz

Equation (8.16) is the displacement equation governing axially symmetric torsional

waves propagating in a pipe. A solution of Eq. (8.16) can be obtained in the form
v=v® 4y® (8.18)
Substitution of Eq. (8.18) into Eq. (8.16) yields in the usual manner by assuming

2
‘v(o) ‘>> ‘v(l) ‘ and ‘v“’" oc‘v(l)‘

o*v©® ov©®
Hgm P =0 (8.19)
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and

D (8.20)

where the right-hand side of Eq. (8.20) is

v @Y a2y©@

f[v®]1=-3G — 8.21
V™1 [ 0z j oz° (8.21)

The primary solution of Eq. (8.19) is now taken in the form

©_1
v _EAJr cos(kz —at) (8.22)
Substitution of Eq. (8.22) into Eg. (8.21) yields
1 3

f[v©@1=3Gk*AS [E rj cos(kz —at)sin® (kz - ot) (8.23)

After some simple manipulations, the above expression can be rewritten as
Fry@12 3 e z z
[V™]=—=G—- Ay’ < cos[a(t ——)]—cos[3a(t ——)] (8.24)
32 ¢ Cr Cr
A solution of Eq. (8.20) in the form of propagating waves can be taken in the form

VO =V, Ozsin[m(t — )] +V,2z cos[a(t — =]
G (8.25)
+VOzsin[3e(t - CTi)] V.97 cos[3a(t - é)]

Substituting Eq. (8.25) into Eqg. (8.20) yields

v1<1>:_39“’_:A§r3, v =0, V¥ =
64 1 c

160

o, v =0 8.26
T Ealii (8.26)

It follows that the cubic nonlinearity of the material gives rise to the harmonics of

the forms
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3G
oo_259

i 1Gdao } yA
seszsinfolt— 201+ C @ przsinBot- 1) (@
64 1 CT3 Arzsin[o( CT)]+64;1 Cf Ayrzsin[3e( CT)] (8.27)

It was to be expected that the cubic nonlinearity would give rise to a higher
harmonic of frequency 3w, but it is perhaps surprising that it also gives rise to a

harmonic of frequency w.

Attenuation may have a large influence on the amplitude of a wave as the
frequency increases. However, the governing equations considering attenuation
become quite complicated. For illustrative purposes, we give a simple analysis here
to discuss the effects of attenuation on harmonics. The primary wave is supposed to

have the following form
vO = % Ajre " cos(kz —at) (8.28)

where ¢, is the attenuation coefficient corresponding to frequency @ .

Adopting the method used in (Ju et al., 2017), we can get the expressions for
the harmonics which include the effect of attenuation.

3 -z _ 730{12
® =_ig“’_3 33 & sin[a)(t—i)]
64 u C 204 Cr (8.29)
3 —asz -3z .
y L OO s T8 GnBwt—2)]
64 u C 3a, -y Cr

where a;, is the attenuation coefficient corresponding to frequency 3w. Actually, the

attenuation term in the expression for the third harmonic in Eq. (8.29) agrees with
the corresponding one in (Hikata and Elbaum, 1966), which has been proven to
satisfy the equation of motion in an attenuative medium. The analysis of attenuation
presented here can be considered a reasonable approximation. Even though the
harmonics grow initially with propagation distance, they may subsequently attenuate
faster due to the exponential attenuation terms, see Eq. (8.29). These harmonics may

therefore be difficult to measure. Each of the two harmonics in Eq. (8.29) has a

maximum amplitude at a distance z_. , which is given by

max !
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max = I2n_3 for first harmonic with frequency @ (8.30)
e,
nax = M for third harmonic with frequency 3@ (8.31)
3o, —a,

8.4 Backscattering from a zone of nonlinearity

_____________

Incident Wave

\

Region of nonlinear material

Fig. 8.2 A pipe with a small zone of material nonlinearity

In this section, we consider the case that the pipe is perfectly elastic, except for
a small zone defined by z <[a], see Fig. 8.2, where the behavior in shear is defined
by Eq. (8.15). This nonlinear behavior might be due to dislocations (Hikata et al.,
1966; Liu et al., 2013), or some other effects of material deterioration. An axially
symmetric torsional wave, defined by Eq. (8.22), is launched into the pipe, and
when it reaches the zone of nonlinearity, this wave is backscattered. Scattering of an
incident wave by an inclusion of nonlinear material in an unbounded linearly elastic

solid has been investigated by Tang et al. (2012).
For the problem at hand, the incident and scattered torsional waves are defined
by v® and v, respectively. In the usual manner, we write the total displacement as

v, =V +v, (8.32)

where v is given by Eg. (8.22). Since |v,| << ‘v(o)‘, substitution of Eq. (8.32) into

Eq. (8.16) vyields by the usual perturbation procedure, which was discussed in
Section 8.3,
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Y oV

U 8225 -p atzs =0, |Z| >a (8.33)
oV, A

u 8225 —Pat—25= f[v®], |Z|S a (8.34)

Equation (8.34) shows that the incident wave generates an inhomogeneous term
equivalent to a body force. Since the region of nonlinearity and the adjoining region
have the same linearly elastic properties, the incident wave will not be reflected by

the region of nonlinearity.

It follows from Eq. (8.24) that the body force can be written as

f=1f+f, (8.35)

where
f = 332 ’r3Gk* Re[e™ -e7] (8.36)
f, = —3—32 Ar’Gk* Re[e®™ -] (8.37)

Even though f is a nonlinear term in the known quantity v® , the
backscattering problem for v, is clearly linear. Thus, the reciprocity theorem is still
valid. Hence we will consider the backscattering from f, and f, separately. For f,

we will consider the backscattering in some detail. Leaving out the term exp(—ia)t) ,

and for future reference labeling the backscattering problem as state A, see Fig. 8.3,

we define:

Body force:
z<|a]: fh=—f = 3 Ar’Gke™ (8.38)
32
Incident wave:

vh = % Are", ) = %,qurikeikz (8.39)
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Forward scattered wave:

z>a: v} :%Agre”‘z, ) :%uﬁgrike”<Z (8.40)

Backscattered wave:
z<-a: vA—1 e oa 1 ike ™ 8.41
: S_EAgre , Ty = Euﬁgle (8.41)

The problem at hand is the determination of the amplitude A,. This will be done by

the use of the elastodynamic reciprocity theorem.

N\ State A FE N
AL <

t 11 i i I

L B | R e e e b e e - -,
'i}' ________ 1 _-_—— 44 H

T

Incidefit Wave 1F2// State B ".‘\ 4
\ \‘\ /Ill

Region of nonlinear material

Fig. 8.3 Scattered and virtual waves for state A and state B

8.5 Use of the elastodynamic reciprocity theorem

For a linearly elastic isotropic body, the reciprocity theorem has been derived
elsewhere (Achenbach, 2003). The reciprocity theorem is an integral relation over
the interior of a region V and its boundary S, of the displacements, the surface
tractions, and the body forces of two elastodynamic states, State A and State B. We
will use the elastodynamic reciprocity theorem for time-harmonic fields, but the

time factor exp(—iwt) will be omitted.

The elastodynamic reciprocity theorem for a region V with boundary S may then
be written as (Achenbach, 2003)

[, (FAuP = £2uMav = [ (u'ef —uPrf)nds=[ uMP -u’th)ds  (8.42)
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where t* and t° are surface tractions.

For the present problem, we select for state B a torsional wave propagating in
the positive z-direction. We call this wave a virtual wave since it is not directly

related to the backscattering problem that is being considered. State B is defined by

Body force:
f®=0 (8.43)
Virtual wave:

B

v = % Are™, 7} = ,u% Arike* (8.44)

The geometry for state A and B is shown in Fig. 8.4.

The elastodynamic reciprocity theorem now reduces to

jv (FAVB)dV = L'(fgzvj —72v®)n,dS’ (8.45)

The volume V is the region defined by r, <r<r, z £|a|. The cylindrical surfaces
defined by r=r, and r =r, are free of tractions. The remaining surfaces S’ are the

end-surfaces r, <r <r, for z=1z, and z =z,, respectively. We have

[ g rverdrdz ([ Geave —eaveyrdr) ([ e — i) (846)

Because of the axisymmetry of the problem, we have omitted the integrations of
over the range 0< @ < 2x . Equation (8.46) can be written in detail as

a rn 3 a3.3~1 4k L 7o ik
—— Ar’Gk*e™) = Are™rdrdz
J:a.[rz ( 32 Ab ) 2

- _Uﬁ (y% Arike™ % Are™ + %yAS rike™ % Kre‘kz)rdrj (8.47)

=7

[ 1—-. .. 1 . 1 P
+| | (u= Arike™ = Are™ — = uArike™ = Are™ rdrj
[J7 0 ke % Are -2 umrike® 2 Are)

=1,
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Equation (8.47) shows that the integration that is to be determined at z =z, vanishes,

which implies that the waves of state A and state B do not yield a contribution to the
reciprocity relation when they propagate in the same direction. Equation (8.47) then

simplifies to

J-_aa J.rrl (6_?:1 ASAr®Gk*e®)drdz = U:l (%yﬂAsikr?’)drj (8.48)

_Zl

Evaluation of both sides of Eq. (8.48) yields the amplitude of the backscattered

wave as

LI DA
16 ﬂ(r14 - r24)

A= sin(2ka) (8.49)

The corresponding displacement is

2706 .6\ A3
vA :—ier (r14 r24)A" sin(2ka)sin(kz + wt) (8.50)
32 u(r —r,)

The wave backscattered due to f, can be obtained in the same manner. The

backscattering problem is defined as

Body force:
fA=—1f,= 3—32 AriGke®™ (8.51)
Forward scattered wave:
7>a: VA _E r 3ikz A _§ k 3ikz (8 52)
: S—Zﬁge : rgz_zy&rle :
Backscattered wave:
r<—a: Vh=Larete, A =3 A ke 8.53
. s _2A§re v Tor = ZIUAErle ( ' )

The virtual wave is again defined by Egs. (8.43) and (8.44) with k being replaced
by 3k .
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Application of the reciprocity theorem yields

1 Gk (R - ) A
144 (! 1)

A = sin(6ka) (8.54)

It follows that the total backscattered wave is given by

Vs = Vsl +V52
_ _i r Gwz(r16 ~ rzs)A?
32 ,UCTZ(r14 -r)

{sin(Zka)sin(kz + wt) —%sin(6ka)sin 3(kz + a)t)} (8.55)

It is noted that the backscattered wave is O‘Aj" Hence it is very small as

compared to the incident wave. In the next section we propose a way to increase the

magnitude of the backscattered wave.

