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Abstract 

Theoretical modelling of solitary waves in soft bars and higher harmonics in 

nonlinear media 

With the development of ultrasonic techniques, the influence of elastic 

nonlinearity on wave propagation in solids has attracted extensive attention. In this 

dissertation, several theoretical problems of wave propagation in materials and 

structures involving elastic nonlinearity are investigated. The dissertation consists of 

two main parts, i.e. the investigation of solitary waves propagating in soft bars under 

a biasing field (Part 1), and the analysis of higher harmonic generation by material 

nonlinearity arisen from material micro-damages (Part 2). The major achievements 

of this dissertation are briefly summarized as follows. 

In Part 1, the tunability of solitary waves propagating in soft bars is explored. 

The effective material properties of soft materials can be altered significantly when 

subjected to biasing fields, such as electric field or pre-stretch. In this context, two 

cases are considered, 1) an electroelastic bar subjected to a biasing longitudinal 

electric displacement, and 2) a viscoelastic bar subjected to a pre-stretch. An 

asymptotic analysis is conducted by introducing several asymptotic expansions to 

simplify the rod governing equations. The boundary conditions on the lateral surface 

of the rod are satisfied from the asymptotic point of view. For the first case, by the 

reductive perturbation method, we deduce the far-field equation (i.e. the KdV 

equation). Then, the leading order of the electroelastic solitary wave solution is 

presented. Numerical examples are provided to show the influences of the biasing 

electric displacement and material constants on the solitary waves. It is found that 

the biasing electric displacement can modulate the velocity of solitary waves with a 

prescribed amplitude in the electroactive rod. For the second case, following the 

similar procedure, the KdV-Burgers equation can be formulated, which admits 

analytical and explicit solutions for kink and kink-like waves in pre-stretched 

Mooney-Rivlin elastic rods with the consideration of viscous dissipation. We find 

that the pre-stretch can not only make the kink waves lower and wider, but also 

change the wave velocity. The competition between the effects of pre-stretch and 

viscosity on the kink and kink-like waves is also revealed. 
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In Part 2, several simplified theories and simple theoretical models are 

proposed to work out analytical solutions to higher harmonic generations by 

material nonlinearity, which can be used to assess material micro-damages. As a 

starting point, we generally investigate harmonics of plane longitudinal and 

transverse waves in elastic solids with up to cubic nonlinearity in a one-dimensional 

setting. Some interesting and useful results for harmonic generation are uncovered. 

Then, we extend our work to the investigation of wave propagating on a half-space 

of isotropic incompressible material of cubic nonlinearity. The analytical far-field 

solution for the cumulative third harmonic surface wave is obtained in a relatively 

simple and systematic manner. The solution reveals that, in the far field, the 

resonant third harmonic propagates with the classic Rayleigh wave velocity, whose 

amplitude increases linearly with the propagation distance. The transmission of the 

resonant wave from a half-space of nonlinear material into a half-space of linear 

material is also considered. In a pipe of quadratic material nonlinearity, the 

analytical solution to the mixing of axisymmetric longitudinal waves and torsional 

waves are obtained using the shell theory. The resonant waves with difference 

frequencies propagate in the opposite direction of the corresponding primary wave. 

The nonlinear shell theory is further simplified to obtain the solution for the 

cumulative second longitudinal harmonics generated by self-interaction of 

longitudinal waves in an analytical form. From a practical point of view, some 

theoretical models to investigate harmonic generation from an inclusion of nonlinear 

material are also established. By using the continuity conditions of stress and 

displacement at the interface or using the reciprocity theorem of elastodynamics, the 

expressions of the reflection waves are obtained, whose amplitudes can provide 

information of the material constants of the nonlinear media. The reciprocity 

theorem is proven to have greater utility. As an example, the backscattering of a 

torsional wave from a small zone of material nonlinearity in a pipe is investigated. 

The analytical expression of the backscattered wave is obtained by using the 

reciprocity theorem, whose amplitude is determined by the nonlinearity coefficient 

and the size of the nonlinear region. Combining the primary wave with a higher 

frequency wave is proposed to increase the magnitude of the backscattered wave. 

Using the same method, we also investigate the intersection of two non-collinear 

waves at a region of quadratic material nonlinearity in an elastic layer in a three-



 Abstract V 

dimensional setting. Based on the mode expansions, the analytical solution to the 

amplitudes of the Lamb wave and the SH wave are obtained. 

The theoretical models proposed in this dissertation and the obtained analytical 

solutions have the potential application in the design of novel acoustic devices and 

the development of nonlinear ultrasonic techniques for nondestructive evaluation. 

Key words: Theoretical modelling; solitary waves; higher harmonics; asymptotic 

analysis; analytical solutions; soft bars; nonlinear media 
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摘要 

随着超声波技术的不断发展，固体中非线性弹性效应对波传播的影响引

起了大家广泛的关注。本文研究和发展考虑弹性非线性效应的材料和结构中

波传播的理论模型，全文共分为两个部分：偏场作用下软杆中孤立波的研究

和由对应微损伤的材料非线性所引起的高次谐波的研究。本文的主要内容可

以概括如下。 

在第一部分，我们对软杆中传播的孤立波的可调性进行了探索。在偏场

（如偏置电场和预拉伸）作用下，软材料的有效材料常数会发生显著改变，

由此我们研究了两种模型：第一是纵向电位移作用下的杆，第二是考虑了粘

弹性效应的预拉伸杆。我们采用了渐近分析的方法，通过渐近展开，对杆的

控制方程进行简化，同时杆的侧面边界条件得到渐近满足。对于第一个模型，

推导了远场方程（即 KdV 方程），得到了一阶的电弹性孤立波解，并数值研

究了偏置电位移和材料常数对孤立波的影响。结果表明，对于电弹性杆中给

定振幅的孤立波，偏置电位移可以改变其速度。对于第二种模型，采用相似

的求解方法推导得到了 KdV-Burgers 方程，从而获得了预拉伸作用下 Mooney-

Rivlin 粘弹性杆中扭结波和类扭结波的显式解析解。研究发现，预拉伸不仅可

以使扭结波变矮变宽，还可以改变其波速。同时，研究揭示了预拉伸和粘弹

性效应对扭结波与类扭结波的影响之间的竞争机制。 

在第二部分，为了获得由材料非线性引起的高次谐波的解析解，我们提

出了可用于材料微损伤检测的几个相关的简化理论与简化模型。首先，一般

性地研究了三次非线性弹性体中一维平面纵向与横向谐波，给出了一些有趣

且实用的结果。然后，将工作拓展到各向同性不可压缩三次非线性半空间表

面波的传播，以一种相对简单且规则的方法获得了累积三阶表面谐波的远场

解析解，发现三次谐振波在远场处以经典的 Rayleigh 波速传播，其振幅随着

传播距离的增加而线性增加。同时，研究了谐振波从非线性半空间透射到线

性半空间的问题。在二次材料非线性管道中，利用壳理论获得了轴对称纵波

和扭转波混频问题的解析解，具有差频的谐振波沿着与基频波相反的方向传

播，通过进一步对非线性壳理论的简化，得到了纵波自相交作用产生的二阶
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累积纵向谐波的解析解。从实际角度出发，还提出了一些理论模型用于研究

由非线性夹杂产生的谐波，利用界面应力和位移的连续性条件或弹性动力学

互易定理，可以得到反射波的表达式，其振幅包含了非线性介质的材料常数

信息，并证明了互易定理的实用性。作为一个例子，研究了管道中扭转波对

于材料非线性小区域的反向散射问题，利用互易定理得到了反向散射波的解

析表达式，其幅度与非线性系数和非线性区域的大小相关。最后，还提出将

基频波与更高频率波混合以增加反向散射波的振幅。使用相同的方法，还研

究了三维弹性层中二次材料非线性区域的两条非共线入射波的相交问题，基

于模态展开法，获得了 Lamb 波和 SH 波振幅的解析解。 

本文提出的理论模型在新型声波器件的设计和非线性超声无损检测技术

的开发方面具有潜在的应用价值。 

关键词：理论建模；孤立波；高阶谐波；渐近分析；解析解；软杆；非线性

介质 
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Chapter 1 Introduction 

1.1 Background 

Ultrasound is a useful and powerful tool to characterize defects or damages in 

materials and structures, especially their sizes, locations and properties. The linear 

ultrasonic technique relies on the measurement of wave velocity, attenuation and 

reflection and transmission coefficients. The principle of the linear ultrasonic 

technique is established within the frame of linear elasticity by the assumption of 

small deformation (linear strain-displacement relation) and linear material behavior 

(linear stress-strain relation).  

However, modern science is undergoing profound evolution, and nonlinear 

science has been in a frontier field running through mathematical science, life 

science, space science and earth science. Recently, the researches about nonlinear 

ultrasound revive due to the rapid development of soft materials. The capacity of 

large deformation is an outstanding character of soft materials. Thus, the influence 

of nonlinearity on wave propagation in soft materials has to be considered. 

On the other hand, the researches on nonlinear ultrasound become very active 

due to its potential application in the field of nondestructive field. Compared with 

the linear ultrasound, the nonlinear ultrasound is based on the nonlinear continuum 

theory by considering finite deformation (quadratic strain-displacement relation) 

and/or nonlinear material behavior (nonlinear stress-strain relation), which is more 

sensitive to microstructural damages, such as micro-cracks, plastic strains and 

dislocations, see Figs. 1.1 and 1.2. Figure 1.1 shows that nonlinear ultrasound is 

sensitive to the defects at the size from 1 nm to 1 m, while the conventional 

ultrasound testing is only applicable to macroscopic defects. Figure 1.2 shows that 

the linear parameters almost keep unchanged, while the nonlinear ones increase 

quickly when the fatigue damages occur. Thus, the investigation of wave 

propagation, which takes geometrical and material nonlinearities into account, is of 

practical importance. 
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Fig. 1.1 Detectable defect size of various nondestructive and destructive methods for 

material characterization (Jhang, 2009) 

 

  

 

Fig. 1.2 Sensitivity of nonlinear parameters to micro-defects induced by fatigue load for 

three different materials (Nagy, 1998) 

As a special solution to the nonlinear equations of wave motion, solitary wave 

is generated due to the balance between nonlinearity and dispersion or dissipation. 

The physical mechanism is that nonlinearity will increase the wave amplitude, while 

dispersion and dissipation will drop the wave amplitude. Solitary waves can 

propagate over a long distance without distortion. Significant progresses have been 
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made in the study of solitary waves related to internal water waves, nerve pulse 

dynamics, ion-acoustic waves in plasma, nonlinear optics, and so on.  

Harmonic generation is another important solution to the nonlinear equations of 

wave motion. The effect of weak nonlinearity on a primary linear wave is the 

generation of higher harmonics which propagate at a frequency that is an integer 

times the frequency of the primary wave, and which may be resonant in the sense 

that the amplitude may increase linearly with the propagation distance.  

Recently, the investigation of nonlinear elastic waves has attracted much 

academic attention due to a wide range of technical and industrial applications, such 

as geophysical exploration (Sinha and Winkler, 1999), soft tissue acoustics 

(Catheline et al., 2003), dynamics of elastomer (Sørensen et al., 1984), and some 

biomedical applications (Rudenko, 2007; Li et al., 2017). Actually, just as in fluid 

and gas dynamics, which have long been the kernel of the traditional nonlinear 

science, nonlinear effects are becoming increasingly critical in solid mechanics 

research (Jeffrey and Engelbrecht, 1994). Nondestructive evaluation is regarded as 

the most potential application of nonlinear ultrasound (Kim et al., 2006; Matlack et 

al., 2011). Compared with linear waves, nonlinear waves have some distinct and 

attracting properties. However, the analysis of nonlinear waves is more complicate 

than the linear one from the mathematical point of view. 

Research topics about nonlinear elastic waves have been pursued for several 

decades. Abundant theories and experiments therefore have been proposed. 

However, the related techniques still have not been widely applied in engineering 

and industry. That’s why we still need further investigations of nonlinear elastic 

wave propagation in terms of theory, simulation and experiment. 

1.2 Wave propagation in soft materials 

Soft materials such as gels, elastomers and tissues have attracted much 

attention due to their outstanding static and dynamic behaviors. The capability of 

reversible larger deformation is generally regarded as the most remarkable character 

of soft materials. The effective material properties of soft materials can be altered 

significantly when subjected to finite deformation. To describe the mechanical 
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behavior of soft material, general nonlinear theories of finite deformation have been 

developed. Two classic books written by Ogden (1997) and Holzapfel (2000) are 

recommended, both providing an excellent guidance to solve the problems related to 

soft materials subjected to finite deformation. The analysis of static and dynamic 

deformations can be conducted based on the approaches described therein.  

As a special kind of soft solids, soft electroactive materials (such as dielectric 

elastomers) can change their shapes and mechanical properties under electric stimuli, 

which behave just like biological muscles, and hence they are often called artificial 

muscles. As a new kind of advanced functional materials, electroactive materials 

have many attractive characteristics, such as higher response speed, lower density 

and greater resilience (Bar-Cohen, 2002). Not surprisingly, they have triggered 

extensive research interests in recent years. It should be noted that the development 

of general nonlinear theories of electroelasticity dates back to the seminal works of 

Toupin (1956, 1963) and their systematic exploration and application can be found 

in the two monographs by Eringen and Maugin (2012) and by Maugin (2013), 

respectively. Recently, Dorfmann and Ogden (2005, 2010) presented a nonlinear 

framework for electroelasticity and investigated the superimposed linear waves in 

electroactive bodies under biasing fields. 

In general, the theories about dynamic behavior of soft materials can be 

separated into “small-on-large” theory and “large-on-large” theory, which 

correspond to the linear and nonlinear theories of elastodynamics, respectively. 

1.2.1 Constitutive relations 

Many hyperelastic models have been proposed to describe finite deformation of 

elastic solids, which are generally expressed by the energy density function in terms 

of the invariants of the strain tensor and takes the geometrical nonlinearity and the 

material nonlinearity into account. For the large deformation of soft materials, such 

as rubber, whose strain may be up to more than 1000%, some empirical models are 

developed, whose coefficients are determined by experimental data fitting. Soft 

tissues are special soft materials. Some models are also set up, which is able to 

describe the outstanding characters of soft tissues.  
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The energy density can be expanded for finite deformation as 

 
0

1 1

2! 3!
ijkl ij kl ijklmn ij kl mnW c E E c E E E      (1.1) 

where ijklc  and 
ijklmnc  are the second-order and third-order elastic constants, 

respectively, and ijE  are the components of the Lagrangian strain tensor. 

Specifically, if the terms higher than fourth-order are neglected, Eq. (1.1) can be 

reduced for isotropic materials to 
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  (1.2) 

where   and   are Lamé’s constants, A, B and C are the third-order elastic 

constants introduced by Laudau and Lifshitz (1986), and E, F, G and H are the 

fourth-order elastic constants. For incompressible materials, Eq. (1.2) can be 

reduced to (Hamilton et al., 2004; Destrade and Ogden, 2010a) 

  
2

2 3 2

0 tr tr tr
3

A
W G   E E E   (1.3) 

The condition of incompressibility simplifies the constitutive relation greatly. 

Equation (1.3) can be used to investigate shear wave motions in incompressible soft 

materials. For rubbery materials, the constitutive relations are generally treated by 

statistical mechanics or continuum mechanics, wherein the material constants are 

usually determined by experimental data fitting. Excellent reviews on statistical 

mechanics models have been given by Treloar (1975) and Boyce and Arruda (2000), 

in which the nonlinear stress-stretch behaviors of 3-chain, 4-chain, 8-chain and full-

network models were compared with each other. The continuum mechanics model is 

proposed based on the basic principles and in particular the principle of material 

frame-indifference. For an isotropic hyperelastic material, the strain energy density 

function can be described by three invariants. Neo-Hookean model, Mooney-Rivlin 

model, Yeoh model and Ogden model are all developed based on continuum 

mechanics for different kinds of rubbery materials under different loading 

conditions.  
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Neo-Hookean model: 
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Mooney-Rivlin model: 
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Yeoh Model: 
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Ogden Model: 
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where i  are the principal stretches and 1/3

i iJ  , 1 2 3J    , i , i , iD  and ijC  

are the material constants, 1I  and 2I  are the invariants of the strain tensor, which are 

given by 

 2 2
1 2

1
tr , (tr ) tr( )

2
I I     c c c   (1.8) 

where c  is the right Cauchy-Green strain tensor. The comparison between different 

hyperelastic models has been made in detail by Ali et al. (2010). These models can 

be reduced to the ones suitable for incompressible materials by making use of the 

condition of incompressibility, some of which were given in Kim et al. (2012).  

For many soft tissues, the strain-hardening effect should be taken into 

consideration. Fung model and Gent model have been proposed to capture this effect 

for soft tissues (Goriely, 2017). When material incompressibility is taken into 

consideration, the two models are mathematically expressed as 

Fung model: 
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 1[exp( ( 3)) 1]
2

W I





     (1.9) 

where 0   is a material constant which controls the strain-hardening property. 

Gent model: 

 1log[1 ( 3)]
2

W I





      (1.10) 

The neo-Hookean model is obtained in the limit 0  , either from Eq. (1.9) or Eq. 

(1.10). The elastic coefficients of soft tissues in these models should be determined 

via experimental data fitting. The assumption of incompressibility is often taken for 

soft materials. However, the effects of compressibility may be important in certain 

applications (Bischoff, 2001).  