8.6 Increase of the amplitude of the backscattered wave

The most suitable term to detect the region of material nonlinearity is the first
term of Eq. (8.55), because it has a lower frequency and it is therefore less

susceptible to attenuation, and it is also larger in magnitude than the second term
due to the factor 1/9. The significant quantities in the first term are the frequency o,
and the amplitude in A’. Neither quantity can be increased without increasing the
attenuation of the wave term sink(z —c;t). In this section, we will, however, show
that it is possible to increase the amplitude of the scattered displacement by

combining the incident wave of frequency @, given by Eq. (8.39) with a second

incident wave of frequency a,, where
W, > @, (8.56)

in such a way that we still have a scattered wave of the type sink, (z+c;t).

Combining two waves to obtain better results is similar to the mixing of waves,
which is, however, generally achieved with two waves of different polarization
(Chen et al., 2014; Liu et al., 2013).
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The total incident wave field which consists of two torsional waves has the
following form.

v =V, cos[@,(t — )] +V, cos[e, (t — )] (8.57)
o o

where V, =1/2 Ar and V, =1/2 A;r. The body force can then be calculated from Eq.
(21) as

1 o> 1 o’ Z
(E a)lch)z V1V22 + Z%V13JCOS[w1(t _;)]
1 v} @\,
+ 3 . VAV, + 4CT cos[a)z(t—a)]
1 oo, 1o’ 2 Z
el _= V.V, -2 t——
+ 5 i 2 cos[(a, —2a,)( )
1oiw, 1o’ z
f=3G ST =BT A, cos[(2 t-—
+ 5 o a ] cos[(2a, — w,)( CT)]
1 2 2 1w 3
_ Za’lc;)? > cf)z jVV cos[(a)l+2w2)(t—a)]
1 2 2 1 3
_(Z “’1CT j‘)z +§w; jvzv cos[(2a)l+a)2)(t—a)]
_1_\/ (;osg[a)l(t__)]—lw2 VA cos3[a)2(t——)]
4¢ ¢, 4c c (8.58)

The cosine which appears in the first term has the right argument. All the other
terms have the cosine terms with higher frequency. Thus, we select

3 a) wz 2,3 _Zz
f = I & —/—2GAAr’cos[am,(t )] (8.59)

Using this expression for f as the body force term, we obtain

v o1 G (n ~H)AA sin(2k,a)sin(k.z + wyt) (8.60)

ST uer (n' =)

In comparison with the first term in Eq. (8.55) w=w,, we note that the ratio of

amplitudes of Eqg. (8.60) and Eq. (8.55) is
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(Vs )2 _A, 26022 AN (8.61)

where it follows from Eqgs. (8.50) and (8.60) that

1 Gy} (r° —r, )/—\0

A, =- % ) sin(2k,a) (8.62)
_ 1 Gl (r’ —r))AA

A,=- 16 L (0 -1 sin(2k,a) (8.63)

Equation (8.62) can be rewritten in the form

6
e IO
AR ul4 - / 0 A
where A, =2z/k, =27zc; /e, is the wavelength for frequency @,. Since it may be

assumed that the amplitudes are such that

Ai 2
= (8.65)
and using
0)2 4 2.2
W} == ZZCT, (8.66)

Eq. (8.63) can also be expressed as

A, 1 .0 G(2a z(ijzwsin(zﬂ§) (8.67)
A 16 o ul A @-r'/r) A |

Thus, in view of Egs. (8.64) and (8.67), we have

Ae_,@ (8.68)

AL @
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Fig. 8.4 Phase velocity ¢ versus frequency /27 for three lowest modes, for

¢, =3200 m/s

To prevent interference with higher order torsional modes, the frequency w,
cannot be too large. Figure 8.4 shows the dispersion curves for the three lowest

axisymmetric torsional wave modes. If we select @ /27 =40kHz and

o, /27 =200 kHz, we may assume that higher modes are not generated.

Figure 8.5 shows the amplification of the normalized amplitude of the scattered

wave with frequency @ =@, =807 kHz as it is combined with an incident wave of
frequency @, =400z kHz versus the dimensionless length of the nonlinear domain,

2a/A,. Since @,/w, =5, the amplitude after amplification of the scattered wave (i.e.

Eq. (8.67)) becomes

&:_éﬁze{ M j(l LN (27; J (8.69)
A 160 ul 4 a5 A

For the specific example of Fig. 8.5, the fourth order elastic constant G is set as -
2.4, and the ratio of the inside and outside radius, r,/ry, is taken as 0.9. For the
combination of the two waves, the amplitude of the scattered wave is amplified by

almost 50 times. It is noted that, in principle, we can obtain the length of the
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nonlinear domain by measuring the amplitude of the scattered wave.

40

-80 -

r/a=125 /

-120 - (a)

ﬂ Amplification

2000 -

-2000 -

A lAN3

-4000 -

-6000 - (b)

Fig. 8.5. Amplification of the normalized amplitude of the scattered wave with
frequency @ =@, by a combination of incident waves of frequency @, and o,
versus the dimensionless length of the nonlinear domain, 2a/4,, (a) Eq. (8.64), (b)

Eq. (8.69)
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Fig. 8.6. Variation of the normalized amplitude, AZ/AQ , EQ. (8.69), of the scattered

wave versus the fourth order elastic constant

Figure 8.6 shows the variation of the normalized amplitude, A,/AS, versus the

change of the fourth order elastic constant after amplification. The parameter ri/a is

12.5 and 2a/4, is 0.8, which corresponds to a=3.2 cm. The fourth order elastic

constant may be changed by material loss, which can be sensed by the detection of
the amplitude of the scatted wave.

8.7 Conclusions

Torsional wave propagating in a pipe was investigated for cubic material
nonlinearity. The generation of cumulative harmonics and the backscattering of a
torsional wave from a small zone of material nonlinearity were considered. For the
first problem, we not only obtained an analytical expression for the third harmonic,
but also one for a harmonic whose frequency is the same as the frequency of the
incident wave. The amplitudes of the two harmonics grow linearly with propagation
distance. For the scattering problem, the analytical expression of the backscattered
wave was obtained by using the elastodynamic reciprocity theorem. The amplitude

is determined by the nonlinearity coefficient, G, the size of the nonlinear region,

2a, and the geometry of the pipe, I, ,. Combining the primary wave with a higher
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frequency wave was proposed to increase the magnitude of the backscattered wave.
An example that the original scattered wave is amplified by a factor 50 was

presented.
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Chapter 9 Intersection of two elastic waves at the region of

material nonlinearity in an elastic layer

9.1 Introduction

Several methods have been proposed by using elastic waves to measure
material nonlinearity. The harmonic generation technique is the most widely
reported method. The drawback of the harmonic generation technique is that it is
hard to separate the underlying system nonlinearity from the material nonlinearity.
To avoid such interferences, the mixing wave technique has been proposed, which
includes collinear and non-collinear mixing wave technique. The outstanding
character of this technique is that the frequency of the mixing wave is selectable,
which can be the sum or difference frequencies of the incident waves. Another
important advantage of the mixing wave technique over the harmonic generation
technique is the spatial selectivity that the nonlinear interaction is only limited to the
region where the incident beams intersect (Croxford et al., 2009). For the collinear
mixing wave, the position of the intersection region is figured out by making use of
the wave velocity and the propagation time. While the intersection region can be
determined directly through a geometrical means for the non-collinear mixing wave
technique in an easier way. The investigations on collinear mixing wave have been
conducted in Chapters 7 and 8. In this chapter, we consider the intersection of two

non-collinear waves at a region of material nonlinearity.

On the other hand, from the practical point of view, the reflection, transmission
and scattering of incident waves from an inclusion of nonlinear material behavior
are of obvious interest. Recently, the interactions of elastic waves with a local region
of nonlinear material behavior have some interesting studies. Tang et al. (2012)
investigated the scattering of an incident longitudinal wave from a region of
spatially-dependent quadratic nonlinearity. The scattering of elastic waves from a
heterogeneous inclusion of nonlinearity contained in a linear host material was
investigated by Kube (2017).