Viscoelasticity is another outstanding character of soft materials. The 

dissipation term has to be added into the strain density function when we consider 

dissipative wave motion in soft materials. In the past thirty years, Landau and 

Lifchitz model (Landau and Lifchitz, 1986, p. 107) has been widely used in the field 

of physical acoustics by adding the elastic stress tensor a “viscosity stress tensor”, 

which is given by 

 
2

2
3

llE  
 

    
 

σ I E   (1.11) 

where 0   and 0   are the shear and bulk viscosity coefficients, respectively, I  

is the unit tensor, and the superposed dot of the Lagrangian strain tensor E  denotes 

the time derivative. Unfortunately, it is physically wrong for at least two reasons 

(Destrade et al., 2013). One reason is that the first Piola-Kirchhoff stress tensor σ  is 

not symmetric while E  is symmetric, which will lead to inconsistence of the 

equation. Another reason is that E  is frame-invariant, while σ  is not, so that the 

expression of total stress is not subjective. The corrected form of the viscous part of 

the first Piola-Kirchhoff stress tensor σ  is  
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2

tr( ) 2
3

  
 

    
 

σ F bd bdF   (1.12) 

where F is the deformation gradient tensor, b  is the left Cauchy-Green strain tensor 

and d  is the Eulerian stretching tensor. For incompressible materials, we have 

(Destrade et al., 2013; Destrade and Saccomandi, 2005) 

 2 σ d   (1.13) 

Soft electroactive materials are smart soft materials, which can be used as 

actuators, see Fig. 1.3. As the most remarkable character, the capacity of large 

deformation of soft electroactive materials under electric stimulus has gained an 

extensive academic interest. To predict the behavior of electroactive materials and to 

aid the design of devices, it is necessary to develop a general theory of nonlinear 

electroelasticity to understand the electro-mechanical coupling effects, especially the 

constitutive relations which describe the material properties based on experimental 

data fitting (Dorfmann and Ogden, 2017). Dorfmann and Ogden have conducted a 

series of researches on the nonlinear theory of electroelasticity (2005), the 

associated incremental equations (2010) and a theoretical framework of boundary 

value problems for electro-sensitive elastomers (2006).  

 

Fig. 1.3 Electroelastic actuator (Pelrine et al., 2000a) 

The energy density function for electroactive materials can be separated into two 

parts: one part represents the contribution from pure elasticity and another part 

represents the electro-mechanical coupling. For example, the model considering the 

electro-mechanical coupling used by Dorfmann and Ogden (2010) generalizes the 

well-known neo-Hookean model, and it is given by 

 1 4 5

0

1 1
= ( 3) ( )

2
I I I  


      (1.14) 
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where 

 
4 5,   ( )l l l lI I   E E E cE  (1.15) 

where lE  is the nominal electric field tensor. The following energy density function 

for electroactive materials is known as the generalized Mooney–Rivlin model: 

 1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , , )W D U V D            (1.16) 

where  
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The dielectric constant 0  in Eq. (1.14) is independent of deformation, which is 

appropriate for ideal dielectric materials. The nominal strain-stress and strain-

electric field relation can be obtained through the differential of the energy density 

function. Due to the advantages of mathematical simple structure, the above energy 

density functions have been widely used to study the mechanical behaviors of soft 

solids and characterize material properties. 

1.2.2 Wave propagation of small amplitude superimposed on finite pre-

deformation 

In some important cases, elastic wave can be viewed as an incremental motion 

superimposed on static finite deformation of soft materials. In general, the elastic 

waves propagating in pre-stretched or pre-stressed bodies are studied within the 

linear theory of elastodynamics when their amplitudes are small. The small-on-large 

motion can be accurately described by the linearized theory of the general nonlinear 

elasticity. The underlying pre-stretch and/or pre-stress is the most popular and 

effective mechanical means to modulate the wave propagation in soft materials, 

such as the wave velocity.  

Due to the significant influence of pre-stretch on wave propagation, this 

research topic has attracted intensive academic interest. The history of the research 

on elastic waves in pre-stressed bodies dates back to Cauchy during 1822-1828 (Guz, 
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2002). The important breakthroughs have been made by Biot, Hayes and Rivlin, 

Chadwick and Jarvis, and Ogden and Sotiropoulos (Chen and Dai, 2012). Biot 

(1940) presented a rigorous solution to the problem of wave propagation in an 

elastic continuum when the influence of the initial stress is taken into account. It is 

shown that a uniform hydrostatic pressure does not change the laws of wave 

propagation. Hayes and Rivlin (1961) applied the theory of small-on-large 

deformations in an isotropic elastic material to study the propagation of a plane 

wave of small amplitude in an infinite material subjected to a static, homogenous 

deformation. Chadwick and Jarvis (1979) investigated the surface wave motion on a 

half-space subjected to pre-stress. The main results are a general uniqueness 

theorem and the notation of a neutral set, bounding the domain of existence of 

surface waves and interpretable as the totality of standing wave solutions. The 

reflection of homogeneous plane waves from a plane boundary in an incompressible 

isotropic elastic solid was investigated by Ogden and Sotiropoulos (1996) 

considering the influence of pre-stress and finite strain. They claimed the theoretical 

model can be used to characterize the material properties, the finite deformation and 

the associated pre-stress. The topics of elastic wave propagation in structures, like 

cylinders, pipes and plates, also arose extensive research interest. Belward and 

Wright (1987) studied small-amplitude waves propagating in a cylinder of pre-

stressed Mooney material using analytical and computational techniques. Significant 

qualitative and quantitative differences were observed when the pre-deformation 

varies. Shearer et al. (2013) considered the torsional wave propagation in a pre-

stressed annular cylinder of an incompressible material subjected to hydrostatic 

pressures acting on the inner and outer surfaces. The pressure difference creates an 

inhomogeneous deformation field along the radial direction, which makes the 

coefficients of the governing ordinary differential equation spatially varying and 

affects the location of the roots of the dispersion relation. The dispersion relation 

was then determined by using an approximate procedure (the Liouville-Green 

transformation). Rogerson and Fu (1995) investigated the propagation of small-

amplitude travelling waves in a pre-stressed, incompressible elastic plate of finite 

thickness by using the asymptotic analysis; the asymptotical expansions for the 

wave speed as a function of wavenumber and pre-stress were obtained. Zhou et al. 

(2017) investigated wave propagation on a finitely pre-deformed elastic half-space 
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overlain by a thin coating layer (or surface film). The comprehensive reviews on 

small-amplitude wave propagation in pre-deformed materials were given by Guz 

(2002) and Akbarov (2007). Recently, the pre-stretch was also used to control the 

wave propagation in soft periodic structures by Huang et al. (2014) and Chen et al. 

(2017). Galich et al. (2017) analyzed the elastic wave propagation in highly 

deformable layered media and the band gap structures were calculated for the 

periodic laminates. 

In addition to the mechanical manner like pre-stretch, the underlying electric 

field is another effective method to modulate the dynamic behavior of electroactive 

materials. The electro-elastic coupling effect has been widely used in acoustic 

sensors and actuators due to the rapid development of soft electroactive materials 

(Pelrine et al., 2000a, 2000b). The investigations related to the small-amplitude 

wave propagation in electroactive materials have been revived in recent years. 

Based on nonlinear theory of electroelasticity and the associated linear incremental 

equations (Dorfmann and Ogden, 2005, 2006, 2010b), the wave propagation in a 

soft electroactive cylinder subjected to a finite deformation in the presence of an 

electric biasing field was studied by Chen and Dai (2012). Su et al. (2016) extended 

Chen and Dai’s work to the non-axisymmetric case by considering the wave 

propagation in an infinite soft electroactive hollow cylinder under uniform biasing 

fields like an axial underlying electric displacement and an axial pre-stretch. These 

researches uncovered the significant influence of initial deformation and electric 

field on wave propagation in soft electroactive materials. The Rayleigh-Lamb wave 

propagation in dielectric elastomer layers subjected to large deformations was 

investigated by Shmuel et al. (2012). The underlying deformation is induced by 

biasing electric field and pre-stretch, which can be used to control the phase 

velocities and frequencies. Shmuel and deBotton (2013) studied the axisymmetric 

waves in dielectric elastomer tubes under inhomogeneous biasing field produced by 

different voltages inserted on the outer and inner surfaces. For the same model, Wu 

et al. (2017) investigated the guided circumferential waves by making use of the 

state-space method. Galich and Rudykh (2016) analyzed the influence of external 

electric stimuli on the pressure and shear wave propagation in dielectric elastomers. 

Due to the tunability of material properties of soft electroactive materials like 
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dielectric elastomers, related theoretical models of periodic structures or 

metamaterials have been established. The thickness vibrations of a finitely deformed 

infinite periodic laminate composed of two layers of dielectric elastomers were 

studied by Shmuel and deBotton (2012), whose study indicates that the band gaps 

can be modulated by the electric field. Then, Shmuel (2013) extended their work to 

a two-dimensional system by investigating the band structure for electroelastic 

waves of anti-plane mode propagating in finitely strained circular fiber-reinforced 

composites with square lattice. Following their works, the nonlinear theory of 

electroelasticity and the associated incremental equations have also been applied to 

the investigation of wave propagation in periodic structures made of electroactive 

materials. Wu et al. (2018) showed that the combination of large deformation and 

electromechanical coupling can be a very flexible and efficient way to tune the band 

gaps of a phononic cylinder of soft electroactive elastomer with periodic electric 

boundary conditions. The concept of manipulating waves in a dielectric elastomer 

film by voltage was demonstrated experimentally by Ziser and Shmuel (2017). 

However, it should be pointed out that there is a lack of enough experimental results 

of wave propagation in electroactive materials at present. Also, the theoretical 

models have been proposed based on a series of approximations, such as the 

neglecting of viscoelastic effect, which should be a very important factor in the 

analysis of soft materials.  

1.2.3 Solitary waves 

The waves having finite amplitude propagating in elastic or electro-elastic 

materials have to be analyzed within the frame work of nonlinear theory of 

elastodynamics, which are often called nonlinear waves. As a special kind of 

nonlinear waves, solitary waves can propagate over a long distance without 

distortion. The solitary waves were first observed in the field of fluid mechanics in 

1834 by John Scott Russell. In 1895, this fascinating phenomenon was successfully 

interpreted by Korteweg and de Vries who developed the well-known KdV equation. 

Since then, problems related to solitary wave propagation have been widely 

investigated. The solitary waves can cross each other without any distortion. Thus, 

such waves are often called solitons. Due to their remarkable characters, solitary 

waves are a subject of considerable interest in many fields. In the field of 



 Chapter 1 Introduction 13 

superconductivity, the flux quantum in Josephus effect is actually soliton which has 

been used to develop the new computers with lower power and higher speed. In the 

field of biology, the investigation of propagation of soliton in protein may explain 

the mechanism of the contraction of muscle. McDonald (1974) measured the 

simultaneous changes in amplitude and profile of the flow and pressure waves at 

five sites from the ascending aorta to the saphenous artery in a dog. The features of 

the pulse wave such as “peaking” and “steepening” can be interpreted from the 

viewpoint of solitary waves, see Fig. 1.4.  

 

Fig. 1.4 A diagrammatical comparison of the behavior of the flow velocity and 

pressure pulses from the ascending aorta to the sapheneous artery (Demiray and 

Dost, 1998) 

The pulse waves of blood pressure and flow in large arteries have widely been 

described as solitary waves (Choy, 2013). One of the successful application of 

soliton is optical soliton propagating in optical fiber. When the power increases, the 

nonlinearity has to be considered and the soliton forms, see Fig. 1.5. Their 

advantages include lower dissipation and higher bit ratio. With the development of 

high-resolution optical methods for wave detection, solitary waves have also been 
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observed experimentally in elastic solids (Samsonov and Maugin, 2001; Wu et al. 

1987). 

 

Fig. 1.5 Optical soliton (Copyright 1998 American Physical Society) 

There are many excellent theoretical works on solitary waves in solids. Among 

them, the investigation of solitary waves in rods has gained a particular popularity 

due to the simple one-dimensional geometry. Nariboli (1970) studied nonlinear 

longitudinal dispersive waves in compressible elastic rods. Wright (1981) studied 

nonlinear axisymmetric waves that propagate axial-radial deformation and proved 

the existence of solitary waves and periodic waves in circular rods. In 1984, 

Soerensen et al. (1984) numerically investigated the interaction between solitary 

waves. Wright (1985) pointed out the existence of a large number of traveling wave 

solutions in rods composed of incompressible materials. In 1990, Coleman and 

Newman (1990) derived a one-dimensional (1D) equation from the three-

dimensional (3D) theory and obtained explicit results for incompressible neo-

Hookean materials. Dai and Huo (2002), without using the Navier-Bernoulli 

hypothesis, established asymptotically valid one-dimensional rod equations, which 

are consistent with the lateral boundary conditions. Besides, Yong and LeVeque 

(2003) investigated the longitudinal elastic strain solitary waves in a one-

dimensional periodically layered medium. Maugin (2007) studied the possibilities of 

existence of solitary surface waves travelling over a substrate. Dai et al. (2000) 

studied analytically the interaction of two solitary waves in a circular cylindrical rod. 

By using the method of coupled series-asymptotic expansions, Dai and Peng (2011) 

investigated wave propagation in a pre-stretched Blatz-Ko cylinder and concluded 

that a variety of waves can arise, including solitary waves and kink waves. A 

detailed review on the study of solitary wave in solids can be referred to the paper of 

Maugin (2011). For nonlinear waves propagating in bodies with multi-field coupling, 
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Xue et al. (2011) made an important step by investigating solitary waves in a 

magneto-electro-elastic circular rod.  

The above mentioned solitary waves are usually generated due to the balance 

between nonlinearity and dispersion. However, dissipation is always present in a 

realistic situation. There are also many works in the field of nonlinear waves in 

solids considering the effect of dissipation. Destrade et al. (2009) studied the 

nonlinear shear waves propagating in viscoelastic materials whose generation is 

directly linked to the nonlinear viscosity term. Hayes and Saccomandi (2000, 2004) 

studied the propagation of finite-amplitude shear waves in Mooney-Rivlin 

viscoelastic materials maintained in the static state of a pure homogenous 

deformation. Destrade and Saccomandi (2004) then extended to the case of 

inhomogeneous plane waves. They also studied the interaction of a longitudinal 

wave with a transverse wave in viscoelastic materials (Destrade and Saccomandi, 

2005). Zabolotskaya et al. (2004) developed an evolution equation for nonlinear 

shear waves in soft isotropic solids with viscous dissipation. As is well–known, the 

combination of nonlinearity, dispersion and dissipation may lead to the generation 

of kink-shaped solitary waves or simply kink waves (Porubov, 2003). 

For soft elastic or electroactive materials, applying a mechanical or electric 

biasing field can conveniently modulate their effective properties and the 

corresponding dynamic behaviors. However, there are few works on nonlinear 

waves in pre-stretched structures composed of viscoelastic materials and especially 

few works on solitary waves propagating in soft electroactive materials. 

1.3 Nonlinear ultrasonic technique and its’ application 

Since the linear ultrasonic technique is insensitive to microstructural damages 

or material degradations, such as micro-cracks, plastic strains and dislocations, the 

nonlinear ultrasonic technique has been then developed, which is based on the 

nonlinear theory. The materials which have micro-defects or degradation behave 

remarkably in a nonlinear manner. The level of the damage has a strong correlation 

with the nonlinear material constants, i.e. higher order elastic constants. To measure 

the material nonlinearity, various ultrasonic methods have been proposed, including 
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the so-called acousto-elastic effect, which is based on the measurement of the 

variation of propagation velocity with the applied strain, just like the case discussed 

in Section 1.2.2. One problem of this technique is the difficulty in measuring the 

small changes in propagation time and distance accurately enough to allow the 

velocity to be determined (Croxford et al, 2009). The second and perhaps most 

widely reported method to measure the material nonlinearity is the harmonic 

generation technique. The drawback of the harmonic generation technique is that it 

is hard to separate the underlying system nonlinearity from the material nonlinearity. 

To avoid such interferences, the mixing wave technique has been proposed, which 

includes collinear and non-collinear mixing wave techniques (CMWT and 

NCMWT). 

1.3.1 Harmonics generated by quadratic and cubic nonlinearities 

 

(a) 

 

(b) 

Fig. 1.6 Nonlinear ultrasonic characterization of fatigue microstructures, (a) 

distortion in the waveform by the elastic nonlinearity, (b) the value of measured 

nonlinearity parameter as a function of number of fatigue cycles for aluminum alloy 

2024-T4 (Cantrell and Yost, 2001) 

 

In recent years, utilization of harmonic generation to interrogate material 

nonlinearity has been widely reported. Higher harmonics are generated by the 

distortion of waveform of the incident wave by the nonlinear response of elastic 

solids, see Fig. 1.6. The resulting amplitudes of higher harmonics are related to the 

nonlinearity parameter, such as the expression of  . 
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Experimental observations and an associated theory about the generation of 

second harmonics due to the presence of dislocations in solids were presented by 

Hikata and co-authors (Hikata et al., 1965; Hikata et al., 1966; Hikata and Elbaum, 

1966). A direct correlation between material nonlinearity and the level of plasticity 

in metal specimens was experimentally observed by Pruell et al. (2007) using higher 

harmonic generation by Lamb waves. Cantrell and Yost (2001) carried out 

experimental measurements to show a monotonic increase of nonlinear material 

constants with the number of fatigue cycles, see Fig. 1.6. Kim et al. (2006) 

developed a robust experimental method to enable a repeatable measurement of 

second harmonics. Frouin et al. (1999) successfully carried out a real time 

experiment using second harmonics to track the entire fatigue life of a dog-bone 

specimen. Deng et al. (2005) and Zhang et al. (2014) made experimental 

observations of second harmonic generation of Lamb waves in an elastic plate and 

in long bones. Bermes et al. (2007) developed an effective procedure to measure the 

nonlinearity of metallic plates using second harmonics.  

Some theoretical works about the generation of second harmonics have been 

reported. Ten possible nonlinear elastic wave interactions described on the basis of 

three third-order elastic constants were presented by Korneev and Demcenko (2014). 

All other possible interactions out of 54 combinations were proven to be prohibited. 