However, little attention has been paid to the investigation on scattering of
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incident waves from a local region of material nonlinearity in structures like plates,
which motivates the present work. In this chapter, the scattering of two orthogonal
SH waves of lowest mode from a cylindrical region of nonlinear material behavior
in an elastic layer is investigated. For this end, the perturbation method is taken to
reduce the nonlinear governing equations and the boundary conditions to a set of
linear equations at different orders. The two incident SH waves are viewed as the
solutions of the zero-order equations. Taking a substitution of the expressions of the
two SH waves into the nonlinear terms in the first-order equations, the
inhomogeneous equations can be obtained, which have the same form as the
equations used to describe the forced wave motion induced by the local body forces
and the local surface tractions in an elastic layer. The inhomogeneous terms which
collect the contribution from the material nonlinearity can be equivalent to the
corresponding body forces and the surface tractions. Then, the scattering problem is
transferred to the problem of forced wave motion in a three-dimensional elastic
layer. In general, such problems can be solved through wave mode expansions
(Achenbach and Xu, 1999; Diligent et al., 2002) or integral transforms (Weaver and
Pao, 1982; Santosa and Pao, 1989). In the present chapter, the reciprocity relation in
elastodynamics (Achenbach, 2003) is adopted to obtain the expressions of wave
amplitudes based on the superposition of wave modes. It is of interest to note that
only the coefficient of the lowest wave mode is found nonzero for the scattered SH
wave. The amplitudes of the scattered waves are affected by the size of the nonlinear
region, the nonlinear material constants, the detection angle, the wavelength, and the
ratio between the two frequencies of the incident waves. These effects are shown
graphically by numerical examples for the scattered Lamb wave of zero-order mode

and SH wave.
9.2 Basic equations
9.2.1 'Wave motion in an elastic layer with quadratic material nonlinearity

The displacements in the X, (i=1, 2, 3) directions in Cartesian coordinates are

represented by u,. The displacement equations of motion of an isotropic solid are

given by (Tang et al., 2012)



Chapter 9 Intersection of two elastic waves at the region of material nonlinearity in an elastic layer 197

U o°u. o%u.
L (A+ !l _ = f[u,u,,u 9.1
P T ) o T o ] (9.1)

where A and x are the Lamé’s constants, p is the mass density, and

A( o'u,_ou, O, du , O aulJ

"4 oxox 0%, OXOX O OX0X, OX,
2 2
OU_ O | (g+2c) 2t U 92)
OX,0X, OX, OX,0X, OX,

J{A“LB) o, oy o’u, U o°u, o, o°u, ou,
4 OX;0X, OX, OXOX, OX, OXOX, OX, OXOX, OX
where A, B and C are the third-order elastic constants and f. collects all the

contribution from the material nonlinearity. Repeated subscripts denote summation.
It should be pointed out that only the material nonlinearity is considered in this
paper. Thus, the coefficients of the nonlinear terms in Eq. (9.2) only depend on the

third-order elastic constants.

% Tx_;

Nonlinear region vh A7 X, 5.

(a) An elastic layer (b) The side view

Fig. 9.1. An elastic layer with a cylindrical region of quadratic material nonlinearity
across the thickness and the corresponding rectangular coordinates

The upper and bottom surfaces are free of tractions, which can be described by
Ts =Ty =T, =0, alx;=hor x;=-h (9.3)

where the expressions of stresses are represented by

ou ou. ou .
= AL S ul —+—= |+, (i=1, 2, 3 9.4
T|3 8X, i3 ,Ll ( 8X3 5 J 2-|3 ( ) ( )
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with the nonlinear parts being

no  A[0u ou, ou; du; ou, ou;  Ou, oy,
Ty =—| ——+——+——+——
410X, OX; OX OX OX; 0%  OX OX

B
+

Bow du ;o 2w A o 0 2 Y ©.5)
2\ OX, OX, OX, OX, OX; OX, oX; OX
+C%% "
0X, OX,

9.2.2 Scattering of two lowest SH waves from a local zone of material

nonlinearity

X2

Nonlinear region

N

X1 7

Fig. 9.2. Incidence of two SH waves intersecting vertically at the cylindrical region

of nonlinear material

In this section, two SH waves of lowest modes are considered as the incident
waves. The propagation directions of these two waves are perpendicular to each
other, which intersect at the nonlinear cylindrical region, see Fig. 9.2. Thus, the total
wave field can be represented by the summation of the incident waves and the

scattered waves as follows:

u, = ulo(xz,t)+ull(x1, X, X3,t),
U, :ug(xl,t)+u§(x1,x2,x3,t), (9.6)

Us ZU;(Xi,XZ,X3,t)

where u?(x,,t) and uy(x,,t) are the displacement components of wave a (u*) and

wave b (u®), respectively. The SH wave of lowest mode only has a single
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displacement component, which is independent of the coordinate variable in the
thickness direction.

Since the scattered waves are generated by the interaction of SH waves with the

region of weak material nonlinearity, we assume
u’|oc O(%), |uf]-|us| o= O(&"), |ui] O (9.7)

where ¢ is a small quantity. Substituting Eq. (9.6) into Eq. (9.1), the governing

equations can be separated into two sets of equations at two different orders. At &°,

the displacement equations of motion are obtained as

v, o)
Pae Mo

-0 (9.8)

for wave a, and

2,0 2,0
ou, OU, _

9.9
P ,Uaxf (9.9)

for wave b. By virtue of Egs. (9.8) and (9.9), the expressions of the SH waves of

lowest modes can be represented by

ul =—A cosw, [ﬁ—t} (9.10)
c,
for wave a, and
0 Xl
u, = A Cosa, (E_tJ (9.11)

for wave b, where A; and A, are the amplitudes of wave a and wave b, respectively,

and o, and @, are the corresponding frequencies.

The boundary conditions, Eq. (9.3), at ¢°, then become

7103 = r23 = 13?3 =0 (9.12)
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The free boundary conditions on the bottom and top surfaces are satisfied
automatically.

At &', the displacement equations of motion can be represented by

o*ut out o°u!
LA+ I _ L —f, X’+x’<a 9.13
ol “)axjaxi Hoxox, " 0% (9.13)

o%ut out ou!
L (A+ L _ L =0, x’+x:>a 9.14
ol ”)axjaxi Hoxox, — % (9.14)

where f, (i=1, 2, 3) can be obtained through Eq. (9.2) by replacing u, (i=1, 2)

with u’, and ignoring the terms containing u, and X,, and are represented by

2,,0 0 0
f= (5 i Bj O, | U | Ou (9.15)
2 OX \ OX  OX,
2,,0 0 0
, = (é+ Bj 2 uzl o, + ou, (9.16)
2 oX; \ OX, OX
f,=0 (9.17)

In this chapter, only the scattered waves of sum frequency, i.e. o=, +®,, is

taken into account. The scattered waves of difference frequency can be obtained in a

similar way. Substituting Egs. (9.10) and (9.11) into Egs. (9.15) and (9.16) and only
retaining the cross terms with sum frequency, we obtain

f = Fa,sin %—(%era)t} (9.18)
f, = Fo, sin “’bxi:"axz (@, +a)a)t} (9.19)

where

F :_E(éw) “’CTj’b AA (9.20)
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By considering Egs. (9.10) and (9.11), the boundary conditions of free tractions on

bottom and top surfaces (i.e. xs=h and xs=-h) at &' can be satisfied when

ou? out  oul
A—L6. +ul —+—=|==t, X¥*+x’<a 9.21
axl i3 :u(axg 8Xi J i Xl 2 ( )
out oul  out
A8 +ul —+—=2 =0, x*+x’>a 9.22
axl i3 Iu[axs 8 i j i X1 2 ( )
where
t =t, =0, (9.23)
B w,0, @, X + @, X,
t,=—AA 22 cos{ (e, +o, {—a—t (9.24)
=AM {( | @ ra)e,

Fig. 9.3. The transformation of the nonlinear scattering problem into an equivalent
linear problem of forced wave motion excited by the body forces and the surface

tractions
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In Eg. (9.13), the inhomogeneous terms specified in Egs (9.18) and (9.19) can be

viewed as local body forces distributed within the nonlinear region. Similarly, t. in

Eq. (9.21) can be viewed as local surface tractions in the thickness direction on the
bottom and top surfaces. Mathematically, the displacement equations of motion at
the first-order (i.e. Egs. (9.13) and (9.14)) together with the equations of boundary
conditions (i.e. Egs. (9.21) and (9.22)) can be used to describe the waves
propagating in a linearly elastic layer excited by the distributed body force and the
distributed surface tractions. Thus, the nonlinear scattering problem has been
transformed into an equivalent linear problem of forced wave motion in an elastic

layer. The above analysis can be understood via the flow diagram in Fig. 9.3.
9.3 Use of elastodynamic reciprocity relation

9.3.1 Wave motion excited by a point force in x;-direction

The waves excited by the distributed body forces and the surface tractions can
be equivalent to the superposition of the waves excited by the point forces. Thus, the
solutions of these two problems should be in the same form. Since the waves
generated by a point force will propagate in the radial direction, it is convenient to
use cylindrical coordinates instead of rectangular coordinates. The following

transform relation between the two coordinate systems will be used:
X, =rcosé, X, =rsing, x, =z (9.25)

The displacement solution in the cylindrical coordinates can be obtained from
Egs. (9A.1)-(9A.3) in Appendix 9A by using the above transformation, which can

be given by
u; :ivn(z)M (9.26)
K, or
1 0¢(r,0)
V 9.27
@)= (927)

u; =W"(2)e(r, 6) (9.28)
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Op(r,0) 10p(r,0) 1 &p(r.0) K
or? r or r2 0%

o(r,0) =0 (9.29)

for the Lamb waves. Equations (9A.4), (9A.5) and (9A.7) can be rewritten as

1 10y(r,0)
_ U QR (9.30)
u (2 )5'//(r .0) (9.31)
o’y (r,0) Llop(ro) 1 a2'/’(”9)+|2l/,(r,¢9):o (9.32)

or? r or r2 06*
for the SH waves.