One of the outstanding features of higher harmonics is the cumulative behavior 

because their amplitudes increase with the propagation distance. The self-interaction 

or mutual interaction of shear waves in the region of quadratic nonlinearity gives the 

generation of longitudinal waves, which propagate with the shear wave velocity.  

Although higher harmonics in non-dispersive media have attracted wide 

attention, including experimental, numerical and analytical studies (Gol’dberg, 1961; 

Bender et al., 2013; Matlack et al. 2015), there are few investigations of higher 

guided harmonics in dispersive structures like pipes and rods. Due to the dispersion 

of guided waves, which will lead to frequency-dependent phase velocities and multi-

modes, the analysis of harmonics in wave guides becomes quite complex. Recent 

investigations about the generation of higher guided harmonics have been made by 

Deng (1998, 1999), Pau and Scalea (2015) and de Lima and Hamilton (2003) by 

using the method of normal mode expansion. De Lima and Hamilton (2005) adopted 
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perturbation and modal analysis together with numerical simulation to calculate the 

second harmonics propagating in cylindrical rods and shells. Liu et al. (2014a, 

2014b) proposed a generalized method and used a numerical approach to analyze 

the cumulative nature and the physical interpretation of the generation of higher 

harmonics in hollow circular cylinders. Liu et al. (2013a) formulated a mode 

selection method to consider strong higher harmonics and then simulated the 

interaction of torsional and longitudinal waves in nonlinear circular cylinders. 

Nonlinear finite element models have been adopted to analyze the cumulative 

second harmonics in plates and shells by Liu et al. (2013b). Chillara and Lissenden 

(2013) used a large radius asymptotic solution to analyze second harmonics in pipes. 

They concluded that only asymptotic symmetric modes can be efficiently generated 

from primary axisymmetric longitudinal modes.  

Surface harmonic generation on a half-space has received considerable 

attention, but adequate theoretical results have been lacking. Early theoretical results 

were developed by Kalyanasundar (1981) and Kalyanasundar et al. (1982) by using 

the method of multiple scales. However, there are certain serious limitations to 

Kalyanasundar’s investigations, which were pointed out by Lardner (1983). As an 

improvement of Kalyanasundar’s analysis, Lardner gave a more complete 

investigation on nonlinear surface wave propagation. Tiersten and Baumhauer (1974, 

1985) studied the second harmonic generation of surface waves in piezoelectric 

solids. Harvey et al. (1992) investigated the propagation of nonlinear surface 

acoustic waves in anisotropic solids, and numerical results along the particular 

propagation direction for magnesium oxide, copper and nickel were obtained. An 

experimental investigation of second harmonic propagation in metallic specimens 

was made by Herrmann et al. (2006). They showed a linear increase of the 

amplitude of a second harmonic surface wave with the increase of propagation 

distance. The theoretical model used in their paper is directly related to those for 

longitudinal waves and the nonlinearity parameter is assumed to be same as the 

nonlinearity parameter of a longitudinal wave. This model was also adopted by 

others to interpret their experimental observation (Zeitvogel et al., 2014; Walker et 

al., 2012), and though it is much simpler than the results mentioned above, this 

model lacks adequate theoretical validation.  
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Fig. 1.7 Linear stress-strain relation and stress-strain curves for the quadratic and 

cubic nonlinearities 

The above mentioned references show that second harmonics have been 

frequently employed to measure the nonlinearity of materials. The quadratic terms 

cause, however, non-symmetry in the stresses with respect to the origin of zero 

stresses. 

Comparing with second harmonics, third harmonics have been less often 

investigated. A mathematical model was employed by Liu et al. (2013a) to predict 

the cumulative behavior of third harmonics. The increase of the amplitude of third 

harmonic with the plastic strain has been experimentally confirmed by Lissenden et 

al. (2014). Rénier et al. (2008) presented an experimental setup to measure the 

fourth-order elastic constants for shear deformation. Chillara and Lissenden (2016) 

proposed a new constitutive model for third harmonic generation in elastic solids. It 

appears that no mathematical model has yet been proposed to obtain the analytical 

approach to the generation of third harmonics. The main advantages of third 

harmonics over second harmonics are that in contrast with a quadratic nonlinearity, 

a cubic nonlinearity of the constitutive relation is more generally applicable, see Fig. 

1.6. This figure shows that, for both quadratic and cubic nonlinear behavior, a 

positive strain requires a smaller stress than for the linear stress-strain relation. On 

the other hand, for quadratic behavior, a negative strain requires a negative stress 

whose absolute value is larger than for the linear stress-strain relation. This behavior 

which happens for some materials is referred to as the strength differential effect, 

see Hirth and Cohen (1970), Gil et al. (1999) and Rauch and Leslie (1972) for the 
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corresponding curves for tensile and compressive strain. It has been shown that 

dislocation dynamics can be more effectively studied by third harmonics (Hikata 

and Elbaum, 1966). Experimental results have confirmed the sensitivity of third 

harmonics to dislocation density and loop length (Hikata et al., 1966). There are also 

materials that show quadratic nonlinearity (Hirth and Cohen, 1970; Gil et al., 1999). 

The drawback of third harmonic is its smaller amplitude and higher damping. 

1.3.2 Mixing wave technique 

To avoid the interference from underlying system nonlinearity, the mixing 

wave technique has been developed. The outstanding character of this technique is 

that the frequency of the mixing wave is selectable, which is the sum or difference 

frequencies of the incident waves. Another important advantage of the mixing wave 

technique over the harmonic generation technique is the spatial selectivity that the 

nonlinear interaction is only limited to the region where the incident beams intersect 

(Croxford et al., 2009). For the collinear mixing wave, the position of the 

intersection region is figured out by making use of the wave velocity and the 

propagation time. The nonlinearity parameters for various elastic solids were 

measured by applying the CMWT by Jacob et al (2003). Experimental 

measurements were conducted by Liu et al. (2012) to demonstrate that the CMWT is 

capable of measuring the plastic strain in A1-6061 Alloys. Ju et al. (2017) measured 

the nonlinearity parameter by using the collinear mixing wave in concrete. The 

sensitivity of the wave speed and attenuation to the damage induced by alkali-silica 

reaction was proven to be lower than the sensitivity of nonlinearity parameter to the 

same damage. Tang et al. (2014) used the collinear mixing of shear and longitudinal 

waves to detect the localized plastic strain. When the frequencies of a pair of 

collinear shear and longitudinal waves satisfy the resonant condition, mixing of 

these two primary waves generates a resonant shear wave propagating in the 

opposite direction of the propagation direction of the primary shear wave. Hills et al. 

(2006a, 2006b) and Courtney et al. (2010) developed a special CMWT for global 

crack detection in structures by employing bispectral analysis. The bispectral was 

shown to be particularly useful in exacting the nonlinearity related to phase coupling. 

This method was also used by Jiao (2014) to process the nonlinear response of the 

samples to continuous excitation at two frequencies when they detected the fatigue 
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cracks by using the CMWT. All of these researches indicate that CMWT is a 

promising method for nondestructive assessment. Illustration of CMWT is shown in 

Fig. 1.8. The amplitudes of the waves with the frequencies of f0-f1 and f0+f1 are 

directly related to the defect properties. 

 

Fig. 1.8 Illustration of collinear mixing wave technique (Jhang, 2009) 

Compared with CMWT, the intersection region can be determined directly 

through a geometrical means for NCMWT in an easier way. Illustration of NCMWT 

is given by Fig. 1.9. NCMWT was verified on the measurement of laboratory and 

field PVC test speciments by Demcenko et al. (2012). Their results confirmed that 

NCMWT is suitable to estimate the physical ageing state of PVC. Demcenko et al. 

(2014) presented an experimental non-collinear wave mixing for testing of polymers 

by using an immersion method. It was shown that this technique is an effective 

monitoring and scanning means when applied to thermoplastic ageing, epoxy curing, 

and nondestructive testing. Croxford et al. (2009) experimentally confirmed the 

sensitivity of NCMWT to plasticity and fatigue damage and the potential application 

to be used as a nondestructive testing technique. The deviation of the incident angle 

of mixing wave has an important influence on NCMWT. NCMWT was applied by 

Blanloeuil and Meziane (2015) for detection and characterization of closed cracks. 

They uncovered that the angle of incidence of the shear waves can be used to 

optimize the method. The relationship between the acoustic nonlinearity parameter 

and the incident angle was investigated by Sun et al. (2018) by making use of 

numerical simulation and experimental measurements for the non-collinear mixing 

of two shear waves. The lack of theoretical investigation for NCMWT, especially 

for the waves intersecting in structures, should be noted. 

f1 f0 

f1 f0-f1 

f1 

f0 f0+f1 

f0 

f1 

f0 
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Fig. 1.9 Illustration of NCMWT (Croxford et al., 2009) 

1.3.3 Scattering and reflection from a region of nonlinear material 

The whole body of nonlinear material behavior is generally assumed in most 

published papers. From the practical point of view, the reflection, transmission and 

scattering of incident waves from an inclusion of nonlinear material behavior are of 

obvious interest. Recently, the research topics related to the interaction of elastic 

waves with the local region of nonlinear material behavior start to arise academic 

attentions. Tang et al. (2012) investigated the scattering of an incident longitudinal 

wave from a region of spatially-dependent quadratic nonlinearity. The scattering of 

elastic waves from a heterogeneous inclusion of nonlinearity contained in a linear 

host material was investigated by Kube (2017). For the two papers mentioned above, 

the geometrical nonlinearity was only assumed in the local region, which is thought 

to be unreasonable. For the problem of scattering from the nonlinear region, the 

assumption that only material nonlinearity exists in the local region without 

considering the geometrical nonlinearity may be more comprehensible. However, it 

should be noted that even very small imperfections can produce very significant 

excess nonlinearity which can be orders of magnitude higher than the intrinsic 

nonlinearity of the intact material (Nagy, 1998). So the excess material nonlinearity 

can be dominant over the geometrical nonlinearity and the instinct material 

nonlinearity and these two results will be approximately equal.  
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One of the most important applications of the wave reflection from nonlinear 

region is to measure the imperfect bounded interface. The nonlinear reflection of 

bulk waves from an interface between two solids of quadratic nonlinearity were 

reported by Zhou and Shui (1992). An experimental investigation was presented by 

Donskoy et al. (2001) to observe the modulation effect of highly nonlinear material 

behavior caused by weakly or incompletely bounded interfaces. Second harmonics 

were used by Richardson (1979) and Biwa et al. (2004) to analyze the contact 

acoustic nonlinearity of the interface between two linear elastic media. In their 

papers, the nonlinear stiffness property of the interface was described as a function 

of the nominal contact pressure. Achenbach et al. (1989) expressed the failure of an 

adhesive bond by a cubically nonlinear elastic model. In that case the strength of the 

adhesive bond can be directly measured from the reflected waves. The approach 

suggested by Achenbach et al. (1989) was extended by Nagy et al. (1990) to take the 

thickness of the adhesive bond into consideration. Zhang et al. (2016) made use of 

the intersection of two non-collinear shear waves at an imperfect interface to assess 

the bond quality. These authors claimed that their acoustic technique can avoid other 

forms of nonlinearity aroused by the system. For simplicity, the interfaces or 

adhesive bonds studied above were frequently modeled by nonlinear springs.  

The investigations of scattering or reflection from local region of nonlinear 

material behavior, which is used to model micro-damages or material degradations, 

have not attracted sufficient attentions. Few theoretical and experimental results 

have been reported for the problem of nonlinear scattering or reflection in structures, 

such as plates, pipes and rods.  

1.4 Objectives and outline 

The objective of this dissertation is to develop several theoretical methods to 

investigate the nonlinear wave propagation characteristics in materials and structures 

with the potential application related to the design of novel acoustic devices and the 

development of nonlinear ultrasound techniques for nondestructive evaluation. For 

soft bars, the solitary waves can be generated in the limit of long wavelength if the 

material and geometrical nonlinearities and viscoelasticity are considered. The 

capacity of tunability of solitary waves in soft bars under pre-stretch or biasing 
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electric field is investigated. Since materials having micro-damages or material 

degradations behave in a nonlinear manner, the interaction of incident waves with 

material nonlinearity is of obvious academic interest. Our goal is to develop 

simplified theories and simple theoretical models based on reasonable assumptions 

to work out analytical solutions, which are important for the development of 

nonlinear ultrasound technique. 

After a careful literature research, we find a number of meaningful and 

interesting topics have not been investigated, which motivate the present work. 

Specifically, they include 

1. There has been no report on nonlinear solitary waves in soft electroactive 

materials in the presence of electric biasing field. Our goal is to find if solitary 

waves can be modulated by the underlying electric biasing field. 

2. There are few works on nonlinear waves in pre-stretched structures composed of 

viscoelastic materials. Our goal is to study the influence of the pre-stretch on 

kink and kink-like longitudinal waves in Mooney-Rivlin viscoelastic rods. 

3. No mathematical model has yet been proposed to obtain the analytical approach 

to the generation of third harmonics. Our goal is to present an analysis of the 

generation of higher harmonics based on quadratic and cubic material 

nonlinearity.  

4. Fewer results for harmonics of surface waves on a half-space of material 

nonlinearity are available, especially in term of analytical solutions. One of the 

main purposes of the present work is to obtain an analytical solution for higher 

harmonic surface waves in a simple and elegant manner, which may be easily 

understood and applicable.  

5. Rods and pipes are widely used in structures such as pipelines. However, 

relevant analytical solutions to nonlinear waves propagating in cylindrical wave 

guides are still not available. We intend to conduct an analytical investigation of 

higher harmonics in pipes based on shell theory with quadratic nonlinear 

material behavior. An analytical approach based on shell theory provides a 

clearer physical insight in the deformation modes. Whereas exact three-

dimensional theory has to be dealt with numerically, shell theory yields 

relatively simple analytical solutions. 
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6. The reflection and scattering from local region of cubic material nonlinearity are 

seldom investigated. The physical mechanisms inside them are not clear. One 

main purpose here is to investigate the reflection and backscattering of plane 

elastic waves by a region of cubically nonlinear material behavior.  

7. Analytical solutions to third harmonics propagating in pipes haven’t been 

reported. We will investigate the propagation of guided waves in a pipe of cubic 

material nonlinearity.  

8. Little attention has been paid to the investigation of scattering of incident waves 

from a local region of nonlinearity in structures. We intend to investigate the 

scattering of two orthogonal SH waves of the lowest mode from a cylindrical 

region of nonlinear material behavior in an elastic layer by using the reciprocity 

theorem of elastodynamics. 

The remaining main part of this dissertation is splitted into two parts. The first 

part contains Chapters 2 and 3. In this part, solitary waves propagating in soft bars 

are investigated, which can be adjusted by pre-stretch and biasing electric field. In 

Chapter 2, an asymptotic analysis of solitary waves propagating in an 

incompressible isotropic electroactive circular rod subjected to a biasing 

longitudinal electric displacement is presented. In Chapter 3, we theoretically 

investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin 

viscoelastic rods. The second part contains Chapters 4-9, which deals with higher 

harmonic generation by material nonlinearity. In Chapter 4, harmonics of plane 

longitudinal and transverse waves in nonlinear elastic solids with up to cubic 

nonlinearity are investigated in a one-dimensional setting. In Chapter 5, the 

analytical far-field solution for the cumulative third harmonic surface wave 

propagating on a half-space of isotropic incompressible cubically nonlinear material 

is obtained in a relatively simple and systematic manner. In Chapter 6, higher 

harmonics in pipes of quadratic nonlinear material behavior are analyzed using the 

shell theory. In Chapter 7, two models are proposed to obtain information on the 

material nonlinearity of an inclusion in a solid body. In Chapter 8, the effect of cubic 

material nonlinearity on the propagation in a pipe of the lowest axially symmetric 

torsional wave mode is investigated. Two cases, one that the material of the whole 

pipe is nonlinear, and the second that a small segment of the pipe is nonlinear, are 
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considered. In Chapter 9, the intersection of two SH waves of lowest modes with a 

local cylindrical region of quadratic material nonlinearity in an elastic layer is 

investigated. 
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Chapter 2 Adjustable solitary waves in electroactive rods 

2.1 Introduction 

As a special kind of soft solids, soft electroactive materials (such as dielectric 

elastomers) can change their shapes and mechanical properties under electric 

stimulation. Such materials behave just like biological muscles, and hence they are 

often called artificial muscles. As a new kind of advanced functional materials, 

electroactive materials have many attractive characteristics, such as higher response 

speed, lower density and greater resilience Cohen-Bar (2002). Not surprisingly, they 

have triggered wide research interests. Recently, Dorfmann and Ogden (2005, 2010b) 

presented a nonlinear framework for electroelasticity and investigated the linear 

waves in electroactive bodies under biasing fields. Shmuel et al. (2012) investigated 

electromechanical waves propagating in a dielectric elastomer layer with initial 

deformation. Chen and Dai (2012), based on the nonlinear electroelastic theory of 

Dorfmann and Ogden (2010), presented an exact axisymmetric wave solution for a 

soft electroactive cylinder with both underlying finite deformation and electric 

biasing field. To the best knowledge of the authors, there has been no report on 

nonlinear solitary waves in soft electroactive materials in the presence of electric 

biasing fields, and this fact motivates the present study. For nonlinear waves 

propagating in bodies with multi-field coupling, Xue et al. (2011) made an 

important step by investigating solitary waves in a magneto-electro-elastic circular 

rod.  

Our goal is thus to study solitary waves in soft electroactive circular rods, to 

see if they can be modulated by the underlying electric biasing field. The 

asymptotically valid method is employed to study the axisymmetric solitary waves 

in incompressible isotropic electroactive circular rods. The similar method has been 

adopted in Dai and Huo (2002). We will introduce several asymptotic expansions for 
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the axial and radial displacements, the electric potential, and the hydrostatic pressure 

which is associated with the material incompressibility. The 1D equations governing 

the nonlinear waves in the limit of finite-small amplitude and long wavelength are 

derived, with the lateral boundary conditions satisfied asymptotically. To validate 

the adopted approach and the mathematical derivation, the reduced linear dispersion 

relation is compared with the one directly derived from the 3D theory (2012) in the 

limit of long wavelength, and perfect agreement is observed. The far-field equation, 

which is known as the KdV equation, is then deduced by using the reductive 

perturbation method. The leading order of the electroelastic solitary wave solution is 

finally obtained from the KdV equation. Numerical examples are given to show the 

effects of the biasing electric displacement and the material constants on solitary 

waves in electroactive rods. It is found that the velocity of solitary waves can be 

modulated by the biasing electric displacement while the amplitude keeps 

unchanged. On the other hand, by keeping the velocity unchanged, we can adjust the 

wavelength and amplitude of solitary waves using the electric means. Further, while 

it doesn’t change the wave shape of the longitudinal strain or transverse 

displacement for a prescribed amplitude, it does have an effect on the wave shape of 

the longitudinal electric field. The multiple tunability of solitary waves in 

electroactive rods may promote certain application of solitary waves in solids. 

2.2 Nonlinear framework of electroelasticity 

We consider a slender circular rod of diameter 2a with its end surfaces coated 

with soft electrodes. The axis of the rod coincides with the Z-axis, see Fig. 2.1.  

To study the axisymmetric motion of the rod, which is made of a homogeneous, 

incompressible, isotropic, electroactive material, we shall first review here the 

nonlinear framework for electroelasticity formulated by Dorfmann and Ogden (2005, 

2010). Suppose that the undeformed body occupies a region 0  with the boundary 

0  and the outward normal N . This is taken to be the reference configuration. 
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Let   describe the motion of a material point at X , the position vector in the 

reference configuration, which moves to x  at time T  according to ( , )Tx X . 

The body then has the current configuration   with a boundary   and the 

outward normal n . We define the deformation gradient tensor as GradF , and 

Tc F F  is the right Cauchy-Green tensor. For incompressible materials, we have 

the incompressibility constraint det 1J  F . 

 

Fig. 2.1. An electroactive rod subjected to a biasing electric field applied through the 

end electrodes 

 

The equations of motion can be written as 

 
2

2
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T
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where the nominal stress tensor Σ  can be calculated by 
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where lD  is the Lagrangian counterpart of the electric displacement, P  is a 

Lagrangian multiplier associated with the incompressibility constraint, 

( , )l F D  is the energy density per unit volume in 0 , and 
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Under the quasi-electrostatic approximation, the equations governing the electric 

field read 

 Curl 0l E   (2.2a) 

 Div 0l D   (2.2b) 

where Curl  and Div  are the curl and divergence operators in 0  and lE  is the 

Lagrangian counterpart of the electric field, which can be expressed in terms of lD  

for soft electroactive materials as (Dorfmann and Ogden, 2010) 

 4 52( )l l  E I c D   (2.3) 

where I  is the unit vector. 

The mechanical boundary condition is 

 T

AΣ N t   (2.4a) 

where At  is defined by dA daA at t , with at  being the applied mechanical 

traction per unit area in  , and dA  and da  the differential areas in 0  and  , 

respectively. The electric boundary condition is 

 0l q D N   (2.4b) 

where 0q  is the surface charge density in 0 . The above nonlinear framework for 

electroelasticity is suitable for describing the dynamic behavior of incompressible 

isotropic dielectric elastomers (Dorfmann and Ogden, 2005, 2010). 

In this Chapter, we consider the case that the lateral surface is free from both 

mechanical tractions and surface charges, i.e. A t 0  and 0 0q  . It is noted that 

the influence of the electric field exterior to the rod is neglected for simplicity. Such 

simplification has also been adopted in earlier works (Zhang et al., 2012; Ericksen, 

2007; Suo et al., 2008) on account of the fact that the permittivity of eletroactive 

materials is usually much larger than that of vacuum. 



 Chapter 2 Adjustable solitary waves in electroactive rods 33 

2.3 Model equations 

To study the axisymmetric motion of the circular rod, we shall adopt cylindrical 

coordinate systems ( ,  ,  )R Z  and ( ,  ,  )r z , which correspond to the reference 

and current configurations, respectively. The Z-axis is already shown in Fig. 2.1. 

The two systems completely coincide with each other, but the same material point 

will mostly have different positions in them.  

We assume that there exists an initial biasing electric displacement along the 

Z-axis 

  
T0 0,  0,  l DD   (2.5a) 

Making use of Eqs. (2.3) and (2.5a), we can get the corresponding electric field 

  
T0 0,  0,  l EE   (2.5b) 

where 4 52( )E D   , which is obtained under the assumption that no 

mechanical deformation (i.e. F I ) is induced along with the biasing electric 

displacement. This further gives a result of the corresponding Lagrangian multiplier, 

i.e. 0 1 22 4p      which is obtained from the traction-free boundary conditions. 

It should be pointed out that, m  are all assumed to be constant for simplicity 

(especially, 6 0  ) in the following analysis. This assumption is valid at least for 

some simple material models, such as the Mooney-Rivlin material model (and the 

neo-Hookean model as its special case), which will be considered in the numerical 

part. For more complex models which contain higher-order elastic constants 

(Hamilton et al., 2004), the analysis is essentially the same, though the mathematical 

derivation may become more tedious. 

The axisymmetric motion and the electric field of the rod are described by 

 ( , , ) ( , , ),  ( , , ) ( , , ),  z R Z T Z W R Z T r R Z T R U R Z T         (2.6a) 

 0P p p    (2.6b) 
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  
T

( ) ( ),  0,  l R ZE E E  E   (2.6c) 

where, as a convention, the subscripts inside the brackets denote components; 

otherwise, they signify differentiations with respect to the corresponding coordinate 

variables.  

The deformation gradient tensor and the right Cauchy-Green tensor are then 

given by 
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While, the incompressibility constraint 1J   can be written approximately as 

 0Z R
Z R R Z Z R

UW UUU
W U U W U W

R R R
         (2.8) 

It should be noted that, for a weakly nonlinear analysis, we have neglected in Eq. 

(2.8) the terms which are higher than the second order, which will also be followed 

in the derivation below.  

To satisfy Eq. (2.2a), we introduce the electric potential   such that 
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In view of Eqs. (2.3), (2.6c), (2.8) and (2.9), we can get the following approximate 

expressions of the nonzero components of lD : 
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where 2

1 5 4 5/ 2( )      , 2 4 51/ 2( )    , and 3 5 4 5/ ( )    . The 

relations 1 3E D   and 2E D   have been noticed above. In view of Eqs. 

(2.1b), (2.7) and (2.10), we can also get the approximate expressions of the nonzero 

components of Σ , which are all listed in Appendix 2A. 

Eqs. (2.1a) and (2.2b) can be written in the following form 
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Taking Eqs. (2.10a), (2.10b) and (2A.1)-(2A.5) into the above equations, we get 
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Since the lateral surface is free from mechanical tractions and surface charges, 

we have 

 ( ) ( ) ( )0,  0,  0Rr Rz l RD      at R a   (2.13) 

Making use of Eqs. (B1), (B2) and (2.10a), we get the following approximate 

boundary conditions at R a : 
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The governing equations (2.8) and (2.12a)-(2.12c) and the boundary conditions 

(2.14a)-(2.14c) derived above will be used to approximately describe the nonlinear 

dynamics of electroactive rods.  

For convenience, we introduce the following transformations: 

 ( , , ), ( , , ), ( , , ), ( , , )W W Z S T U RV Z S T p p Z S T Z S T       (2.15) 

where 2S R . Making use of the above transformations, we can obtain the 

governing equations and boundary conditions in an alternative and useful form, see 

Appendix 2B. The importance of the above transformations is that the factor 1/ R  

is eliminated from the governing differential system, as can be seen from Eqs. 

(2B.1)-(2B.7). Also, the square root S R  does not appear in the resulting 

system, which implies that for axisymmetric deformations or motions 2S R  is a 

more natural radial variable for the new unknown functions in Eq. (2.15).  

For waves with finite-small amplitude and long wavelength, it is convenient to 

introduce the following scales to non-dimensionalize the above-mentioned equations 
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where h  is a characteristic axial displacement, l  is a characteristic wavelength, 

c  is a characteristic velocity,   is the shear modulus of the material, and 0  is 

the permittivity of vacuum. We also transform m  into the following 

dimensionless constants 
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In view of Eqs. (2.16a) and (2.16b), from Eqs. (2B.1)-(2B.4), we obtain 
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where 
4 4 51/ ( )    , 5 0/D  , and /h l  , which is a small parameter 

for finite-small waves. Making use of Eqs. (2.16a) and (2.16b), we can rewrite the 

boundary conditions in Eqs. (2B.5)-(2B.7) as follows 
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  (2.18b) 
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  (2.18c) 

at s  , where 2 2/a l   is small for long waves in slender rods. Hence, Eqs. 

(2.17a)-(2.17d) and (2.18a)-(2.18c) govern the problem under study, which depends 

on three variables ( ,  ,  )x s t  and involves two small parameters ( ,  )  .  

In order to further simplify the problem, we expand asymptotically, for slender 

rods, w , v , p  and   in the neighborhood of 0s   in the following way: 

 2

0 1 2( , ) ( , ) ( , )w w x t sw x t s w x t      (2.19a) 

 2

0 1 2( , ) ( , ) ( , )v v x t sv x t s v x t      (2.19b) 

 2

0 1 2( , ) ( , ) ( , )p p x t sp x t s p x t      (2.19c) 

 2

0 1 2( , ) ( , ) ( , )x t s x t s x t         (2.19d) 

Inserting Eqs. (2.19a)-(2.19d) into Eqs. (2.17a)-(2.17d) and (2.18a)-(2.18c), we can 

get the 1D governing equations describing the weakly nonlinear long waves 

propagating in electroactive rods, which will be given in Section 5. In the following 

section, however, we will first perform the linear analysis for the sake of 

verification. 

2.4 Linear dispersion relations 

The linear part of Eqs. (2.17a)-(2.17d) corresponds to the dimensionless 

governing equations which describe the linear waves in soft incompressible 

electroactive rods and are given as follows: 

 2 2 0x sv w sv     (2.20a) 
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 (2.20b) 
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The corresponding linearized boundary conditions from Eqs. (2.18a)-(2.18c) are 

 
1 1 224 42 ( 2 ) 0,x sp w v sv          (2.21a) 

 2

1 2 3 5 5 3 5( )(2 ,2 2 02 2)x s sv w          (2.21b) 

 3 5 4( 2 ) 0,x s sv w        (2.21c) 

at s  . 

Substituting the expansions in Eqs. (2.19a)-(2.19d) into Eqs. (2.20a)-(2.20d) 

and (2.21a)-(2.21c) and setting the coefficients of each power of s  to be zero, we 

get the 1D governing equations as 

 0 02 0xv w    (2.22a) 

 1 14 0xv w    (2.22b) 

 2 26 0xv w    (2.22c) 
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The corresponding boundary conditions are obtained similarly 
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There are totally fourteen differential equations in Eqs. (2.22a)-(2.22n), giving a 

mathematically closed system about the fourteen unknown functions mw , nv , np  

and m  ( 0,  1,  2,  3 m   and 0,  1,  2n  ). 

To derive the dispersion relations, we assume  

 i( ) i( ) i( ) i( )e ,  e ,  e ,  ekx t kx t kx t kx t

m m n n n n m mw A v B p C             (2.23) 

Inserting Eq. (2.23) into Eqs. (2.22a)-(2.22n), we get 

 0SΧ   (2.24) 

where  
T

0 1 2 3 0 1 2 0 1 2 0 1 2 3, , , , , , , , , , , , ,A A A A B B B C C C    Χ , and 

 
11 12

21 22

 
  
 

S S
S

S S
 

is the coefficient matrix with the four submatrices given by  
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4 1 2 53 5    , 
5 3

2

52 5( )    . 

For nontrivial solutions, the determinant of the matrix of coefficients must be 

zero, i.e. 

 det 0S   (2.25) 

which is the dispersion equation. In the numerical part of this paper, we will 

compare the results from Eq. (2.25) with the one derived directly from the 3D linear 

theory so as to validate the above method and derivation. 

2.5 The far-field equation 

Because Eqs. (2.17a)-(2.17d) and (2.18a)-(2.18c) are complex two-dimensional 

(2D) nonlinear partial differential equations, it is very difficult to get an analytical 

wave solution directly. We will thus focus on the far-field equation, which balances 

the nonlinearity and dispersion. To do so, we shall first simplify Eqs. (2.17a)-(2.17d) 

and (2.18a)-(2.18c) to the 1D form as in the linear analysis in Section 4. Substituting 

Eq. (2.19a)-(2.19d) into Eqs. (2.17a)-(2.17d) and (2.18a)-(2.18c) and setting the 

coefficients of each power of s  to be zero, we obtain 
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The corresponding boundary conditions are given by 
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The above ten equations give the nonlinear 1D governing equations, in which the 

terms 
2( , )O    will be neglected. 

To derive the asymptotically valid far-field equation, we adopt here the 

reductive perturbation method (Jeffrey and Kawahara, 1982) and introduce the 

following transformations (Dai and Huo, 2002) 

 ,  x t t       (2.27a) 

It is assumed that ,  ,  i j jw v p  and  i  ( 0,  1,  2i   and 0,  1j  ) in Eq. (2.26) 

have the following perturbation expansions 
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  (2.27b) 

Substituting Eqs. (2.27a) and (2.27b) into Eqs. (2.26a)-(2.26j), we obtain at 

0( )O   

 0 MH 0   (2.28) 

where  
T

0 00 10 20 00 10 00 10 00 10 20, , , , , , , , ,w w w v v p p    H , and 
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In order to find the nontrivial solutions, we let 

 det 0M   (2.29) 

which leads to  
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It is noted that the above result is identical to the one obtained by Dai and Huo 

(2002) for neo-Hookean elastic materials, for which 
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From Eq. (2.28), we have 
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The left eigenvector eL  of the matrix M  is given by 
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At ( )O  , we can get another ten equations. Inserting Eq. (2.31) into these 

equations, we obtain 
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To suppress the secular terms, which might arise from Eq. (2.33), we multiply the 

left-hand side of it by the left eigenvector eL , and arrive at 
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where  
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  (2.34b) 

Eq. (2.34a) is of the type of the well-known Korteweg-de Vries (KdV) equation, 

which is the asymptotically valid far-field equation for 
00w   for nonlinear waves in 

electroactive circular rods. Eq. (2.34a), which incorporates both nonlinearity and 

dispersion, admits a single-soliton solution, namely solitary wave. 1  and 2  are 

the coefficients of the nonlinear term and the linear dispersive term, respectively, 

and they can get modulated by changing the biasing electric displacement. If we 

neglect the nonlinear term, we can get the linearized KdV equation, namely 

 00 2 00 0w w     (2.35a) 

From Eq. (2.35a), we can get the asymptotically valid dispersion relation as 

 3

2k k      (2.35b) 
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This equation will be compared numerically with Eq. (2.25) and the one derived 

directly from the 3D linear theory in the next section. 

The solitary wave solution to the KdV equation (2.34a) is known to be 

  2

00 1 2 0sech / 2w H H H y       
 

  (2.36a) 

where 0H   is the wave amplitude, which is a given parameter in the nonlinear 

analysis, 0y  is a phase constant, which will be made zero without loss of generality 

in the numerical part, and 

 1 2 1 2
1 2 12

1 2 1 2 5 5

8( 2 ) 2

3( ) 3 3


  

 

     
 

      
，   (2.36b) 

Inserting Eq. (2.36a) into Eq. (2.31), we can obtain the expressions of 
00  and 

00v  as follows 
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  (2.36c) 
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2
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 
  (2.36d) 

From Eq. (2.36d), we recognize that the solitary wave is an expansion wave (i.e. the 

cross-section of the rod expanses while the solitary wave propagates). Due to 

electroelastic coupling, we can also get the electric field corresponding to the 

solitary wave, as given in Eq. (2.36c). Clearly, the amplitude of the electric field 

depends on the biasing electric displacement. 

We then can get the leading order of the solitary wave solution from Eqs. 

(2.36a, c, d) as 

   2

1 1 2 0sech / 2 ( )xw H H x H t y          (2.37a) 

   2

5 5 1 1 2 04 sech / 2 ( )x H H x H t y            (2.37b) 

   2

1 1 2 0

1
sech / 2 ( )

2
v H H x H t y         (2.37c) 

Thus, after a tedious derivation, we get a simple solitary wave solution as 

specified in Eqs. (2.37a)-(2.37c). It is interesting that the biasing electric 

displacement only affects the wave velocity but doesn’t change the wave shape of 
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the longitudinal strain or the transverse displacement when the amplitude is 

specified. From Eq. (2.37c), we find that the transverse displacement has its 

amplitude proportional to the longitudinal strain, and its propagation velocity equal 

to the wave velocity in the rod. This particular character is often used to measure the 

longitudinal wave velocity (Samsonov, 2001). As expected, the longitudinal electric 

field also has the same wave velocity, and this property may be used to measure the 

velocity of solitary waves in electroactive rods through the electric means. More 

detailed discussions based on numerical calculations will be given in the following 

section. 