From the reference Achenbach and Xu (1999), we know that the solution to Eq.
(9.29) for the point load applied in the X -direction should take the following form

for the Lamb wave:

o(r,0) =d(r)cosd (9.33)
The solutions for an outgoing wave and an incoming wave are, separately, given by

ok r)=H?(k.r) (9.34)
and

d(k,r)=HP(K,r) (9.35)

where @ is, separately, written as @ and @ for clarity, and H® and H/? are

Hankel functions. Hereafter, the notation of ®'(£) denotes dd(&)/d& . According
to the property of Hankel function, the approximate representations of Eqgs. (9.34)

and (9.35) for large values of k.r can be given by

i(k -2 % ik r—2E-Z
HO (k,r) ~ /%e Y O ) ~ /%e “TT (9.36)
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It is noted that @ represents an outgoing wave compatible with the time factor
e'" or an incoming wave compatible with the time factor e . The opposite rule is

applicable to @ . The solution to Eq. (9.32) for SH waves takes the following form

w(r,d)=Y(r)sing (9.37)

where W(r) has the same definition as ®(k r) in Egs. (9.34) and (9.35), which is
denoted as W(I,r) and W(l.r) , respectively, instead of ®(kr) and ®(kr) .
Equations (9.33) and (9.37) are the solutions of carrier waves for Lamb waves and
SH waves, respectively. The displacement fields of Lamb wave and SH wave can be
determined through the superposition of the carrier wave and the thickness vibration.

For the symmetric problem, the total wave field can be written as the summation of

the symmetric Lamb wave and the symmetric SH wave.
9.3.2 The body force in x;-direction

In this section, the wave generated by the body force in the xj-direction is
investigated. By virtue of Eq. (9.25), the body force defined by Eq. (9.18) can be

written in the cylindrical coordinate system as

. @, COSO+ w, Sin @
f.=Fa,sin< (e, + o, { r—t} cosd (9.38)
{( ) ¢ (@, +o,)
. @, C0SO+ w, sin@ } .
f,=—Fa,sin< (o, + o, r—t|rsinéd (9.39)
e e el

The body forces only exist within the region r <a. To use the reciprocity relation in
the following part, we rewrite Eqgs. (9.38) and (9.39) in the form of exponential
function instead of trigonometric function. The following transformation between
exponential function and trigonometric function is used.

i _e—ig

gng=9—5—— (9.40)

Then, Egs. (9.38) and (9.39) can be rewritten as
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i @ cos O+, sin eri(%ﬂua )tJ 4(% c0sf-+a, sind r—(ay 0, )t]
—€

fr:—%iFa)b e[ 4 u cosd  (9.41)

i(% 08O+, siné r—(a)n+a)a)t] —i[m" 080+, sin er—(a)bma )t]
Cr e cr

sind  (9.42)

1.
f,==iFa,|e
2

It is noted from Egs. (9.41) and (9.42) that the body forces induced by the
interaction of the lowest SH wave with the region of quadratic material nonlinearity
are independent of z, which means that the body forces are symmetric with respect
to the middle plane of the elastic layer (i.e. z=0). It is expected that the scattered

wave field is also symmetric with respect to the middle plane.

9.3.3 The generation of Lamb wave

;;;;
N

w
\ Scattered waves
/, \‘\ ‘////r\\
I \ ,.J' ?,/ “\Sl

Q
g
i
|
|

3% '.'«L \ Linear

/ rP-
\
\ 1
‘ /\ /
AY
N /
N
< R V\ N
PP S S SNy
TN N
x’ V 2,73 o

Fig. 9.4. Scattered waves and virtual waves in the annular domain (top view)

The reciprocity relation is utilized to obtain the amplitudes of the generated
waves. For two different time-harmonic states, denoted by state A and state B, the

reciprocity relation can be represented by (Achenbach, 2003)

.[v( fu? — fiBuiA)dV = Js(uiATiiB —uiBrif)nde (9.43)
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where V is the selected annular domain (-h<z<h, r<b) with the boundary
surfaces S; (lateral surface), S, and Sz (top and bottom surfaces), and n; is the

outward normal of the lateral surface S; (see Fig. 4), b is the radius of the domain.

For the problem at hand, Eg. (9.43) can be specified as
[ (fAuP+10u])dv
:l:J. (ur T, —U z-rr) (ug‘[@Br _ufrar) (U T U4, Tzr)ds:l

where the boundary conditions of free tractions on the top and bottom surfaces have

(9.44)

r=b

been used.

We firstly consider the following body forces with the time factor e'(“**)
which is a part of the body forces defined by Egs. (9.41) and (9.42):

_i% €0sO+w, sind r

1 o
f = 2|Fa>,0e cosd,r<a (9.45)

0 r>a

_i% C0s6+w,siné r

1. o .
f —ElFa)be sing,r<a (9.46)

1%
0 ,r>a

Hereafter the time factor €'***" is omitted for simplicity. For an elastic layer, the
outgoing symmetric scattered waves are represented by the summation of the

outgoing symmetric Lamb wave and SH wave, which is labeled by state A:

0

=Y AVSD'(k, r)cosé’+ZH cos(eﬁzj L ¥(l,r)cosd (9.47)
Ir

e=0

0

u;=ZA@/S(k J(D(k r)siné — ZH cos( - j‘{’(l r)sin@ (9.48)

e=0

o0

s =D AWSD(k r)cosd (9.49)

e=0
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Equations (9.47)-(9.49) can be directly obtained through mode expansion and V;
and WS have the same definitions as the corresponding ones in Egs. (9A.8) and
(9A.9) in Appendix 9A with the replacement of n by e. k, and |, are the solutions
of the dispersion relations for a specific frequency @ = @, + @, for Lamb wave and

SH wave, respectively. The superscript “1” of U, representing the first-order is

neglected for simplicity here and after.

For state B, we choose a summation of single outgoing and incoming

symmetric Lamb waves as a virtual wave in this section, which is represented by

ur :%Vsm(z)[q)’(kmr)+CT)’(kmr)]cos¢9 (9.50)
n_Lymp[ =L 5 .
ur = sz (z)[kmr}[cp(kmr)m(kmr)]sm9 (9.51)
m 1 m =
u’ :EWS (@[ @(k,r)+D(k,r)]cos o (9.52)

where V" and W;" have been defined by Egs. (9A.8) and (9A.9) in Appendix 9A
with the replacement of n with m, respectively. k is the wave number of the m-th
order Lamb wave mode for a specific frequency @ = @, + . In addition, it is also

assumed that there is no body force for state B (i.e., f.°® =0).

Next, the terms on the left- and right-hand sides of Eq. (9.44) will be
manipulated separately. The left-hand terms of Eq. (9.44), which represents the

contribution from the body force, then results in
[ (fPul+f0u8)av = é Fa,BM V" (9.53)
where

V= [ vrdz = 2| sin(ph) + 2sin(gh) |,
IR p q
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i C0S O+, sin@ r

a 27
Bl =[ ["®re ©  dedr (9.54)
where
1 1 1
R/ :EJO(kmr)r+c0326’(530(kmr)r—k—.]l(kmr)j (9.55)

The following identities have been used:

3, ,F) = 35 06,0) =3, k),
r

HO®k N+HP (K r)=2J,(k.r)

To simplify the evaluation of the terms on the right-hand side of Eq. (9.44), we
only consider the far-field wave that the terms containing 1/r can be neglected. It is
reasonable when the propagation distance or the radius of the selected domain (i.e. b)
in Fig. 9.4 is large enough. Substitution of Eqgs. (9.47)-(9.52) into the integral on the
right-hand side of Eq. (9.44) gives rise to

Qmm =_A$1Immlf_l (956)
It should be pointed out that the nonzero result is only available for e =m due to the

orthogonality of wave modes (Achenbach, 2003). The detailed derivation of Eq.
(9.56) and the definition of | are both given in Appendix 9B.

Substituting Egs. (9.53) and (9.56) into Eq. (9.44) yields

SFOBIV =Rl o (@57

Evaluation of Eq. (9.57) yields the amplitude of the scattered Lamb waves as
follows
1 BV,

Ai =__Fa)bkm |

9.58
1 - (9.58)
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The body forces with the time factor e '“»**)* can be obtained from Eqs. (9.41)
and (9.42) as

i COSf+w, sind r

1.
_= Cr
f = 2|Fa)be cosd,r<a

] (9.59)
0 ,r>a
1 i%cosewoasiner
1. BT

f, = 2IFa)be sind,r<a (9.60)

0 r>a

For this case, the outgoing symmetric scattered waves can be represented by Egs.

(9.47)-(9.49) by replacing ® with @ . Proceeding in the same way, we can rewrite
Eq. (9.44) as

. ) .
—% Fo,B"V" = ATl k—' (9.61)

m

where

NoS cos&+a}asin6r

By =[["wre dodr (9.62)
Evaluation of Eq. (9.61) yields

A= Fak, 2

9.63
1 - (9.63)

In view of Egs. (9.36), (9.47)-(9.49), (9.58) and (9.63), the displacement
components of the far-field Lamb wave can be represented by the superposition of

above the two results as

T __1 F%ZV—S /2—kre cos Vg (CLe cos B —S,, sin ﬂer) (9.64)
T

2 e=0 Iee
uzS - _% Fa)bz\(_s 2k; cos &NSG (CLe COSﬂeZ - SLe Sinﬂez) (965)
e=0 Tee T
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where
ﬁer :ker_(a)a_'_a)b)t_%’ ﬂez :ﬂer_%

and

C :rr”ﬂ{e cos| 20080F@SING g
Le 0 Jo L CT

_faper e | . [ @,C086+w,sin6
SLe—jO J'O S}{L{sm( rﬂd@dr

o

From Eqg. (9.48), it is known that the displacement component in the
circumferential direction is very small for the far field Lamb wave due to the factor

1/r . So it is omitted here. The selected virtual wave defined in Egs. (9.50)-(9.52)

only has a contribution to the solution of generated Lamb waves.
9.3.4 The generation of SH wave

To obtain the solution of the generated SH wave, the symmetric SH wave is
then selected as a virtual wave for state B, which contains both outgoing and

incoming symmetric SH waves as follows

um :lcos(%j%[q!(lmr)#?(lmr)] cosé,

1 mzz Y — . (966)
U, = —Ecos[Tj[‘P'(lmr) +¥'(1,r]siné
The form of the scattered wave keeps unchanged (i.e. Egs. (9.47)-(9.52)) for state A.
The reciprocity relation, Eqg. (9.44), is again used. Making use of the body forces
defined by Egs. (9.45) and (9.46) and the virtual wave defined by Egs. (9.66), the

evaluation of the integral on the left-hand side of Eq. (9.44) can be given by
[ (f20P+ 1, ug)dv :%iF%smBTm (9.67)

where
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0, m=0
5" = [" cos| ™22 |z = ” (9.68)
~h h 2h, m=0

and
) . @y, COS O+, sinHr
a T e
B =[ [ "®fe  dedr

R :%JO(|mr)r—cosze(%Jo(lmr)r—IlJl(lmr)

m

J (9.69)

Making use of Egs. (9.47)-(9.49) and (9.66), the evaluation of the surface
integral on the right-hand side of Eq. (9.44) yields

Qmm = ZIUHrSn‘]mmi (970)

where J.=h for m=0 or J_. =2h for m=0. It should be pointed out that Eq.

(9.70) only has nonzero values for e =m due to the orthogonality of wave modes.
The detailed derivation of Eq. (9.70) is presented in Appendix 9C. By virtue of Egs.
(9.67) and (9.70), Eq. (9.44) can be rewritten as

%iFa)DSmBTm* =2uHJ i (9.71)

From the expression of S™ in Eq. (9.68), we find that only the amplitude of the SH

wave of lowest mode (i.e. m=0) is nonzero, which can be represented by

He=1F , B 9.72)

4 p
The virtual wave defined by Egs. (9.66) only contributes to the scattered SH wave.

For the body forces defined by Egs. (9.59) and (9.60), together with the virtual
wave defined by Egs. (9.66), Eq. (9.44) can be specified through the same procedure

as

—%iFmbSmBT‘ =—2uHJ i (9.73)

where
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i COSH+(x)aSin€r

apr2r
By = J, e 7 dodr (9.74)
Equation (9.73) gives rise to

1F ®,B;” (9.75)

Hi==—
0 4 1

By virtue of Egs. (9.36), (9.48), (9.72) and (9.75), the summation of the above
two results yields the far-field symmetric SH wave, as follows

s 1F / 1 Cr 0 i 0 . af
u =—,|—— — sin @ cos + 9 9.76
0 \/;,uwb o7 wa+biT (ﬁe o) (9.76)
where
c2+S8%, g = Cro gy il 9.77
T0 T 9101 % —&I’CCOSE, B = or_(a)a"'a)b)t_z (9.77)
with

c.. :J.ajzﬁmg COS[% cosd+w, siné rjd&dr,
0J0 CT

S, :rr”‘ﬁﬁ sin(wb CosO +, sing rjdedr
0J0 CT

where R? is defined in Eq. (9.69) by setting m=0.

Here | _, = (@, +®,)/c; has been used for the SH wave of lowest mode. It can

be noted from Eq. (9.47) that the displacement component in the radial direction is
small in the far field due to the factor of 1/r . It is of interest to note that only the

lowest SH wave has been excited for the incidence of two lowest SH waves.
9.4 Total displacement field of scattered wave

9.4.1 Wave generation by the force in x,-direction

The waves excited by the body force in the x,-direction can be obtained directly

from the solution to the waves excited by the body force in the x;-direction.
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Intuitively, whether the external force is applied in the x;- or xp-direction, both
generated waves should have the same expression when the elastic layer is rotated
by an angle /2. In this case, the solution to the waves excited by the body force
defined in Eq. (9.19) can be obtained based on the solution to the waves excited by
the body force defined by Eq. (9.18) by making use of the ratio of f, and f, as well
as the rotation of the coordinate system. By virtue of Eq. (9.18) and (9.19), the ratio
of f, and f, is given by

h_a (9.78)
L a

When the coordinate system is rotated by z/2 clockwise, the transformation

between these two coordinate systems can be given by
r'=sr, 8=0-7/2, 7'=12 (9.79)

For the coordinate system (r’, @', z'), we can obtain the solution in the same
form as the ones given in Egs. (9.64), (9.65) and (9.76) by replacing ¢ with 6'. And
making use of Eq. (9.78), the solution to the wave excited by the force f, can be
obtained in the new coordinate system. When we use the transformation between 6
and @' given in Eq. (9.79), the expression of the outgoing Lamb wave excited by

the body force in the x,-direction can be obtained, which is represented in the old

coordinates (r, 6, z) as

us = 1 Fwazv_s /Zke sinév; (C, cos B S, sin ;) (9.80)
zr

2 e=0 Iee

us = 1 Fwaz\/_s /2—kre sin Wy (C,, cos 87 -, sin ;) (9.81)
T

2 e=0 lee

Proceeding with the same procedure, the expression of the outgoing SH wave

can be represented by

ug :\/iia)a /i /LBTO cos@cos(ﬁf+8§) (9.82)
ru 2 \| o, + @,
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9.4.2 Wave generation by the surface traction t,

In this section, we consider the waves induced by the normal tractions t, on the

bottom and top surfaces shown in Fig. 9.3. In view of Eq. (9.25), the traction t,

defined in Eq. (9.24) can be rewritten in the cylindrical coordinate system as

i % €0S 6+, sin Br i C0S O+, sin@ r

t3 _ % AaAb a)(a:?)b e [ 'e—i(a)b-#a)a)t e or .ei((‘)n'”‘)a)t (983)

The reciprocity relation is also utilized to obtain the solutions for the wave
excited by the surface tractions. The integrals on the upper and bottom surfaces are
nonzero, while the body force is considered to be zero for this case. Thus, Eq. (9.44)

can be specified to

A_B B_A A_B B_A A_B B_A
Ozl:'[sq( rTrr_urrrr)—i_(uﬁrar_urrar)+(uzrzr_uzrzr)ds:|

+[ I, (uf‘ts)dslh +[ _fsg(uft?,)(—l)ds}

where t; is the surface traction, which is defined by Eq. (9.83). When the free Lamb

= (9.84)

z=-h

wave is selected as the virtual wave, which is represented by Egs. (9.50)-(9.52), the
expression of the Lamb wave excited by the surface tractions can be obtained. The
first integral in Eq. (9.84) has been given in Egs. (9.56) and in Eq. (9.61) (the right-

hand side), respectively, for different time factors. For the tractions with the time

O+,

factor e (®* ! or 7@ ) the evaluations of Eq. (9.84) for different time factors

can be rewritten separately by

Rl 2 AR PBW ()T, =0
g Cr (9.85)
sp A B A LS \wrnmTo =0
AT] mm k 2 AaA) C_lg S ( ) m

m
which successively result in

.B k m .
A= AR TR (T, (9.86)
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and

a)a a)b

K= AA W T, (087

where

2r ea 7i%0059+wa5i”9r
To=["] di(k,r)cosée = rdedr, 055

% C0s0+w,sinf r

B 27 pra o
T, :jo Io J,(k,r)coséde rdrdé&

Substitution of the expressions of the amplitudes into Eqs.(9.47)-(9.49) gives

rise to the expression of Lamb wave. It should be noted that ® should be replaced

by @ for the waves induced by the tractions of the time factor e (»* %) In view of

Eq. (9.36), the expressions of the displacement components for the far-field Lamb

wave can be represented by

us = ATV (S], cos B +Cl,sin B (9.89)
e=0

us = > AW (S], cos B +Cl,sin B7) (9.90)
e=0

where

A:‘T = _EM%W:U]) ’Z_ke cos @
Iee G zr

and

S/ =.|'2”.[aJ (k,r)r cos@sin 9,080+ 0, SN0 4 gy
Le 0 Jo “1l\e CT

a)bcosé?+a)asin6?r
C

27 ra
ClL :IO Io J,(k.r)r cosacos[ ]dadr

Intuitively, the normal tractions have no contribution to the generation of SH
wave. It can be easily proved by changing the virtual wave from Lamb wave to SH
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wave.
9.4.3 The total expressions of the scattered waves

The superposition of the wave fields excited separately by the body forces and
the surface tractions is equivalent to the waves scattered by the nonlinear region.

The displacement components of the far-filed Lamb wave can be given by

us = ip\;v; cos(B +9) (9.91)
us = i&w; cos (3 +9) (9.92)

o
1l
o

where the amplitude of the eth-order Lamb wave mode is

A= (A=C, + ATSLY +(A®S, - ATCL)’ (9.93)

with

2 |

ee

AL :(_EFV_S 2_ke](a;b cosd+w,sinb),
zr

A’CL.+A'S/

9 =arccos -

where F is defined by Eq. (9.20), BS, V.* and 1., are defined in Egs. (9.54) and
(9B.10) in Appendix B, respectively, by the replacement of m with e ; the
expressions of V¢ and W are given in Egs. (9A.8) and (9A.9) in Appendix 9A,

respectively, with the replacement of n with e; and k, is the eth-order wave
number corresponding to the wave frequency w=w,+a®, . The displacement

component in the circumferential direction is neglected due to its’ small magnitude

in the far field.

The total expression of the SH wave can be given by

us = A% cos(ﬂf +190T) (9.94)
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where

A% :\/%5,/% ﬁBﬁ(wa cosf—a, sin o) (9.95)

where B? has been defined in Eq. (9.77). The displacement component in the radial

direction is omitted due to its’ small magnitude in the far field. The scattered SH
wave is remarkably advantageous over the Lamb wave due to its’ simple
mathematical structure. Using the measurement of the amplitude of SH wave or
Lamb wave, the values of the nonlinear material constants, A and B, can be figured
out. The method utilized this chapter can’t give rise to the evaluation of the

nonlinear material constant C.
9.5 Numerical results and discussions

The analytical solutions for the scattering of two lowest SH waves from a
cylindrical region of nonlinear material have been obtained. In this section, the
results will be shown graphically based on the expressions given by Egs. (9.91)-
(9.95). The effects of the radius of the nonlinear region, the magnitudes of the
nonlinear material constants, the detection angles and the wavelengths of the
incident waves on the amplitudes of the scattered waves will be investigated.