2.6 Numerical investigation and discussions 

2.6.1 The linear case 

To verify the present approach and the mathematical derivation, we compare 

the linear dispersion relations in Eqs. (2.25) and (2.35b) with the one derived 

directly from the 3D linear theory as given by Chen and Dai (2012). For 

convenience, we will adopt the same dimensionless quantities as the ones in the 

paper of Chen and Dai, and they are related to those in the present paper by 

 1/2 1/2

2
,  k k

c


   



     (2.38) 

where   and k  are the dimensionless wave frequency and wave number defined 

in the paper (Chen and Dai, 2012). Then, Eq. (2.35b) can be expressed by k  and 

  as 

 2 31 2
1 2 5 5

2

1 2 5 5

3 2( )
2(3 3 )

16 3 3
k k 



 
      

    
  (2.39) 

We adopt the following energy function, which is a modification of the 

classical neo-Hookean elastic model (Dorfmann and Ogden, 2010), 



52 浙江大学博士学位论文  

 1 1 4 2 5

0

1 1
( 3) ( )

2
I I I  


       (2.40a) 

where   is the shear modulus of the material, and 1  and 2  are two 

dimensionless electroelastic coupling parameters. Thus, we can obtain the following 

parameters 

 
1 2 4 1 5 2

1
,  0,  ,  

2
           (2.40b) 

The components of the coefficient matrix in Eq. (2.25) in terms of k  and   for 

the above modified neo-Hookean materials are given in Appendix 4C. 

 

Table 2.1 Comparison of three dispersion relations under two different biasing electric fields 

 

k  

5 0.5    5 1.0    

Eq. (2.25) Eq. (2.39) Chen & Dai Eq. (2.25) Eq. (2.39) Chen & Dai 

0.01 0.01936 0.01936 0.01936 0.02449 0.02449 0.02449 

0.03 0.05809 0.05809 0.05809 0.07348 0.07348 0.07348 

0.05 0.09681 0.09681 0.09681 0.12246 0.12246 0.12246 

0.10 0.19355 0.19355 0.19355 0.24487 0.24487 0.24487 

0.20 0.38652 0.38652 0.38652 0.48928 0.48929 0.48928 

0.30 0.57833 0.57833 0.57833 0.73274 0.73278 0.73276 

0.40 0.76838 0.76840 0.76840 0.97473 0.97490 0.97482 

0.50 0.95609 0.95614 0.95613 1.21469 1.21518 1.21495 

 

It should be noted that Eq. (2.25) admits both the numerical solution and the 

asymptotic solution (Dai and Huo, 2002). In this Section, however, we will only 

discuss the numerical solution. We set 1 0.5   and 2 1.5   in the numerical 

calculation, and the results are given in Table 2.1. It is shown that both linear 

dispersion relations (2.25) and (2.39) agree well with the 3D one in the reference 

(Chen and Dai, 2012) for long wavelengths, which validates, at least in part, our 
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approach, derivation and computation. It also should be emphasized that both   

and 1  have no influence on the results in the limit of small wave number, as is 

seen from Eq. (2.39). 

2.6.2 The nonlinear case 

In this part, we will discuss how the parameters affect the behavior of the 

nonlinear solitary waves. We will adopt the following energy function derived on 

the base of the incompressible elastic Mooney-Rivlin material model: 

 1 2 1 4 2 5

0

1 1 1 1 1
( )( 3) ( )( 3) ( )

2 2 2 2
I I I I     


           (2.41) 

where   is the shear modulus of the material, 1/ 2 1/ 2    is the material 

constant, and 1  and 2  are two dimensionless electroelastic coupling parameters. 

The following dimensionless quantities are then obtained: 

 
1 2 4 1 5 2

1 1
,  ,  ,  

4 2 4 2

 
             (2.42) 

It is noticed that Eq. (2.41) will be degenerated to Eq. (2.40a) when 1/ 2  , which 

represents a simpler situation, but solitary wave solutions are still obtainable, as may 

be seen from Eq. (2.36b). 

Since the dimensionless variable t  in Eqs. (2.37a)-(2.37c) is related to the 

underlying electric displacement, it is inconvenient to show clearly the influence of 

the underlying electric displacement on the solitary wave. Thus, we adopt the 

following new dimensionless expressions of the solitary wave 

  2

1 0sech / 2x pw H H x c t   
 

  (2.43a) 

  2

5 5 1 04 sech / 2x pH H x c t     
 

  (2.43b) 

  2

1 0

1
sech / 2

2
pv H H x c t  

 
  (2.43c) 

where 0 /Tt c T l  is the dimensionless time, with /Tc    being the shear 

wave velocity, and the solitary wave velocity can be given by 
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 2 1 2
2 5

2

2 5

2
3 2 2

3 2
pc H  

 

  
  


  (2.44) 

which indicates that the biasing electric field can modulate the solitary wave 

velocity. Similar observation is also reported in the published paper (Pouget, 1986) 

that the applied electric field can change the velocity of solitary waves in elastic 

ferroelectrics. 

 

Fig. 2.2. Variations of wave velocity with the biasing electric displacement: thick 

solid line - ( 0  , 2 1  ), dotted line - ( 0  , 2 1.5  ), thin solid line - 

( 1/ 2  , 2 1.5  ) 

Fig. 2.2 displays the wave velocity as functions of the underlying biasing 

electric displacement, under different combinations of the two parameters   and 

2  for =0.3   and 1H  . It is shown that the wave velocity increases 

monotonically with the increasing of the biasing electric displacement when the 

product H   is small enough, which can be readily seen from Eq. (2.44). 

Comparing the curves with each other or referring to Eq. (2.44), we find that only 

the elastic constant (  ) and the electroelastic coupling parameter ( 2 ) have 

influences on the wave velocity. An interesting phenomenon is that solitary waves 

propagating in rods of different materials, when subjected to some particular biasing 

electric displacements, may have the same velocity, see the cross of the thick and 

thin solid lines in Fig. 2.2. Moreover, for a large underlying electric displacement, 

the material constant   almost has no influence on the wave velocity. It also 

0 1 2

2

3

4

5

c
p



cp 
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should be mentioned that the electroelastic coupling parameters ( 2 ) will not affect 

the velocity of the solitary wave if the biasing electric displacement is absent (i.e. 

5 =0 ), as can be seen from Fig. 2.2. 

Fig. 2.3 and Fig. 2.4 show the longitudinal strains of solitary waves with 

different amplitudes and/or subjected to different biasing electric displacements. The 

other parameters are fixed as 0  , 0.3  , 2 1   and 0.3  . Comparing the 

two solitary waves in the absence of biasing electric displacement (i.e. 5 0  ) in 

Fig. 2.3, we find that higher and narrower waves travel faster (see Fig. 2.3b), which 

is the particular character of elastic solitary waves in pure elastic rods. This result 

also can be directly seen from Eq. (2.36a) by setting 5 0  . It is known that the 

biasing electric displacement can change the effective material properties for linear 

waves in electroactive materials (Dorfmann and Ogden, 2010; Chen and Dai, 2012). 

For the nonlinear solitary waves in electroactive rods, comparing the two waves 

with the same amplitude ( 1.5H  ) but subjected to different biasing electric 

displacements ( 5 0   and 5 1  ), we find that the biasing electric displacement 

can change the wave velocity. However, it doesn’t affect the wave shape, as shown 

in Fig. 2.3. An important conclusion from Fig. 2.3 is that solitary waves with the 

same shape may travel at different speeds in a rod when it is exposed to different 

biasing electric displacements.  

(a) 

 

(b) 

 

Fig. 2.3. Comparison of longitudinal strains of solitary waves with different 
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amplitudes subjected to different biasing electric displacements at (a) 0 0t   and (b) 

0 5t   

It is noted that the solitary waves given by Eq. (2.37) or (2.43) are 

amplitude-dominant. The KdV equation (2.34a) admits another form of solution 

(Liu and Liu, 2000): 

  2

00 0

1 2

3
sec

4
w h y    

 

V V
V   (2.45) 

which is velocity-dominant, where 0V  is a constant velocity. By expressing the 

solitary waves in this form, we can see that their wavelengths and wave amplitudes 

can also be modulated by the biasing electric displacement. In fact, Fig. 2.3 already 

indicates that if we keep the wave velocity unchanged, different biasing electric 

displacements will give rise to different wavelengths and wave amplitudes. This fact 

is now more clearly shown in Fig. 2.4.  

(a) 

 

(b) 

 

Fig. 2.4. Two different longitudinal strains of solitary waves travelling at the same 

velocity subjected to different biasing electric displacements at (a) 0 0t   and (b) 

0 5t   

For an electroactive rod, there exists an electric field corresponding to the 

solitary wave due to the electroelastic coupling. Fig. 2.5 displays the longitudinal 

electric fields (at 0 0t   and 0 5t  ) of solitary waves in the rod subjected to 

different biasing electric displacements ( 5 0.5,  1.0,  1.5  ) for 0  , 2 =1 , 

4 0 2
0

0.5

1

x

w
x

5 0.5 , H 0.503169

5 0, H 1

6 8 10 12
0

0.5

1

x

w
x

5 0.5 , H 0.503169

5 0, H 15=0, H=1 

5=0.5, H=0.503169 

-wx -wx 

x x 

5=0, H=1 

5=0.5, H=0.503169 



 Chapter 2 Adjustable solitary waves in electroactive rods 57 

=0.3   and 1H  . It is seen that the biasing electric displacement has a 

significant effect on the shapes of the electric field associated with the solitary wave. 

A particular point should be noticed that the longitudinal electric field of the solitary 

wave is different from the longitudinal strain of solitary wave. For the longitudinal 

electric field of the solitary wave, a larger biasing electric displacement will 

generate a larger amplitude, while the corresponding wavelength keep unchanged, 

as is clearly seen from Fig. 2.5. This is different from that shown in Fig. 2.3. To the 

authors’ knowledge, there are few studies on solitary waves propagating in solids 

with multi-field coupling. The above result indicates that it is important to study 

other physical fields of solitary waves (e.g. the electric field considered in this work) 

as well, in addition to the elastic field, which may exhibit a different characteristic 

that may be utilized in practical applications. 

(a) 

 

(b) 

 

Fig. 2.5. Longitudinal electric fields of solitary waves with different biasing electric 

displacements at (a) 0 0t   and (b) 0 5t   

2.7 Conclusions 

A simplified nonlinear dynamic model of electroactive rods was explored here 

to obtain the analytical and explicit wave solutions. We established the 

asymptotically valid 1D governing equations on the basis of the 3D nonlinear theory 

of electroelasticity. As a degenerate case, the linear dispersion relation obtained in 

this Chapter numerically agrees well with the one directly derived from the 3D 
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linear theory in the limit of long wavelength. Following the procedure of the 

reductive perturbation method, we got the KdV equation in which the effect of the 

biasing electric field is involved. The leading order of the electroelastic solitary 

wave solution was then presented for soft electroactive rods. 

The analytical results show that the material constants and the biasing 

longitudinal electric displacement both have influences on the solitary waves in soft 

electroactive rods. We mainly paid our attention to the effect of the biasing electric 

displacement, which can modulate the velocity or wavelength/amplitude of solitary 

waves. For the longitudinal strain and transverse displacement, if we keep their 

amplitudes unchanged, the biasing electric displacement will not change their wave 

shapes. While for the longitudinal electric field, the biasing electric field can change 

its wave shapes. The unique feature of solitary waves in electroactive rods is that 

they can be modulated by the biasing electric displacement, which may promote the 

applications of solitary waves in solids. For example, one may generate solitary 

waves experimentally under different biasing electric displacements so as to 

determine the electroelastic coupling coefficients. 

We also would like to point out that the conclusions made above have been 

obtained only theoretically, and they should be carefully examined by comparison 

with experiments in a future study. 

 

Appendix 2A Approximate expressions of the nonzero components 

of the nominal stress tensor 
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Appendix 2B. Governing equations and boundary conditions in 

terms of S  and V  

The governing equations are: 

 22 2 2 2 2 2 0Z S Z S Z Z S SV W SV VW SV W SV W V SVV          (2B.1) 
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The boundary conditions are: 
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at 2S a . 

 

Appendix 2C. Dimensionless coefficient matrix in Eq. (2.25) 

The components of the coefficient matrix in Eq. (2.25) in terms of k  and   

for the modified neo-Hookean materials are given by 
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Chapter 3 Kink and kink-like waves in pre-stretched 

Mooney-Rivlin viscoelastic rods 

3.1 Introduction 

Solitary waves are generally produced due to the balance between nonlinearity 

and dispersion. However, dissipation is always present in a realistic situation, 

especially for soft materials. There are so many works in the field of nonlinear 

waves in solids considering the effect of dissipation. Destrade et al. (2009) studied 

the nonlinear shear waves propagating in viscoelastic materials whose generation is 

directly linked to the nonlinear viscosity term. Hayes and Saccomandi (2000, 2004) 

studied the propagation of finite amplitude shear waves in Mooney-Rivlin 

viscoelastic materials maintained in the static state of a pure homogenous 

deformation. Destrade and Saccomandi (2004) then extended to the case of 

inhomogeneous plane waves. They also studied the interaction of a longitudinal 

wave with a transverse wave in viscoelastic materials (Destrade and Saccomandi, 

2005). It should be noted that the nonlinear elastic and dissipative behavior of rocks 

has been recently observed in many experiments (Rasolofasan et al., 1997). As is 

well–known, the combination of nonlinearity, dispersion and dissipation may lead to 

the generation of kink-shaped solitary waves or simply kink waves (Porubov, 2003). 

However, to the authors’ knowledge, there are few works on nonlinear waves in 

pre-stretched structures composed of viscoelastic materials, which motivates the 

present work. Pre-stretch is also regarded as an efficient mean to modulate elastic 

waves in soft materials. 

The present chapter focuses on the investigation of kink and kink-like 

longitudinal waves in pre-stretched Mooney-Rivlin viscoelastic rods. The Cauchy 

stress is split into an elastic part, which is derived from the classical Mooney-Rivlin 

elastic material, and a dissipative part, which is identical to the one in fluid. In the 
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limit of finite-small amplitude and long wavelength, we simplify the 

three-dimensional (3D) nonlinear governing equations to one-dimensional (1D) ones 

by making use of the asymptotic expansions of variables as in Dai and Huo (2002). 

Then, using the reductive perturbation method gives rise to the far-field equation 

(the KdV-Burgers equation). Finally, two kinds of explicit wave solutions are 

presented, namely the kink and kink-like waves, which correspond to the 

saddle-node heteroclinic orbit and the saddle-focus heteroclinic orbit of the equation, 

respectively. Examples are given to show the influences of pre-stretch and viscosity 

on the wave shape and wave velocity. The potential application of such waves is to 

measure the viscosity coefficient of the material. The competition between the 

effects of pre-stretch and viscosity on kink and kink-like waves is also uncovered. 

3.2 Preliminaries 

3.2.1 Basic formulations 

Let a material point, in an undeformed body which occupies a region 
0  with 

the outward normal N  in the reference configuration, be identified by its position 

vector X . After a time T , the material point is at the position vector x , which 

occupies a region   with the outward normal n  in the current configuration. 

Thus, the motion of the body can be described by 

 ( )x X  (3.1) 

For an incompressible Mooney-Rivlin material with energy density function  , the 

(elastic) Cauchy stress tensor can be described by the constitutive relations (Chen 

and Dai, 2012) 

 2

1 2 12 2 ( )E I P     τ b b b I   (3.2) 

where /m mI     (m=1, 2), I  is the unit tensor, Tb FF  is the left 

Cauchy-Green strain tensor with /  F x X  being the deformation gradient tensor, 
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P  is the undetermined pressure related to the constraint of incompressibility 

det 1F , and 
mI  are the scalar invariants: 

 
2 2

1 2

1
tr ,  [(tr ) tr( )]

2
I I  b b b   (3.3) 

where “tr” is the trace operator. 

To describe the effects of dissipation, we adopt the following viscous stress 

tensor for the incompressible viscoelastic materials (Destrade et al., 2009; Destrade 

and Saccomandi, 2004)  

 2D τ D   (3.4) 

where T1/ 2( ) D L L  is the rate of deformation tensor with 1( )T   L F F ,   

is the viscosity coefficient which should be positive, and T  is the time. A detailed 

discussion of proper formation of the viscous stress tensor can be found in (Destrade 

et al., 2013). Through simple combination, the nonlinear constitutive equation of a 

viscoelastic material may be expressed by 

 2

1 2 1 22( ) 2 2P I        τ I b b D   (3.5) 

where 
1 1/ 2 (1/ 2 ) 0      and 

2 1/ 2 (1/ 2 ) 0     , with   being the 

shear modulus and   a material constant.  

The equations of motion, in the absence of body forces in 
0 , are given by 

 
2

2
Div

T






x
Σ   (3.6) 

where 1Σ F τ  is the nominal stress tensor and “Div” is the divergence operator. 

The boundary conditions in 
0  are given by 

 T

AΣ N t   (3.7) 

where 
At  is defined by dA daA at t . Here dA and da are the unit areas in 

0  and 

 , respectively, and 
at  is the applied mechanical traction vector per unit area in 
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 .  

3.2.2 Longitudinal waves with small but finite amplitude 

To study the axisymmetric wave motion in a circular rod, we prefer adopting 

cylinder coordinates, with ( ,  ,  )R Z  and ( ,  ,  )r z  corresponding to the 

reference and current configurations, respectively. Considering the axisymmetric 

motion superposed on a finite static axisymmetric deformation: 

 
1 2 0( , , ),  ,  ( , , ),  ( , , )r R U R Z T z Z W R Z T P p p R Z T           (3.8) 

where 
1  and 

2  are the pre-stretches, U  and W  are the displacements along 

the r  and z  directions, respectively, 
0p  is the pressure in the deformed state, 

and p is the incremental pressure. From Eq. (3.8), we obtain 
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Furthermore, we can arrive 

    1 1 2det Z R R Z
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and 

 

2

1 2 1

1 2

2

1 2 1

0

0 0

0

RT ZT

T

RT ZT

U U

U

R

W W

  

 

  

 
 
 
 
 
 

L   (3.11) 

To obtain Eq. (3.11), we have made use of the constraint of incompressibility 

det 1F  and neglected the terms which are higher than the first order. As a 

convention, here and hereafter, the subscript letter denotes partial differentiation, 

while the subscript letter inside the brackets denotes coordinate direction. 