For the incident waves, we assume

A=A =H, o =na, (9.96)

where H and 7 are the wave amplitude and the ratio of the frequencies of the two

incident waves, respectively. For the sake of illustration, the following

dimensionless quantities are introduced:

r:%! CN:£(§+Bj! (Z:%, /T:%l Zb:%l

! # - } (9.97)
A=, a=2 av-2 A =D

h h h h
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where A" =2zxc, /(0,+®,) and 1 =4, /(n+1) should be noticed; 4, is the

wavelength of the incident wave of frequency @, , and 2h is the thickness of the

elastic layer.

For the scattered Lamb wave, we take the zero-order mode as an example and
the amplitude, i.e. Ay in Eg. (9.93), is considered. The assumption of long
wavelength of the incident wave or thin thickness of the elastic layer, i.e. 1/, —0
or @/, <1 is made in this section. Thus, the wavenumber of the Lamb wave of

zero-order mode can be obtained approximately by a limiting process (Achenbach,
2012) as

Ky = 2 La "% (9.98)

40+

. —=—n=0.5 ]|
M > ——n=10
20+ n=2.0 1
o 3F LDC)
3 S0
I<C I<

. -40
0 L L L L L 1
0 0.5n n 1.5n 2n 0 0.57 T 15n 2n
0 0
(a) Lamb wave (b) SH wave

Fig. 9.5 Distribution of the amplitudes of the scattered waves along the

circumferential direction

Figures 9.5a and 9.5b show the distributions of the amplitudes of the scattered

Lamb waves and SH waves along the circumferential direction. The wavelength of
the incident wave b is fixed as 4, =100, while the ratio of the frequencies of the two

incident waves (wave a and wave b) is in three different cases, i.e. #=0.5, =1 and
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n=2 . Other parameters are fixed as C, =100, o =1/2, F=1000, H =0.01,

v=0.3 and a =50. These two figures can be used to determine the best detection
angles, where the amplitudes of the scattered waves are the largest, which
correspond to the strongest signals. At the meantime, the dead angles where the
amplitudes are zero can be avoided. From both figures, we can find that the ratio of
frequencies of the incident waves has significant influence on the wave amplitudes
of the scattered waves. However, for two special points, which are marked by circles
in Fig. 9.5b, they almost keep unchanged even if the ratio of the frequencies varies.
The selection of the ratio of the frequencies can be regarded as an effective manner
to adjust the position of the best detection angle and the dead angle, see Figs. 9.5a
and 9.5b. The largest amplitude also varies with the ratio of frequencies. For

example, the amplitude for =1 is the largest for the scattered Lamb waves, see Fig.
9.5a, while the amplitude for n=2is the largest for the scattered SH waves, see Fig.

9.5b.
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Fig. 9.6 Variations of the amplitudes of the scattered waves with the dimensionless

nonlinear material constant C,, at the angle &=7/3

Figure 9.6a and 9.6b show the variations of the amplitudes of the scattered

waves with the dimensionless nonlinear material constant C, at the angle 0 =7/3.

Another dimensionless nonlinear constant « is considered for three different cases
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when it equals 1/4, 1/2 and 1, respectively. Other parameters are fixed as ¥ =1000,
n=1, 4,=100, H=0.01, v=0.3 and @=50. The nonlinear material constants

have a strong correlation with material micro-damages. Thus, through Figs. 9.6a and
9.6b, we can establish a direct relation of the level of material damage with the
amplitudes of the scattered waves. The amplitudes of the scattered Lamb waves and

SH waves both increase linearly with the increase of C, see Figs. 9.6a and 9.6b.

Comparing Fig. 9.6a with Fig. 9.6b, it is observed that the dimensionless material
constant « only has an influence on the amplitudes of the Lamb waves, which
comes from the contribution of the equivalent surface tractions, see Eq. (9.93). Since
the normal surface tractions have no contribution to the generation of SH waves, the

amplitudes of SH waves only depend on the nonlinear material constant C . In this

way, the scattered SH waves may be easier to be used to evaluate material damages.

For the scattered Lamb waves, the material constant « has a small influence on the

wave amplitudes when the material constant C is small, see the curves located
around C, =50 in Fig. 9.6a. Thus, we may not have to consider the effects of « in

this zone. With the increase of C,, the influence of « becomes more significant on

the amplitudes of the Lamb waves.

The relations between the amplitudes of the scattered waves and the radius of
the nonlinear region are presented graphically in Figs. 9.7a and 9.7b for the incident

waves of different ratios of frequencies, i.e., 7=0.5, 1, 2. Other parameters are
fixed as 7=1000, C, =100, a¢=1/2, 4,=100, H=0.01, and v=03 .

Ultrasound is often viewed as a powerful tool to measure the size of the damage
zone. However, for the curves in Figs. 9.7a and 9.7b, there exist many congestion
areas where the amplitudes vary up and down quickly with the increase of the radius,
see the zones marked by circles in Figs. 9.7a and 9.7b. In these zones, the radius of
the nonlinear region is difficult to be determined by using the inverse computation.
It’s better to measure the radius of the nonlinear region in the zones where the
amplitudes of the scattered waves increase monotonously with the radius of the

nonlinear region.
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Fig. 9.7 Variations of the amplitudes of the scattered waves versus the

dimensionless radius of the nonlinear region at the angle 6=7r/3

From Fig. 9.7a, it is observed that the range of the monotone zones depends largely
on the ratio of the frequencies of the two incident waves. For example, the curve

corresponding to 7 =0.5 in Fig. 9.7a is nearly monotonous, while the other two

curves are not. Moreover, the ratio of the frequencies can also be used to adjust the
positions of the monotone zones. For example, the zones around a =60 in Fig. 9.7a

and a=40 in Fig. 9.7b are choppy for n=2, while these zones become
monotonous for 7 =0.5. For the mixing of two incident waves, the adjustment of

the ratio of the frequencies is an important manner to optimize the measurement.

In Figs. 9.8a and 9.8b, the relations between the amplitudes of the scattered
waves and the wavelengths of the incident waves are presented for different ratios of
frequencies at the angle #=7/3. The other parameters are fixed as ¥ =1000,
C, =100, ¢=1/2, H=0.01, v=0.3 and a=50. For the wavelengths under
consideration, the amplitudes of the Lamb waves corresponding to 77 =0.5 and 1.0
decrease as the wavelength increases, while the amplitudes corresponding to 7 =2

IS not monotonous, see Fig. 9.8a. For the scattered SH waves, the variations of the
amplitudes are not monotonous with the increase of the wavelength for all the three
ratios of the frequencies, see Fig. 9.8b.
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Fig. 9.8 Variations of the amplitudes of the scattered waves versus the wavelengths

of the incident waves at the angle 0=7/3

Overall, the ratios of the frequencies have obvious influences on the relation
between the amplitude and the wavelength. Thus, an appropriate wavelength of the
incident waves can be determined by using the curves shown in Figs. 9.8a and 9.8b
combining with the consideration of the ratios of the frequencies.

9.6 Concluding remarks

The materials with microstructural defects behave in a nonlinear manner, which
are described by a quadratic constitutive relation in this paper. An elastic layer with
a cylindrical region of quadratic material nonlinearity across the thickness is
considered. Two SH waves of lowest modes are launched from two orthogonal
directions, which intersect at the nonlinear region. A three-dimensional nonlinear

scattering problem is thus studied.

Using the perturbation method, the nonlinear governing equations and the
boundary conditions are reduced to two sets of linear equations at different orders.
The zero-order equations can be specified to the governing equations for the SH
waves of lowest modes with free boundary conditions. Substitution of the
expressions of the SH waves into the nonlinear terms in the first-order equations
gives rise to a series of inhomogeneous equations. Mathematically, these equations

are same as those that are used to describe the problem of forced wave motion



Chapter 9 Intersection of two elastic waves at the region of material nonlinearity in an elastic layer 223

caused by the local body forces and the local surface tractions. By referring to the
solutions for waves induced by the point force, the reciprocity relation in
elastodynamics is used to obtain the amplitudes of the waves induced by the
equivalent body forces and the equivalent surface tractions. The analytical solutions
for the far-field Lamb wave and SH wave scattered from the nonlinear region are
then readily obtained. It is of interest to find out that only the coefficient of the

lowest mode is non-zero for the scattered SH wave.