With Eqs. (3.9) and (3.11) substituted into Eq. (3.5), we get the expressions of 

the Cauchy stress tensor including the effect of viscosity. The nominal stress tensor 
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can be derived as well. It is noted that for the finite but small disturbance, it is 

reasonable to neglect the higher order terms. Furthermore, for weakly viscoelastic 

materials, it is reasonable to assume that the viscous stresses are much smaller than 

the elastic stresses (Hamilton and Morfey, 1999). Similar assumption was adopted 

by Zabolotskaya et al. (2004) and Catheline et al. (2003) Thus, for the elastic 

stresses, we neglect the terms which are higher than the second order, while for the 

viscous stresses, we only retain the first order terms. With the approximate 

expressions for nominal stresses thus obtained (see Appendix 3A), the equations of 

motion (3.6) can be rewritten as  
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We assume that the lateral surface is free from tractions. From Eq. (3.7), we get the 

boundary conditions as 

 
( ) ( )0,  0,   at Rr Rz R a       (3.14) 

which reduce to 
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at R a , where 2 4

20 1 1 1 2 22 2 2p         which can be obtained from the 

boundary condition 
( ) 0Rr   of the rod in the deformed state. 

From Eq. (3.10), the constraint of material incompressibility can be reduced to 
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where the terms which are higher than the second order have been omitted, and the 

following relation has been noticed 

 
2

1 2 1     (3.18) 

Eqs. (3.12), (3.13) and (3.15)-(3.17) can be used to completely describe the 

nonlinear dynamics of viscoelastic rods in the limit of finite but small amplitude. 

For such axisymmetric problems, 2S R  will be a more natural radial 

variable than R (Dai and Huo, 2002). Also, the transformation ( , , )U RV Z S T  is 

introduced. These two changes of variables are now used to simplify the governing 

equations (3.12), (3.13) and (3.15)-(3.17). For convenience, we will further adopt 

the following scales to non-dimensionalize the governing equations 
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l h h
W hw Z lx S l s T t V v p p

c l l
        (3.19) 

where   is the shear modulus of the material, h  is a characteristic axial 

displacement, and l  is a characteristic wavelength, c  is a characteristic speed to 

be determined later (see Eq. (3.41)). For long waves with finite but small amplitudes, 

/h l   is a small dimensionless parameter. The following dimensionless material 

constants will also be needed: 

 0 1 1 1

1 1 1 2 4

1 1 2 2 22 22, 2 2, ,
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Thus, in view of Eqs. (3.19) and (3.20), we get the dimensionless governing 

equations as follows: 

 

2 2 2

1

3

1 1 1 1 2

1 2

22 2 2

   

(2 2

 2 ) 0

s x x x s s x

s

v sv w vw sv w sv w v

svv

      

 

 



  




  (3.21) 

 

2

1 2 2 1 2 2 1

2 2 2

1 2 1 1 2 1

2

2

1 1 2

4

1 1 1

1 1 2 1 2 1 2

2

2

1

4 4

    ) 8 ) )

    [ (2 2 4

8( ( (2 4

4 2

    4 8

    4

)

2 4

tt x sx x

s ss xx

xt sxt st sst xxt

s x x x sx x x sx

xx s

c
w v s v p

w s w w

v sv w sw w

sp v v w s v w sv w

sv w

    

  

    

   











  

        



     

  



   





  1 2 1 2 1 2

1 2 1 2 2 2 2 2

2 2 2 2 2 2 1

2

1

2

8 16

12

8

    16 16 8

    4 8 2 ] 04 2

xx s xx s

s s ss s x ss x

x sx s sx x x s

vw sv w vw

sv w svw sv v s v v

vv svv s v v p v sp v

  

   

    

   

    

  



  

   

  (3.22) 

 

2 2

1 2 2 1 2 1 1 2 2 2

2 2 2

1 1 2 1 1 2 2 2

2 2 1

1 2 1 2 1 2

2 2

2

4

1

2

2 2

16(

      2( (

[ (

4 4 8

4 2 )

) 8 )

16

      16 8 2 )

      

      16

tt sx s s

xx ss

st sst xxt sxt

x sx s xx s

x s sx

c
v w p v

v sv

v sv v w

w w w w w

v w sv







     

  

    

  

 

 



       

        

 

     



 

 2 2

2 2 2 2 2 2 2 2

1 1 2 1 2

2

1 2

1 2 1 2 1 2

2

8

32 16 4 8

      2 2 2 32 16

     

    

0 4 ]28

  

s x ss

s x ss x sx s sx

s x x s s s ss

xx s x

w sv w

v w sv w vw sv w

p w p w p v vv svv

vv sv v



   

    

  







     

  



  

     

  (3.23) 

 



70 浙江大学博士学位论文  

The corresponding boundary conditions are 
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at s  , where 2 2/a l   is also a small parameter for long waves. As can be 

seen, the variable R  doesn’t appear explicitly in the resulting system of governing 

equations, and s seems to be a more natural radial variable as compared with R in 

the original system.  

Eqs. (3.21)-(3.25) are complex two-dimensional (2D) nonlinear partial 

differential equations, which are still too difficult to get an analytical solution. For a 

slender rod, to further simplify the equations, we adopt the asymptotical method 

introduced by Dai and Huo (2002) to tackle such a complicated system. First, the 

unknowns ( ,  w v  and p ) can be expanded in the neighborhood of 0s   as 

follows: 

 2

0 1 2( , ) ( , ) ( , )w w x t sw x t s w x t      (3.26) 

 2

0 1 2( , ) ( , ) ( , )v v x t sv x t s v x t      (3.27) 

 2

0 1 2( , ) ( , ) ( , )p p x t sp x t s p x t      (3.28) 

Substituting Eqs. (3.26)-(3.28) into Eqs. (3.21)-(3.25) and setting the coefficient of 

each power of s  to be zero, we can transform the 2D problem to the 1D problem 

involving only two variables ( x  and t ). The governing equations are 
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The corresponding boundary conditions are 

 

3 5 2

1 2 2 1 1 1 1 2 1 2 2

2 4

2 2 1 1 1 1 2 1 2

3 5

1 2 1 2 2 1 1 1 1 2

2 2

1

2 0 0 0 0

2

2 0 0 0 0 0 0 0

2

0 2 1 1

11 2 2 2

2 )(2 2 4 {2

(2 2 2

    6 (2 2

(2 4 2

    2 )

[ 2 )

    2 ) ]} 0

x t

x x x

x

w p v v

v w w p w p v

v w p

v

        

    







      







       

        

     

    





  

 

  (3.34) 

 

5 3

0 1 1 0 2 1

4 2

0 0 0 1 0 0 0 0

5 3

2

1 2 1 1 1 2 1

1 1 2 1 2

1

1 2 1 1

2

1 2 1 1 1 22 1

2 2 (2 2

    8 2 2 2

2 2 (

( ) 2 ) { ( 2 )

( )

    [( ) 4 )2 ]}2 0

x xt t

x x x x

x

v w v w

p v v w v w v v

v w

   

    

 

  






       

       

     





  

 (3.35) 

where / (1)O    is assumed. The above seven equations give a set of 1D 

nonlinear equations for seven unknowns 
iw , 

jv  and 
jp  ( 0,1,2i   and 0,1j  ), 

in which we have neglected 2( , )O    terms. 
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3.3 The far-field equation 

3.3.1 Derivation of the KdV-Burgers equation 

To derive the far-field equation, we follow the procedure of the reductive 

perturbation method and introduce the following transformation (Jeffery and 

Kawahara, 1982): 

 ,  x t t       (3.36) 

and ,  and  ( 0,1,2 and 0,1)i j jw v p i j   have the following perturbation expansions 
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Inserting Eqs. (3.36) and (3.37) into Eqs. (3.29)-(3.35), we obtain at 0( )O    
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In order to obtain the nontrivial solutions, we set 

 
0det 0M   (3.40) 

which gives 
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It determines the characteristic speed c , which depends on the pre-stretch 
1 . This 

result coincides with the one obtained in (Dai and Huo, 2002) if we set 
1 2 1   . 

Substituting Eq. (3.41) into Eq. (3.38), we obtain 
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The left eigenvector 
eL  of the coefficient matrix 

0M  is  

 3

e 6 10 1 0 0 2d 


 
   

 
L   (3.43) 

where 5 3 1

6 1 2 1 1 1 2(4 2 2 ) /d            . 

Similar to Eq. (3.38), another seven equations at 
1( )O   can be easily obtained. 

Making use of Eq. (3.42), we can simplify these equations to 
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where 
1 8Q Q  are coefficients (in vector form) given in Appendix 3B. In order to 

suppress the secular term, we multiply the left-hand side of Eq. (3.44) with the left 

eigenvector 
eL  to get the following nonlinear evaluation equation 

 
00 1 00 00 2 00 3 00 0w C w w C w C w          (3.45) 

where 
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where 1

0 /Tc h    is also a dimensionless viscosity coefficient, which is 

independent of the pre-stretch, and /Tc    is the shear wave velocity. 

Eq. (3.45) is the KdV-Burgers type equation with the nonlinear coefficient 
1C , 

the dissipative coefficient 
2C , and the dispersive coefficient 

3C . In this chapter, we 

only consider the case of 
1 1   (i.e. the rod is subjected to a pre-stretch, not 

pre-compression). Thus, we have 
3 0C  . Due to the balance of nonlinearity, 

dissipation and dispersion, there exists a steady kink (or kink-like) wave propagating 

in the rod. If the dissipation is neglected, we can reduce the KdV-Burgers equation 

into the KdV equation. Furthermore, when 
1 1  , the KdV equation thus obtained 

is identical to the one in Chapter 2 if the electroelastic coupling is neglected there.  

3.3.2 Travelling wave solutions 

Eq. (3.45) is not a standard KdV-Burgers equation. We take the following 

transformation 

 
00

1

w
C




   (3.46) 

Inserting Eq. (3.46) into Eq. (3.45), we obtain 

 
2 3 0C C            (3.47) 

Eq. (3.47) admits both travelling wave solutions corresponding to saddle-node and 

saddle-focus heteroclinic orbits, respectively (Liu and Liu, 1992). In order to obtain 

the travelling wave solution, we assume 

 ( ),         v   (3.48) 
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Substituting Eq. (3.48) into Eq. (3.47) and integrating once with respect to   both 

sides of the equation, we can get  

 
2

2 3

1

2
C C A        v   (3.49) 

where A  is an integral constant, which depends on the initial conditions. When the 

variable   approaches infinity, ,     and   should gradually become zero. 

Thus, it’s reasonable to set 0A  . 

The solution corresponding to the saddle-node heteroclinic orbit for the 

KdV-Burgers equation was first obtained in Jeffrey and Xu (1989) through a 

nonlinear transformation method. Alternatively, the solution may be obtained 

through the expansion of tangential function (Johnson, 1970), as follows 
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where 2

2 36 / 25C Cv  has been determined in the process of derivation. 

For the saddle-focus heteroclinic orbit, the analytical solution can be obtained 

by following Liu and Liu (1992) for 
3 0C   as 
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  (3.51) 

where v  will be a given parameter. This wave can be divided into two parts: the 

right part is a solitary wave in which the dissipative term is neglected, and the left is 

a damped oscillation due to dissipation.  

Inserting Eqs. (3.50) and (3.51) into Eq. (3.46), we can get the expression of 

00w  , which in turn gives rise to the following leading order of the travelling wave 

solutions: 
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  (3.53) 

Eqs. (3.52) and (3.53) are the kink and kink-like waves, respectively. It should be 

pointed out that the kink-like wave in Eq. (3.53), which corresponds to the 

saddle-focus heteroclinic orbit, is often overlooked in literatures. However, such a 

wave profile is exactly the same as what has been observed in fluid (Liu and Liu, 

1992; Johnson, 1970). Thus, it should be important both in practice and in science 

and technology. The kink wave in Eq. (3.52) corresponds to the saddle-node 

heteroclinic orbit. As expected, the kink (kink-like) waves can be modulated by the 

pre-stretch 
1 . Substituting Eqs. (3.52) and (3.53) into Eq. (3.42), we can get the 

expressions of other physical quantities, including the expression of 
00v , which is 

very important to the experiment (Samsonov, 2001). In the next part, we will discuss 

the influence of pre-stretch and viscosity on the wave shape and wave velocity.  

3.4 Numerical results and discussions 

In this part, we shall discuss through numerical examples but based on the 

analytical solutions obtained in the last section how the pre-stretch and viscosity 

affect the wave shape and wave velocity. In the calculation, we take 1/ 6   and 

0.3    for example. It is noted that the Mooney-Rivlin model can be 

degenerated into the neo-Hookean model when 1/ 2  . In this case, the kink 

wave solutions are still available, which can be proven from Eq. (3.45).  

For the discussion about the influence of pre-stretch on the wave velocity, it 

becomes inappropriate to use the dimensionless variable t  since it depends on the 
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pre-stretch, see Eq. (3.19). Thus, we employ the following new dimensionless time 

variable: 

 
0

Tc T
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l
   (3.54) 

where /Tc    is defined below Eq. (3.45). 

Then, Eqs. (3.52) and (3.53) can be rewritten as 
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are the wavelength, wave velocity, and wave amplitude, respectively, and 
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where 6 8

2 1 1 1 1 2c (1 ) 4 2 6p         v  is also the wave velocity. 

Fig. 3.1 depicts three different kink waves underlying different pre-stretches at 

0 0t  . It should be noted that these wave solutions have a saddle-node herteroclinic 

orbit, and result from the balance of dissipation, dispersion, and nonlinearity (see Eq. 

(3.55)). If the dissipation is ignored, the dissipative coefficient 
2C  would be zero, 

so the kink waves would not be generated. It is seen that the pre-stretch makes the 

wave lower and wider. Therefore, the pre-stretch has a repressive function on the 

wave. 
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Fig. 3.1 Axial strain of kink waves underlying different pre-stretches with 
0 0.3   

at 
0 0t    

 

Fig. 3.2 Axial strains of kink waves with different viscosity coefficients and 

1 1.2   at 
0 0t   

Fig. 3.2 depicts three different kink waves propagating in the rod with different 

viscosity coefficients at 
0 0t  . Comparing these waves with each other, we find 

that the kink wave with a larger viscosity will have a higher amplitude and narrower 

wavelength. If the viscosity is small enough (for example, 
0 0.5   as in Fig. 3.2), 

the wave will gradually become flatted. From Figs. 3.1 and 3.2, we recognize that 

the pre-stretch and viscosity of the material have absolutely opposite influence on 
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such kind of kink waves. So it is not surprising that waves propagating in the rod 

with two different viscosity coefficients may have very similar wave shapes if the 

underlying pre-stretches are appropriately applied, see Fig. 3.3.  

 

Fig. 3.3 Two similar axial strains of kink waves at 
0 0t   

 

Fig. 3.4 Radial displacements of kink waves at 
0 0t   

From Eq. (3.42)1, we find that the radial displacement is proportional to the 

longitudinal strain with the same wave velocity. This enables us to determine the 

nonlinear wave characteristics in rods through measuring the radial displacement 

which is experimentally more feasible (Samsonov, 2001). Fig. 3.4 shows three 

different radial displacements of kink waves propagating in the viscoelastic rod. As 

expected, we find that the influences of the pre-stretch and viscosity on the wave 
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shape are the same as on the axial strain. It is noticed that the radial displacements 

for 
1 01.1,  0.5    and 

1 01.2,  0.71    are with different shapes, unlike the 

situation for the axial strains in Fig. 3.3. This is simply due to the fact that the 

proportional factor in Eq. (3.42)1 depends on the pre-stretch.  

All the results show that for kink waves, the viscosity coefficient of the 

material has a dominant effect on the wave shape. Thus, we may use this property to 

measure the viscosity coefficient of the material. For example, we can use the 

measured wave amplitude to calculate the viscosity coefficient by 
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  (3.60) 

where 
vH  is the wave amplitude of the radial displacement. 

 

Fig. 3.5 Variation of wavelength with the pre-stretch 

Figs. 3.5-3.7 show the variations of wavelength, wave velocity and wave 

amplitude with the pre-stretch. From Fig. 3.5, we find that, with the increase of 

viscosity, the wavelength becomes smaller and with the increase of pre-stretch, the 

wavelength becomes larger, which may be explained intuitively that the dispersion 

is strengthened due to the decrease of the radius of the rod when it is stretched. It is 

interesting that the influence of the viscosity on the wavelength becomes significant 

when the pre-stretch is large enough. Furthermore, the influence of viscosity on the 

wave velocity become smaller as the pre-stretch increases, see Fig. 3.6. When the 
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viscosity is large enough (for example, 
0 2.0  ), the variation of wave velocity 

becomes no longer monotonous. Thus, there should be a range where the wave 

velocity will decrease with the increase of pre-stretch. This is somehow against the 

intuition. On the other hand, just as expected, the influence of viscosity on the wave 

amplitude will gradually become small with the increase of pre-stretch. When the 

pre-stretch is big enough, the wave amplitude will approach to zero, see Fig. 3.7. 

 

Fig. 3.6 Variation of wave velocity with the pre-stretch 

 

Fig. 3.7 Variation of wave amplitude with the pre-stretch 

Fig. 3.8 depicts the kink-like waves, which correspond to the saddle-focus 

heteroclinic orbit of the KdV-Burgers equation. The other parameters are fixed as 

0 1   and 20v . At the right-most part of the wave, it behaves like a solitary 

wave for which the dissipation can be neglected. When the wave amplitude arrives 

at the maximum point, the field is controlled by damped oscillation due to 
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dissipation, and the amplitude will gradually become smaller and smaller. Finally, 

the axial strain will approach a constant. This kind of waves actually reflects the 

cascading down process of energy, which is an important property of turbulence 

(Liu and Liu, 1992). By comparing Figs. 3.8(a), 3.8(b) and 3.8(c) with each other, 

the influence of pre-stretch on such kind of waves can be uncovered. Just like the 

kink waves, the wave amplitude of kink-like waves will become lower and the 

wavelength will become wider with the increase of pre-stretch. Furthermore, we 

also find that the left part of the wave in Fig. 3.8(a) decays more rapidly than the 

corresponding ones in Fig. 3.8(b) and Fig. 3.8(c). Therefore, we can get the 

conclusion that the pre-stretch can weaken the effect of viscosity on of the kink-like 

waves. 