Numerical examples are presented for the scattered Lamb wave of zero-order
mode and SH wave propagating in a thin elastic layer. The influences of the
detection angle, the nonlinear material constants, the size of nonlinear region, the
ratio of frequencies of two incident waves and the wavelengths of incident waves on
the amplitudes of the scattered waves are investigated. The direct relations between
the amplitudes of the scattered waves and the size of the nonlinear region and the
nonlinear material constants, which have a strong correlation with the damage level,
are presented graphically. Based on the theoretical analysis, some possible methods
are proposed to optimize the measurements or detections for the nonlinear
nondestructive evaluation and test. These methods include the adjustments of the
detection angle and the change of the ratio of the frequencies and/or the wavelengths

of the incident waves.
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Appendix 9A: Free wave propagation in a linearly elastic layer

The free wave propagation in an elastic layer is studied. The analytical solution
to this problem has been shown in Achenbach and Xu (1999). The waves
propagating in an elastic layer were decomposed into a superposition of thickness
vibration and a membrane carrier wave. Since the thickness motion keeps
unchanged, we only need to solve the membrane equations for different problems.
For the Lamb wave mode, the displacement components can be written in the

following forms:

k

n

U = iV“(xQ%, i=1 2 (9A.1)

Ug =W"(X5)p(%, X,) (9A.2)

where the time harmonic factore™ (or ') is neglected for simplicity, k. is a
wave number of nth-order Lamb wave mode, and ¢(X;,X,) is a solution of the

reduced membrane wave equation in the X, - X, plane, which is given by

O’p(X, %) O2p(X, Xy)
¢’622 2) | (pailg 2) 4 K2p(x,x,) =0 (9A3)

In addition to Lamb waves, SH waves should also be considered for an elastic

layer. SH waves are equivoluminal waves, whose vibration plane is parallel to the

X, - X, plane. Their wave modes can be represented by

P . 0 , X
u! :EU (Xs)% (9A.4)

N 1. ., 0 , X
ul :_EU (xS)% (9A.5)
uw =0 (9A.6)

where |, is a wave number of nth-order SH wave mode and y has to satisfy the

following membrane equation as
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82‘//()(1' X,) n GZW(Xv X,)
2

OX; ox5

+1iy (%, %) =0 (9A.7)

The wave modes, U", V" and W", of the thickness vibration are given in the

following:

a. Lamb wave

V" and W" are the nth-order wave modes along the thickness direction for
Lamb waves, which can be separated into symmetric and antisymmetric modes
relative to the middle plane of an elastic layer. Considering the free boundary
conditions, the symmetric mode can be represented by

V' =5, c0s(Pp, ;) +$, €0(0, ;) (9A.8)
W' =s,sin(p,X;) +S, Sin(g,X;) (9A.9)
where

s, =2c0s(q,h), s, =-{(k; —d7)/ks]cos(p,h),

e (9A.10)
S3 = _2( Pn / kn) COS(qnh), Sy = _[(kn =0, ) / (ann )] COS( pnh)
Here we define

2 2
2 W 2 2 W 2
pn__z_kn’ n__z_kn

c c? (9A.11)

L
For the antisymmetric modes, we have
V. =a,sin(p,x;) +a,sin(d,x,) (9A.12)
W, =a, cos(p,X;)+a, cos(d,X;) (9A.13)
where

a, = 2sin(q,h), a, =-(k; —a;)/k;1sin(p,h),

) ) (9A.14)
a; = 2(pn /kn)SIn(qnh)’ a, :[(kr? _qr?) / (ann)]SIn( pnh)
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b. SH wave

U" is the SH wave mode distributed along the thickness direction, which is

represented by

U"(x,) =cos(q,x,) for symmetric modes. (9A.15)
U"(x,) =sin(q,x,) for antisymmetric modes. (9A.16)
and ¢ = w’/c? —12. Using the free boundary condition, we have

_nr

=— 9A.17
4 =2 (9A.17)

where n =0, 2, 4, ... for symmetric modes, and n =1, 3, 5, ... for antisymmetric

modes.

Appendix 9B: The derivation of Eq. (9.56)

Substitution of Egs. (9.47)-(9.52) into the integral on the right-hand side of Eq.
(9.44) gives rise to

Qu = [, [ (w2 ~uPe) (e, —uel ) o (u2ef -uPes ) Jas |
-
- [J-Ozn thh [(urArfi —uprh )+ (upzy —ulzy )+ (ufey —ufzh )] rdedzJ

27 eh
:b.[o Ih[(urATrBr_urBT::)+(U§\TeBr—UPT£)+(UATB—UBTA)]dez

(VS (@27 (2) + W' (2)Z5 (2) | (K, 1) D' (k1)
o | [V @ (2) +We ()2 (2) [ D (kD' (K, T)
=+ VS @ (2) WS ()25 (2) | (K, D' (Kk,r)
[V (@) (2) + W (2)237(2) | @ (k1) D' (K, 1)
| DK ' (kr)—1, ok r)®'(Kk.r) }
+Ime§>(kmr)<1>’(ker) — IemCD(ker)CTJ’(km r)

dz

(9B.1)

1 X0 ps
=EﬂbZAe{

where
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o = [ [V Q)22 (2) +WE ()2 (2) ]z (9B.2)

em

and =¥(z) and =°"(z) are defined by

=i (2) = p[c, cos(p,z) +c¢, cos(q,z)] (9B.3)
where

¢, =| 2(2p? =K —Z)/k, |cos(ah),

C, = [Z(ke2 —qj)/ ke}cos( p.h) 654
and

=o'(2) = pfesin(p,z) + ¢, sin(q, )] (9B.5)
with

¢, =4p, cos(q,h),

(9B.6)

c. = (K ~2)"/ (@k2) |eos(p,h)

The orthogonality relation, which was derived in Section 11l in (Achenbach and Xu,
1999), has been used, which reads

l,=1,=0 for ezm (9B.7)

The following equality should also be noted:
| @K, ND' (k1) -1,k D' (k,r)=0, for e=m (9B.8)

By setting e =m, Eq. (9.55) can be simplified to

Qun = %ﬂ DAL { D (K, D)D" (k,,b) — @ (K, b) D' (k D)}

2i
A2
Anmmk

m

(9B.9)

where
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I = uc’ cos’(ph)+c; cos’(gh)] (9B.10)

and the constants are defined by

i kz_ 2 k2+ 2 .
- 2(;3(@ D p2an(ic - %) - (k2 +70%)sin2qh],

2 2
¢ = k'“%ﬁkni ph+2(kZ —2p?)sin(2 ph)]

(9B.11)

This result is the same as the corresponding one in (Achenbach and Xu, 1999) and
the following identity for Hankel function has been used

4 poEH2E) -HYE L ro g =2 (9B.12)

dé dé 7

Appendix 9C: The derivation of Eqg. (9.70)
The detailed derivation of Eg. (9.70) are presented below
Qe = L (uiAO-i;g _uiBGijA )njds

C&pph s 1 (enz mzz \[ ¥ (1) ¥'(,b) -1, ¥(1,b)¥' (I.b) |
_bgjo [\ heu ECOS( h JCOS( h ]LIG‘P(Ieb)‘?'(Imb)—Im‘?(lmb)\P’(leb) sin” 6dodz

S r2reh s 1 erz mrz -, — , .
:b; jo J'_hHeyEcos( ’; )cos( ;’ ][I;P(Ieb)‘{’(Imb)—lm‘P(Imb)‘P (I,b) ]sin? od odz

0

1 : o = , h erz mzz
- Eﬂb; H; [Ie‘P (1.b)¥'(1,b) -1, ¥(l,b)¥ (Ieb)] j_h COS(TJCOS(TJ dz

(9C.1)
where the following relation has been used, which is given in section Il in
(Achenbach and Xu, 1999).

Ie\P(Ieb)‘{”(Imb)—Im‘{’(lmb)‘P’(Ieb)=O (9C.2)

The following orthogonality relation of trigonometric functions can be used.

'[_hh cos(ezzjcos(mgzjdz =0 for e#m (9C.3)
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Thus, Eg. (9C.1) evolves to

~ S 1 h o Mrz 3! J !
Q. =uH? §b|m_[7h003 (T]dz [ ¥ (1,b) #(1,0) P (1,b)¥(1,b) ] (9C.4)
=2uHJ i
where
h, form=0
Jim =Jh cos?| T2 | g7 = - (9C.5)
“h h 2h, form=0

and the identity of Hankel function, Eq. (9B.12), has also been used.
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Chapter 10 Concluding remarks and future works

10.1 Concluding remarks

In this dissertation, several theoretical modellings of nonlinear wave
propagation in materials and structures were investigated, which have the potential
application to the design of novel acoustic devices and the development of nonlinear
ultrasound techniques used for nondestructive evaluation. The whole dissertation
contains two parts. In the first part, we mainly focused on the investigation of the
tunability of solitary waves in soft bars by using the asymptotic expansions and the
reductive perturbation method. In Chapter 2, the electric biasing field was used to
modulate the solitary waves in soft electroactive bars. In Chapter 3, the pre-stretch is
proven to be an effective means to adjust the kink and kink-like waves propagating
in viscoelastic soft bars. In the second part, we developed several simplified theories
and simple theoretical models to work out analytical solutions to higher harmonic
generations by material nonlinearity, which can promote the application of nonlinear
ultrasound technique for nondestructive evaluation. The reciprocity theorem in
elastodynamics and the shell theory have been used to solve the related problems. In
Chapter 4, we presented a general analysis on the higher harmonic generation by
plane waves based on quadratic and cubic material nonlinearities. Then, the
harmonics of surface waves on a half-space of cubic material nonlinearity were
investigated in Chapter 5. In Chapter 6, we conducted an investigation of higher
harmonics in pipes, and the shell theory was used to obtain the analytical solution.
From the point of view of practical interest, we studied the reflection and scattering
from the local region of material nonlinearity induced by local micro-damages in
Chapter 7. As an extension, in Chapter 8, we studied the scattering of the incident
torsional waves of the lowest mode from a small segment of material nonlinearity in
a pipe. In Chapter 9, we investigated the scattering of two SH waves of the lowest
mode from a nonlinear cylindrical region in a plate. Detailed contributions of this

dissertation are summarized as follows.

In Chapter 2, an asymptotic analysis of solitary waves propagating in an
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incompressible isotropic electroactive circular rod subjected to a biasing
longitudinal electric displacement was presented. Several asymptotic expansions
were introduced to simplify the rod governing equations. The boundary conditions
on the lateral surface of the rod were satisfied from the asymptotic point of view. In
the limit of finite-small amplitude and long wavelength, a set of ten simplified one-
dimensional nonlinear governing equations was established. To validate our
approach and the derivation, we compared the linear dispersion relation with the one
directly derived from the three-dimensional linear theory in the limit of long
wavelength. Then, by the reductive perturbation method, we deduced the far-field
equation (i.e. the KdV equation). Finally, the leading order of the electroelastic
solitary wave solution was presented. Numerical examples were provided to show
the influences of the biasing electric displacement and material constants on the
solitary waves. It was found that the biasing electric displacement can modulate the
velocity of solitary waves with a prescribed amplitude in the electroactive rod, a
very interesting result which may promote the particular application of solitary

waves in solids with multi-field coupling.