 

(a) 
1 1   

 

 

(b) 
1 1.4   

 

 

(c) 
1 1.8   

Fig. 3.8. Kink-like waves with a saddle-focus heteroclinic orbit at 0 0t    
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3.5 Concluding remarks 

We studied the propagation of kink and kink-like waves in pre-stretched 

Mooney-Rivlin elastic rods with the consideration of viscous dissipation. The 

Cauchy stress tensor consists of an elastic part and a dissipative part. Several 

asymptotic expansions were introduced to simplify the 3D governing equations for a 

rod to the 1D ones. The boundary conditions on the lateral surface of the rod were 

satisfied asymptotically. Using the reductive perturbation method, we obtained the 

KdV-Burgers equation, which admits analytical and explicit wave solutions. 

Two kinds of travelling wave solutions for the KdV-Burgers equation are given 

in the present chapter. They correspond to the saddle-node heteroclinic orbit and 

saddle-focus heteroclinic orbit of travelling wave solutions, respectively. For the 

discussions, we mainly paid our attention to the influences of pre-stretch and 

viscosity on the wave shape and wave velocity. We found that the pre-stretch will 

make the kink waves lower and wider. Moreover, the pre-stretch can also be used to 

modulate the wave velocity. Furthermore, a larger viscosity coefficient will lead to a 

higher and narrower wave. Thus, we may use kink waves to measure the viscosity 

coefficient of the material. 

Last but not least, we uncover the competition between the influences of 

pre-stretch and viscosity on kink (kink-like) waves. For example, for the wave with 

a saddle-node heteroclinic orbit, as the pre-stretch increases, the effect of viscosity 

on the wavelength will become more remarkable; while its effect on the wave 

amplitude and wave velocity becomes smaller with the increase of pre-stretch. 

Furthermore, if the viscosity coefficient is large enough, the variation of wave 

velocity will no longer monotonously vary with the pre-stretch. For the wave with a 

saddle-focus heteroclinic orbit, we uncover that the pre-stretch can weaken the 

effect of viscosity, which will decrease the wave amplitude. 
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Appendix 3A. Approximate expressions of the nonzero components 

of the nominal stress tensor 
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Appendix 3B. The coefficients of Eq. (3.44) 

These are given in vector form as follows: 
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Chapter 4 Interesting effects in harmonic generation by 

plane elastic waves 

4.1 Introduction 

Due to elastic nonlinearity, higher harmonics can be generated by self-

interaction or mutual-interaction of primary waves, and some interesting results can 

be concluded. One of the outstanding features of higher harmonics is the cumulative 

behavior because their amplitudes increase with the propagation distance. The self-

interaction or mutual interaction of shear waves in the region of quadratic 

nonlinearity gives the generation of longitudinal waves, which propagate with the 

shear wave velocity. It is shown by Tang et al. (2012) that incident waves can be 

scattered by a region of material nonlinearity, which can produce higher order 

backscattered waves.  

In this chapter, an analysis of the generation of higher harmonics based on 

quadratic and cubic material nonlinearity is presented first. The cubic nonlinearity is 

defined by fourth order elastic constants, which are stated in (Hamilton et al., 2004). 

A second order perturbation method has been adopted to obtain the harmonics for 

the cubically nonlinear one-dimensional problem. For the primary transverse waves, 

a longitudinal second harmonics and transverse first and third harmonics are 

obtained from the first and second order perturbations, respectively. The amplitudes 

of the transverse first and third harmonics increase linearly with the propagation 

distance. It is of interest that the amplitudes of these harmonics are determined by 

the squares of third order elastic constants. Thus, comparing with second harmonics, 

the first and third harmonics are more sensitive to the third order constants. The 

fourth order elastic constants also contribute to the generation of first and third 

harmonics. For the primary longitudinal waves, the cumulative longitudinal second 

harmonics are obtained from the first order perturbation. For the second order 

perturbation, the longitudinal first and third harmonics, whose amplitudes increase 

quadratically with the propagation distance, are obtained. This effect in the 

generation is of considerable interest. 
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In the next part of the chapter, we investigate the second harmonic generation 

by an interface between materials of linear and nonlinear material behaviors. Some 

works have been reported on the nonlinear reflection of bulk waves from an 

interface between two solids (Zhou and Shui, 1992; Deng, 1999), and the nonlinear 

reflection from a free boundary (Bender, 2003). As a problem of practical interest, 

we consider a case where the interface connects a half space of quadratical material 

nonlinearity with a half space of linear material behavior. The linear material 

properties are same across the whole space. The present model can be used to 

investigate a structure where there exists a large region of microstructural damages. 

We show that, in addition to the generation of a second harmonic, two 

compensatory waves with double the frequencies of the incident wave will be 

generated when the incident wave passes through the interface. One of the two 

compensatory waves is back-propagating wave. Such a wave can be used for 

nondestructive evaluation of the nonlinearity in the adjoining region. Finally, for the 

purpose of amplitude amplification of the compensatory waves, we consider the 

mixing of two incident waves.  

4.2 Governing Equations 

In this section, the governing equations of plane harmonic waves propagating 

in nonlinear elastic solids are presented. It is well-known that nonlinearities due to 

material behavior and due to large deformation both give rise to the generation of 

higher harmonics by primary waves. When micro damage has developed, the 

additional material nonlinearity may be much higher than the nonlinearity of the 

basic material (Nagy, 1998; Zhang et al., 2016). For small-amplitude disturbances, 

the geometrical nonlinearity is then negligible and only the material nonlinearity is 

considered to give rise to higher harmonics. In this chapter, the one-dimensional 

propagation of waves in a material with up to cubic material nonlinearity is 

investigated. Relative to a rectangular coordinate system { x , y} the displacements 

in these two directions are labeled u  and v . The longitudinal and transverse waves 

propagating in the x-direction are, respectively, represented by 

 ( , ),  ( , )u u x t v v x t    (4.1) 
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Expressions for the nonlinear stresses are given in the Appendix 4A. 
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and 
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  (4.3) 

where   and   are Lamé constants, A, B, and C are third order elastic constants, 

and E, F, G and H are fourth order elastic constants (Lissenden et al., 2014). It can 

be easily checked from Eqs. (4.2) and (4.3) that the nonlinear parts of the stresses 

are totally determined by higher order elastic constants, which are independent of 

finite deformation. For the problem at hand, the equations of motion are 
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Substituting Eqs. (4.2) and (4.3) into Eqs. (4.4) and (4.5), respectively, we obtain 

  
2 2

2 2
2 L

u u
F

t x
  
 

  
 

  (4.6) 
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2 2 T

v v
F

t x
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 
 

  (4.7) 

where LF  and TF  can be considered as body forces given by 
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  (4.8) 



92 浙江大学博士学位论文  

 

2 2

2 2

2 22 2 2

2 2 2

2

3
    2 2 3

2

T

A u v u v
F B

x x x x

u v u u v v v
E F G G

x x x x x x x

     
    

     

            
                       

  (4.9) 

If the terms of cubic nonlinearity are neglected, Eqs. (4.6) and (4.7) can be reduced 

to the equations governing primary waves and second harmonics (Chen et al., 2014). 

However, cubic nonlinearity gives rise to higher order harmonics that are of interest. 

In addition, some materials only show material behavior of cubic nonlinearity, when 

the quadratic material nonlinearity is negligible (Liu et al., 2013; Chillara and 

Lissenden, 2016).  

The perturbation method can be used to obtain solutions of the nonlinear 

equations (4.6) and (4.7). 

 0 (1) (2)u u u u   （ ）   (4.10) 

 0 (1) (2)v v v v   （ ）   (4.11) 

Here, it is assumed that  
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
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
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where   is a small quantity. Substituting Eqs. (4.10) and (4.11) into Eqs. (4.6) and 

(4.7), we can split the nonlinear governing equations into three sets of linear 

equations at three different orders of  .  

At 0 , we have equations for the zero order displacements. 

  
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u u

t x
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 
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  (4.14) 
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At 1 , we have equations for the first order displacements. 
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u u
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t x
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 
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At 2 , we have equations for the second order displacements. 
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 
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where 

 

 
1 2 0 0 2 (1)

(2)

2 2

(1) 2 (0) (0) 2 (1)

2 2

2
2 0 0 (0) 0 2 0

2 2

2 3

          2
4 2

3
          2 2

2

     

L

u u u u
F A B C

x x x x

A B v v v v

x x x x

u v u v v
E F G

x x x x x

    
    

    

     
    

     

       
               

（） （ ） （ ）

（ ） （ ） （ ） （ ）

2
(0) 2 (0)

2
     3(4 4 4 4 )

u u
F H E G

x x

  
     

  

  (4.21) 
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 (4.22) 

Equations (4.15), (4.16), (4.19) and (4.20) are inhomogeneous equations governing 

forced wave motions. Starting with the primary waves as the driving waves, higher 

order equations can be solved one step at the time to obtain higher harmonics. In this 

chapter, we consider the harmonics of primary transverse and longitudinal waves. 

4.3 Primary transverse wave 

For Eqs. (4.13) and (4.14), we consider a harmonic solution of the following 

form in an unbounded solid 

 (0) (0)0,  cos[ ( )]
T

x
u v V t

c
     (4.23) 

where V  is the amplitude of the transverse wave and Tc    is the shear wave 

velocity. Equation (4.23) shows that initially there is only a primary transverse wave 

propagating in the solid. Substituting Eq. (4.23) into Eqs. (4.17) and (4.18), we 

obtain 

 
3

(1) 2

3
sin[2 ( )]

2 2
L

T T

A x
F B V t

c c




 
    

 
  (4.24) 

 (1) 0TF     (4.25) 

By substituting Eqs. (4.24) and (4.25) into Eqs. (4.15) and (4.16), we can obtain the 

solutions to the first order governing equations as 

 (1) 2 (1)1
sin[2 ( )],   0

2 8 T T

A x
u B V t v

c c




 

 
     

 
  (4.26) 
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Equation (4.26) shows that the primary transverse wave generates a second 

longitudinal harmonic, which propagates with the velocity of shear waves, because 

the driving body force contains the transverse wave term from the primary 

transverse wave, see Eq. (4.24). 

Substituting Eqs. (4.23) and (4.26) into Eqs. (4.21) and (4.22) results in 

 (2) 0LF     (4.27) 
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  (4.28) 

Substituting Eqs. (4.27) and (4.28) into Eqs. (4.19) and (4.20), we obtain the 

solutions to the governing equations at second order as 

 (2) 0u    (4.29) 

 
 

 

2 3
(2) 3

3

2 3
3

3

1 1 1 3
sin

2 4 2 2

1 3 1 1
        sin 3

6 2 2 2

T T

T T

A G x
v B V x t

c c

G A x
B V x t

c c




   




   

    
        

     

    
       

     

  (4.30) 

From Eqs. (4.29) and (4.30), it is noted that the cubic nonlinearity gives only 

transverse harmonics for the primary transverse waves. The amplitudes of the 

harmonics generated by cubic nonlinearity are determined by both the third and 

fourth order elastic constants. Furthermore, the amplitudes of the first and third 

harmonics are dependent on the square of the third order elastic constants (A and B), 

which implies that first and third harmonics are more sensitive than second 

harmonics to microstructural changes. The fourth order elastic constants can make a 

significant contribution to the transverse harmonics only if their magnitudes are 

comparable to the square of the third order elastic constants. Equation (4.30) also 

shows that the amplitudes of the first and third transverse harmonics will increase 

linearly with the propagation distance, which is an advantage over the second 

transverse harmonics, see Eq. (4.26). It should be noted that the contribution to the 
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third harmonics from the mutual-interaction between the primary transverse wave 

and second longitudinal wave was not included in references (Rénier et al., 2008; 

Hamilton et al., 2004). 

4.4 Primary longitudinal wave 

In this section, we consider a longitudinal wave as the primary wave. The 

following solutions to Eqs. (4.13) and (4.14) are considered 

 (0) (0)cos[ ( )],  0
L

x
u U t v

c
     (4.31) 

where U  is the amplitude of longitudinal wave and ( 2 )Lc      is the 

longitudinal wave velocity. By substituting Eq. (4.31) into Eqs. (4.17) and (4.18), 

we have 

  
3

(1) 2

3
3 sin[2 ( )]L

L L

x
F A B C U t

c c


      (4.32) 

 (1) 0TF    (4.33) 

By virtue of Eqs. (4.32) and (4.33), Eqs. (4.15) and (4.16) then give the following 

second harmonic  

 (1) (1) (1)cos[2 ( )],   0
L

x
u U x t v

c
     (4.34) 

where 

 
2

(1) 2

2

3

4( 2 ) L

A B C
U U

c



 

 



  (4.35) 

Substitution of Eqs. (4.31) and (4.34) into Eqs. (4.21) and (4.22) yields 

 

4 4
(2) 3 3

1 24 4

5
3

3 5

( 2 ) cos[ ( )] ( 2 ) cos[3 ( )]

         ( 2 ) sin[ ( )] 3sin[3 ( )]

L

L L L L

L L L

x x
F U t U t

c c c c

x x
U x t t

c c c

 
       


    

     

 
     

 

 (4.36) 
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where 

 

 

   

2

1 2

2 2

2 32 2

3 3 3( )
,

4( 2 ) 2

5 3 33( )
,  

( 2 ) 4( 2 ) 2( 2 )

A B C F H E G

A B C A B CF H E G


   

 
     

    
 

 

     
  

  

  (4.37) 

 (2) 0TF    (4.38) 

Equation (4.36) is the expression of the driving term in Eq. (4.19), which can be 

regarded as the summation of four different body forces. The higher harmonics have 

been calculated below separately for each body force.  

For the body force 1, we have 

 
5

(2) 3

3 5
( 2 ) sin[ ( )]L

L L

x
F U x t

c c


        (4.39) 

In view of Eq. (4.39), the solution to Eq. (4.19) is considered to have the following 

form 

 (2) (2) 2 (2)

1 2cos[ ( )] sin[ ( )]
L L

x x
u U x t U x t

c c
       (4.40) 

Substituting Eqs. (4.39) and (4.40) into Eq. (4.19), we obtain 

 

(2)

1

(2) (2)

2 1

5
3

3 5

4( 2 ) sin[ ( )]

  2( 2 ) cos [ ( )]

  ( 2 ) sin[ ( )]

L L

L L

L L

x
U x t

c c

x
U U t

c c

x
U x t

c c


  


   


   

  

 
    

 

  

  (4.41) 

Equation (4.40) has to be satisfied for the sine and the cosine terms separately. Thus, 

we have 

 
5

(2) 3

1 3 5
4( 2 ) ( 2 )

L L

U U
c c

 
          (4.42) 
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 (2) (2)

2 1 0
L

U U
c


    (4.43) 

Through Eqs. (4.42) and (4.43), the amplitudes of the first harmonics in Eq. (4.40) 

can be obtained as 

 
4 3

(2) 3 (2) 33 3
1 24 3

,   
4 4L L

U U U U
c c

  
      (4.44) 

In view of Eq. (4.44), Eq. (4.39) can be rewritten as 

 
4 3

(2) 3 2 33 3

4 3
cos[ ( )] sin[ ( )]

4 4L L L L

x x
u U x t U x t

c c c c

  
        (4.45) 

For the body force 2, we have 

 
5

(2) 3

3 5
3( 2 ) sin[3 ( )]L

L L

x
F U x t

c c


         (4.46) 

Substituting Eq. (4.46) into Eq. (4.19), the expressions of third harmonics can be 

obtained following the same procedure as for the calculation of Eqs. (4.40) and 

(4.41). 

 
4 3

(2) 3 2 33 3

4 3
cos[3 ( )] sin[3 ( )]

4 12L L L L

x x
u U x t U x t

c c c c

  
       (4.47) 

For the body force 3, we have 

 
4

(2) 3

1 4
( 2 ) cos[ ( )]L

L L

x
F U t

c c


        (4.48) 

The generated harmonic has the following form 

 
3

(2) 31

3
sin[ ( )]

2 L L

x
u U x t

c c

 
    (4.49) 

For the body force 4, we have 

 
4

(2) 3

2 4
( 2 ) cos[3 ( )]L

L L

x
F U t

c c


        (4.50) 
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The solution to Eq. (4.19) is obtained as 

 
3

(2) 32

3
sin[3 ( )]

6 L L

x
u U x t

c c

 
   (4.51) 

Summation of Eqs. (4.45), (4.47), (4.49) and (4.51) yields the total solution as 

 

4
(2) 3 23

4

3 3
3 33 31 2

3 3

cos[3 ( )] cos[ ( )]
4

        sin[ ( )] sin[3 ( )]
2 4 12 6

L L L

L L L L

x x
u U x t t

c c c

x x
U x t U x t

c c c c

 
 

   
 

 
    

 

   
        
   

  

   (4.52) 

where 1 2,     and 3  are coefficients expressed in terms of elastic constants, which 

are defined by Eq. (4.37). For the primary longitudinal wave, the cubic nonlinearity 

gives two first and two third longitudinal harmonics. We obtain two quadratically 

cumulative harmonics in addition to the linearly cumulative harmonics. When the 

propagation distance is large enough, the waves whose amplitudes increase 

quadratically with the propagation distance will be dominant. It should be pointed 

out that the amplitudes of the dominant waves are independent of the fourth order 

elastic constant (i.e. E, F, G and H), see the expression of 3  in Eq. (4.37). Making 

a comparison between Eq. (4.30) and Eq. (4.52), it can be concluded that the 

transverse primary waves are more suitable than the longitudinal primary waves to 

detect the fourth order elastic constants. To the knowledge of authors, not much 

research has been devoted to harmonics whose amplitudes increase quadratically 

with the propagation distance, which can amplify the amplitudes of the first and 

third harmonics quickly. Another advantage over second harmonics is that they are 

more sensitive to the changes of third order elastic constants. 