In Chapter 3, we theoretically investigated kink and kink-like waves
propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive
modeling, the Cauchy stress tensor was assumed to consist of an elastic part and a
dissipative part. The asymptotic method was adopted to simplify the nonlinear
dynamic equations in the limit of finite-small amplitude and long wavelength. Using
the reductive perturbation method, we further derived the well-known far-field
equation (i.e. the KdV-Burgers equation), to which two kinds of explicit traveling
wave solutions were presented. Examples were given to show the influences of pre-
stretch and viscosity on the wave shape and wave velocity. It was shown that pre-
stretch could be an effective method for modulating the two types of waves. In
addition, such waves may be utilized to measure the viscosity coefficient of the
material. The competition between the effects of pre-stretch and viscosity on the

kink and kink-like waves was also revealed.

In Chapter 4, harmonics of plane longitudinal and transverse waves in
nonlinear elastic solids with up to cubic nonlinearity were investigated in a one-

dimensional setting. It was shown that due to the quadratic nonlinearity a transverse
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wave generates a second longitudinal harmonic, which, however, propagates with
the velocity of transverse waves, as well as resonant transverse first and third
harmonics due to the cubic and quadratic nonlinearities. A longitudinal wave
generates a resonant longitudinal second harmonic as well as first and third
harmonics whose amplitudes increase linearly and quadratically, respectively, with
the distance propagated. In a second investigation incidence from the linear side of a
primary wave on an interface between a linear and a nonlinear elastic solid was
considered. The incident wave crosses the interface and generates a harmonic whose
interface conditions are equilibrated by compensatory waves propagating away in
both directions from the interface. The back-propagated compensatory wave
provides information on the nonlinear elastic constants of the material behind the
interface. It was shown that the amplitudes of the compensatory waves can be

amplified by mixing two incident longitudinal waves with appropriate frequencies.

In Chapter 5, the analytical far-field solution for the cumulative third harmonic
surface wave propagating on a half-space of isotropic incompressible cubically
nonlinear material was obtained in a relatively simple and systematic manner. Using
the perturbation method for a weakly nonlinear material, the governing equations
and the boundary conditions were separated into two sets of uncoupled equations at

the zero-order and the first-order, respectively. For a primary linear wave of
frequency @ and amplitude A, the resonant third harmonic has frequency 3w and
amplitude A, which depends on A® and the propagation distance. It was shown that,

in the far field, the resonant third harmonic propagates with the classic Rayleigh
wave velocity. We also considered the transmission of the resonant third harmonic
across an interface at x=L into a linear material. The transmitted wave has the
same general form as the incident third harmonic except that the multiplying factor
X now is constant at L, t>L/c, x>L, and the amplitude also depends on the
nonlinear constant. Potential measurement of the transmitted wave can provide

information on the location of the interface and the material nonlinearity.

In Chapter 6, higher harmonics in pipes of quadratic nonlinear material
behavior were analyzed. Using the shell theory, the mixing of axisymmetric

longitudinal waves and torsional waves, and the self-interaction of axisymmetric
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longitudinal waves, have been investigated. The dispersion curves of longitudinal
waves derived from the linear version of the governing equations show excellent
agreement with the corresponding curves obtained from the thick shell theory and
three dimensional theory, presented elsewhere. For torsional waves, only the lowest
mode was taken into consideration. Using the perturbation method, analytical
expressions for the resonant torsional waves generated by the mixing of longitudinal
and torsional waves were obtained. The resonant waves with difference frequencies
propagate in the opposite direction of the corresponding primary wave. The back-
propagation effect has potential application for nondestructive evaluation. The
nonlinear shell theory was further simplified for applicability to thin pipes, to obtain
expressions for the cumulative second longitudinal harmonics generated by self-
interaction of longitudinal waves. For this case, the phase-match conditions, which
were used to determine phase-match points, were also presented in an analytical

form.

In Chapter 7, two models were proposed to obtain information on the material
nonlinearity of an inclusion in a solid body. Material nonlinearity is usually
generated by the development of material micro-scale damage. When the region of
nonlinear material is large, incidence of ultrasound on the interface between the
perfectly joined regions of linear and nonlinear material behavior produces very
useful information. Using the continuity condition of stress and displacement at the
interface, the harmonics in the nonlinear region, together with the compensatory
waves Yield a reflected wave whose amplitude contains the defining constant of the
material nonlinearity near the interface. The compensatory waves were introduced to
ensure the continuity conditions at the interface. When the nonlinear region is an
inclusion, the equivalent body force induced by the material nonlinearity generates a
backscattered wave. The backscattered wave is determined in a simple manner by
the use of the reciprocity theorem of elastodynamics. The backscattered wave
obtained in this manner yields information on the nonlinear material properties and
the size of the inclusion. In addition, a model based on the superposition of back-
propagated compensatory waves from the two interfaces of the nonlinear region

reveals the physical mechanism of wave scattering from the nonlinear inclusion.

In Chapter 8, the effect of cubic material nonlinearity on the propagation in a
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pipe of the lowest axially symmetric torsional wave mode was investigated. Two
cases, one that the material of the whole pipe is nonlinear, and the second that a
small segment of the pipe is nonlinear, were considered. In the first case, a first and
a third harmonic were obtained by the perturbation method. Analytical expressions
for the two cumulative harmonics were derived. The second case leads to a
scattering problem. The segment produces nonlinear terms in the equation of motion,
which can be regarded as a distribution of body forces. The problem was then
reduced to a linear scattering problem. An analytical expression for the
backscattered wave was easily obtained by using the elastodynamic reciprocity
theorem. Due to the low amplitude of the backscattered wave, we proposed to add
another higher frequency wave to the primary wave, to increase the total magnitude
of the scattered wave. An example that the originally scattered wave was amplified
50 times by selecting proper frequencies was presented. Both cases considered here
have potential application to determine the material properties in a region of

nonlinear material behavior.

In Chapter 9, the interaction of two SH waves of lowest modes with a local
cylindrical region of quadratic material nonlinearity in an elastic layer was
investigated. The nonlinear governing equations and the nonlinear boundary
conditions were reduced to a set of linear equations at different orders by making
use of the perturbation method. The incident waves were regarded as the solutions to
the zero-order governing equations. The first-order equations are a series of
inhomogeneous equations by substitution of the expressions of the incident waves,
which beer the same form as the equations used to describe the forced wave motion
in an elastic layer. Mathematically, the first-order equations can be solved in a
similar way when the inhomogeneous terms are viewed as the equivalent body
forces or surface tractions. Based on the mode expansions, the amplitudes of the
Lamb wave and the SH wave generated by the body forces and surface tractions
were obtained by using the reciprocity relation in elastodynamics. It is of interest to
note that only the coefficient of the lowest mode is nonzero for the generated SH
wave. The amplitudes of the scattered waves were determined by the size of the
nonlinear region, the nonlinear material constants, the detection angle, the

wavelength and the ratio between the two frequencies of the incident waves, which
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were also graphically shown as the numerical examples.

10.2 Future works

As an extension of the works presented in this dissertation, the following
interesting research topics will be investigated in the future:

1. The investigation of nonlinear elastic waves propagating in metamaterial, such as
periodic structures or phononics, can be conducted based on the methods and the
theories used in this dissertation, such as the asymptotic expansions, the reductive
perturbation methods, the shell and plate theory, the reciprocity theorem and so on.
Due to the attractive characters of metamaterials, it is expected to find some fancy
phenomena, which have not been uncovered within the linear theory. The first
model is the solitary waves propagating in a soft bar composed of periodic
structures. Using the thin rod assumption, the analytical solution is expected to be
obtained. The second model is the higher harmonic generation of plane waves by the
periodic material nonlinearity. The analytical or semi-analytical solution for the
reflected and transmitted higher harmonics could be obtained in a simple and

elegant manner by using the reciprocity relation.

2. Experimental researches on higher harmonic generation by material nonlinearity
induced by material micro-damages will be conducted. Based on the models and
theories proposed in this dissertation, some efficient and useful nonlinear ultrasound
techniques are expected to be developed, which may be exploited to detect and

monitor the safety conditions of different structures and materials.

3. It has been reported that the blood pulse behaves like a solitary wave. So it is
meaningful to model the blood flow as a solitary wave propagating in a blood vessel.
In addition, the coupling of electric field and elastic field in most tissues has been
uncovered. Thus, it is reasonable to model the blood vessel wall as a pipe of soft
electroactive material. Such a model has not yet been proposed in the reported
literatures. For the non-ideal blood, the viscoelasticity effect should be taken into
account. By using the mathematical and mechanical models, we hope to understand
and explain some medical diagnostic measurements used in the traditional Chinese

medicine in the sense of modern science.
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4. Nonlinear waves propagating in composite materials, anisotropic materials and
porous materials have attracted extensive academic interests due to their wide
application in industries and engineering. Through the design of such materials and
structures, we hope to develop some novel acoustical devices and some ultrasound
techniques for nondestructive evaluation based on the application of nonlinear

elastic waves.

5. It was much desired to extend the application of the reciprocity theorem in
elastodynamics to other fields of solid mechanics. For example, the forced wave
propagation in materials with coupling physical fields and anisotropic materials, the
non-axisymmetric scattering problem in pipes, and the reciprocity relation for wave

propagation in metamaterials.
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