4.5 Reflection of second harmonics from an interface 

Of practical interest for applications to quantitative non-destructive evaluation 

is the case that the region defined by 0x   displays nonlinear material behavior due 

to damage of the material. For some cases such a damaged region may not be 

directly accessible, and ultrasonic waves for detection of the nonlinear behavior 
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have to propagate through the undamaged material and cross the interface between 

linear and nonlinear material behavior. The geometry is shown in Fig. 4.1. In this 

section, it is shown that the interface at 0x   gives rise to a returning wave motion 

which contains important information on the nonlinearity of the adjoining material. 

 

Fig. 4.1 Wave propagation in a linearly elastic half space and a nonlinearly elastic 

half space with the same linear material properties 

4.5.1 Incident longitudinal wave 

Since the materials on both sides of the interface 0x   display the same linear 

behavior, an incident longitudinal wave of the form given by Eq. (4.31) passes 

through the interface without interference. However, as soon as it enters the 

damaged region 0x  , a second harmonic is generated, which is given by Eq. (4.34) 

as 

 (1) (1) cos[2 ( )]
L

x
u U x t

c
    (4.53) 

where 

 
2

(1) 2

2

3

4( 2 ) L

A B C
U U

c



 

 



  (4.54) 

This displacement vanishes at 0x  , but (1)

xx  has the following value at 0x   

x, u 

y, v 

Incident waves 
(0)u  or 

(0)v  

Nonlinear half space 

Linear half space 

x=0 

Second harmonics 
(1)u  

Compensatory waves 

 

cu
 

Compensatory waves 
cu
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2

1 (1) 2

2

1
=( +2 ) cos(2 ) ( 3 ) cos(2 )

2
xx

L

U t A B C U t
c


      （）   (4.55) 

The static stress term is not considered here. The following identity has been used 

 21 2sin cos 2     (4.56) 

For stress equilibration at 0x  , this stress generates two compensatory second 

harmonics which propagate in opposite directions from 0x   and 0x   as 

 sin[2 ( )]c c

L

x
u U t

c
     (4.57) 

 sin[2 ( )]c c

L

x
u U t

c
     (4.58) 

Equality of displacement at 0x   and 0x   yields  

 c cU U    (4.59) 

Dynamic equilibrium of stress at 0x   and 0x   requires 

 

2
(1) 2

2

1 3 2
cos(2 ) cos(2 ) cos(2 )

2 2

2
cos(2 )

c

L L

c

L

A B C
U t U t U t

c c

U t
c

 
  

 








 
 





  (4.60) 

It should be noted that the stresses higher than second order are omitted. Equations 

(4.54), (4.58) and (4.59) yield 

 23

16( 2 )

c c

L

A B C
U U U

c



 
 

 
  


  (4.61) 

4.5.2 Incident transverse wave 

As an incident transverse wave of the type given by Eq. (4.23) crosses the 

interface, it generates a second longitudinal harmonic of the form given by Eq. (4.26) 

as 
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 (1) 21 1
sin[2 ( )]

8 2 T T

A x
u B V t

c c




 


 
    

 
  (4.62) 

The displacement and the stress do not vanish at 0x  , and (1)

xx  has the following 

value at 0x   

 
2

(1) 2

2

1 2
1 cos(2 )

4 2
xx

T

A
B V t

c

  
 

 

  
    

  
  (4.63) 

To equate the displacements and stresses at 0x  , two compensatory waves are 

generated propagating in opposite directions 

 sin[2 ( )]c c

L

x
u V t

c
     (4.64) 

 sin[2 ( )]c c

L

x
u V t

c
     (4.65) 

Equality of displacements at 0x   yields 

 21 1
sin(2 ) sin(2 ) sin(2 )

8 2

c c

T

A
B V t V t V t

c


  

 
 

 
    

 
  (4.66) 

Dynamic equilibrium of stress at the interface yields 

 

2
2

2

1 1 1 2
cos(2 ) cos(2 )

4 2 2

2
cos(2 )

c

T L

c

L

A
B V t V t

c c

V t
c

 
 

   








  
    

   



  (4.67) 

Equations (4.64) and (4.65) can be solved for cV
 and cV

 as 

 
21 1

1
16 2 2

c L

T T

cA
V B V

c c

 

   


  
    

    
  (4.68) 

 
21 1

1
16 2 2

c L

T T

cA
V B V

c c

 

   


  
    

    
  (4.69) 
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4.5.3 Incidence of two longitudinal waves 

To increase the amplitude of the back-propagating compensatory wave, the 

incidence of two waves is considered. The combination of two longitudinal waves is 

considered as an example. The total displacement of the primary waves can be 

written as 

 (0)

1 1 2 2cos[ ( )] cos[ ( )]
L L

x x
u U t U t

c c
       (4.70) 

Substituting Eq. (4.70) into Eq. (4.17) yields the expression for the related body 

force as 

    

 

3 3
2 21 2

1 1 2 23 3

2 2
(1) 1 2 1 2

1 2 1 23 3

2 2

1 2 1 2
1 2 1 23 3

sin[2 ( )] sin[2 ( )
2 2

2 3 sin[ ( )]
2 2

sin[ ( )]
2 2

L L L L

L

L L L

L L L

x x
U t U t

c c c c

x
F A B C U U t

c c c

x
U U t

c c c

 
 

  
 

  
 

 
   

 
  
         
  
 
  

     
  

 (4.71) 

We select the following body force from Eq. (4.71) for further consideration 

  
2 2

(1) 1 2 1 2
1 2 1 23 3

3 sin[( )( )]L

L L L

x
F A B C U U t

c c c

  
 

 
      

 
  (4.72) 

Equation (4.72) generates a resonant wave in the form 

 (1) 1 2
1 2 1 22

1 3
cos[( )( )]

2 2 L L

A B C x
u U U x t

c c


 

 

 
   


  (4.73) 

The displacement vanishes, but the stress has a value at 0x  . Therefore, two 

compensatory waves are introduced 

 1 2sin[( )( )]c c

L

x
u U t

c
      (4.74) 

 1 2sin[( )( )]c c

L

x
u U t

c
      (4.75) 
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The equality of displacement at the interface 0x   yields 

 c cU U    (4.76) 

Continuity of stress at the interface 0x   gives 

 

 
1 2 1 2

1 2 1 2 1 22

1 2
1 2

31
cos( ) cos( )

2 2

   cos( )

c

L L

c

L

A B C
U U t U t

c c

U t
c

  
   

 

 
 





  
  




 

  (4.77) 

It follows from Eqs. (4.76) and (4.77) that 

 
 

1 2
1 2

1 2

31

4 2 ( )

c c

L

A B C
U U U U

c



   
 

 
 

 
  (4.78) 

If we consider 

 1 2 1 23 ,   2         (4.79) 

 1 2U U U    (4.80) 

Equation (4.78) then becomes 

 
  2

33

8 2

c c

L

A B C
U U U

c



 
 

 
 


  (4.81) 

Comparing the expressions for the compensatory waves, the ratio of the amplitudes 

given by Eqs. (4.61) and (4.81) for the two cases is obtained as 

 2 2

1 1

( ) ( )
6

( ) ( )

c c

c c

U U

U U

 

 

   (4.82) 

It is noted that the amplitude of the compensatory wave has been increased six times, 

while its frequency remains unchanged, i.e., 2 . Compensatory waves can be 

generated through any other body force given in Eq. (4.71). Since the procedure is 

much similar to the one shown above, specific expressions are not presented here. 

In summary, the interface between regions of linear and nonlinear material 
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properties generates two additional compensatory waves. The analysis of this 

section can be used to measure the third order elastic constants of the nonlinear 

region near the interface. The compensatory wave cu
 provides a simple method to 

the evaluation of nonlinear region by using higher harmonics. 

4.6 Conclusions 

In this chapter, we have investigated the generation by primary waves of higher 

harmonics due to quadratic and cubic material nonlinearity, related to third and 

fourth order elastic constants, respectively, in the stress-strain relation, as well as the 

effects of wave incidence on an interface between regions on linear and nonlinear 

material behaviors. Due to the quadratic nonlinearity a transverse wave generates a 

second longitudinal harmonic, which, however, propagates with the velocity of 

transverse waves, as well as resonant transverse first and third harmonics due to the 

cubic and quadratic nonlinearities. A longitudinal wave generates a resonant 

longitudinal second harmonic as well as first and third harmonics whose amplitudes 

increase linearly and quadratically with the distance propagated. 

We have also considered the case that a region has quadratic nonlinear material 

behavior only on one side of an interface, while it has the same linear terms in the 

stress-strain relation on both sides. This case is relevant to a region, a part of which 

has suffered from the microstructural damages. The second harmonic in the 

nonlinear part generates two compensatory waves at the nonlinear interface. These 

waves have twice the frequency of the incident wave, and their amplitudes correlate 

with the nonlinear material behavior. Even though a back-propagated compensatory 

wave in a linear material is not resonant when compared with the higher harmonics 

propagating in nonlinear materials, such waves can still be used for a test technique 

to obtain material properties using an appropriate measurement method. To increase 

the amplitudes of the back-propagating compensatory waves, the single incident 

wave is replaced by two incident waves of different frequencies. The method of this 

chapter should be useful to measure the higher order elastic constants. 
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Appendix 4A: Cubic nonlinear constitutive relation for small 

deformation 

The expansion of the energy density up to fourth order was presented in 

(Hamilton et al., 2004) as: 

 
       

     

2 32 2 3 3

0

22 42 2

tr tr tr tr tr tr + tr tr
2 3 3

          + tr tr tr tr

C A
W B E

F G H


     

 

E E E E E E E E

E E E E

 (4A.1) 

where   and   are Lam é  coefficients, A, B, and C are third order elastic 

coefficients, E, F, G and H are fourth order elastic coefficients, E  is the Langrange 

strain tensor, the component of which for small deformation can be given by 

 
1

2

ji
ij

j i

UU
E

a a

 
     

  (4A.2) 

where iU  and ja  define components of displacement and a rectilinear coordinate, 

respectively. Thus, the Cauchy stress tensor, which is the same as the first Piola-

Kirchhoff stress tensor, can be given by 

 

T 2 2 T 2 T

3 2 T 2 T 2

2 T 3

(tr ) 2 (tr ) (tr ) 2 (tr ) ( )

     (tr ) 3 (tr )( ) 2 (tr ) 2 (tr )(tr )

     4 (tr ) 4 (tr )

C B B A

E E F F

G H

      

   

 

τ E I E E I E I E E E

E I E E E E E E I

E E E I

  (4A.3) 
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Substituting the expression for the strain into the above equation, we obtain the 

relation of stress and displacement. The stress has the following form  

      
4

      
2

jl i
ij ij

l i j

j ji i l l l l m l
ij

l l l j l i i j m l

jl k l l l i l
ij

k l k k l j l i
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U UU U U U U U U UA
C

a a a a a a a a a a

UU U U U U U UB
B

a a a a a a a a

   





  
       

         
                

        
                 

1
      

8

3
      ( )

4

     ( ) (
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k m m l
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U U U U
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UU U U U U U U U
G H
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



   


   

       
   

          

   (4A.4) 

Here, a repeated index defines a summation. As a choice, we decompose the 

expression of stress into the linear and nonlinear parts, which can be written in the 

following vector form. 

 1 2 3  τ τ τ τ  (4A.5) 

where 

  1 T( ( ) )      U Uτ U I   (4A.6) 
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  (4A.7) 
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Chapter 5 Far-field resonant third harmonic surface wave 

on a half-space of incompressible material of 

cubic nonlinearity 

5.1 Introduction 

In the present chapter, we consider the waves propagating in a material which 

displays incompressibility and cubic nonlinearity. As pointed out by Destrade and 

Ogden (2010), incompressibility applies for some soft materials (such as a 

biomaterial), but also to some hard materials like fully saturated soils in undrained 

condition. We consider cubic nonlinearity because quadratic material nonlinearity 

cannot produce second harmonics, as mentioned by Fu and Devenish (1996). It was 

pointed out by Zabolotskaya et al. (2007) that, on a half-space of incompressible 

material, second surface wave harmonics can only be generated by geometric 

nonlinearity. Another reason for cubic nonlinearity is that the stress-strain relation is 

symmetric with respect to the unloaded case.  

There is limited information on higher harmonic surface wave generation due 

to material nonlinearity on a half-space of incompressible material. The main 

purpose of the present work is to obtain an analytical solution for higher harmonic 

surface waves on a half-space of incompressible material of cubic nonlinearity, in a 

simple and elegant manner, which may be easily understood and applicable. 

Using the perturbation method, a set of zero-order homogeneous differential 

equations and a set of first-order inhomogeneous differential equations are obtained, 

which can be uncoupled, based on the assumption that the amplitudes of the primary 

waves are much larger than the amplitudes of the generated harmonics. After 

solving the differential equations at different orders step by step, a simple analytical 

solution for the resonant third harmonic surface wave is obtained in the far field, 

whose structure except for the frequency of 3   and the dependence of the 

amplitude on a multiplication factor x  is exactly the same as the structure of the 
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primary surface wave of frequency  . It is shown that the velocity of the resonant 

third harmonic wave is the classic Rayleigh wave velocity, and the amplitude 

depends on the nonlinear material constant (i.e. the fourth order elastic constant G) 

and increases linearly with the propagation distance.  

As an application, we consider the transmission of the third harmonic surface 

wave through an interface between quarter-spaces of nonlinear and linear material. 

The interface is located at x L , where L  is assumed to be large. The harmonic 

surface wave which is transmitted into the linear material is obtained using the 

continuity conditions of stress and displacement at the interface.  

5.2 Constitutive relations for nonlinear material behavior 

The expansion of the energy density up to fourth order has been presented in 

the Appendix in Chapter 4, which is given by 

 
       

     

2 32 2 3 3

0

22 42 2

tr tr tr tr tr tr + tr tr
2 3 3

          + tr tr tr tr ,

C A
W B E

F G H


     

 

E E E E E E E E

E E E E

  (5.1) 

where   and   are the Lamé elastic constants, A, B, and C are third order elastic 

constants, E, F, G and H are fourth order elastic constants ,and the Langrangian 

strain tensor is given by 

  T1

2
 E F F 1   (5.2) 

where F  is the deformation gradient. For small strains the components of the strain 

tensor simplify to 

 
1 1

2 2

j ji k k i
ij

j i i j j i

u uu u u u
E

x x x x x x

       
                  

  (5.3) 

In Eq. (5.3) iu  and jx  define the components of the displacement and a Cartesian 

coordinate system, respectively.  

In the present chapter we consider small deformations. Since the geometrical 
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nonlinearity is negligible for small deformation, the micro-damage correlates only 

with the higher order elastic constants of the material nonlinearity. This correlation 

can be determined by investigating the higher harmonics generated by material 

nonlinearity. 

The propagation of surface waves on a half-space of an isotropic 

incompressible material was considered by Destrade (2001), Destrade et al. (2002), 

Ogden and Vinh (2004) and Zabolotskaya et al. (2007). For an incompressible 

material, the following condition has to be satisfied.  

 tr 0i

i

u

x


 


E   (5.4) 

Substituting Eq. (5.4) into Eq. (5.1) yields 

  
2

2 3 2

0 tr tr tr
3

A
W G   E E E   (5.5) 

Equation (5.5), which is the energy density expanded to fourth order for isotropic 

incompressible materials, was also employed by Destrade and Ogden (2010) and 

Hamilton et al. (2004). The expression for the stress tensor can be represented by 

 
0

TW
p


   


τ F F I

E
  (5.6) 

where p is the pressure, which is introduced to accommodate the internal constraint 

of incompressibility (Destrade and Ogden, 2010). It should be noted that the 

incompressibility condition is not only justified for certain kinds of soft materials 

(such as biomaterials) but also for some hard materials (like fully saturated soils in 

undrained condition) (Destrade and Ogden, 2010).  

Substitution of Eq. (5.5) into Eq. (5.6) gives the stress-strain relation as 

 
T 2 T 2 T2 ( ) 4 (tr )p A G    τ I E E E E   (5.7) 

Hence the stress components are defined by 
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jm k m m i
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x x x x x x x x x x

uu u u u u
G
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                         

    
  

     

 (5.8) 

As usual repeated subscripts denote a summation. 

5.3 Equations of motion of a surface wave 

 

Fig. 5.1 Surface wave on a half-space 

Surface waves, whose amplitudes decay exponentially with distance from the 

surface, are confined to a region near the surface. We investigate surface waves in a 

two-dimensional plane strain setting of plane waves propagating in the x-direction, 

see Fig. 5.1. The displacement components are  

 ( , , ),    ( , , )u u x z t w w x z t    (5.9) 

The incompressibility condition, Eq. (5.4), can be written as 

 0
u w

x z

 
 

 
  (5.10) 

It has been noted that quadratic material nonlinearity (third order elastic 

constants) does not generate a second harmonic of surface wave propagation in an 

incompressible material (Fu and Devenish, 1996; Zabolotskaya et al., 2007). This 

has also been shown analytically in unpublished related work by the authors. In the 

present chapter, we consider cubic material nonlinearity, which produces first and 

x, u 

z, w 

Surface wave 
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third harmonics. Second harmonics generated by quadratic nonlinearity have 

received much more attention than third harmonics caused by cubic nonlinearity. 

However, cubic nonlinearity of the constitutive relations is required for materials 

with symmetric tension-compression behavior, see Fig. 1.7.  

For cubic material nonlinearity (fourth order elastic constant), the use of Eqs. 

(5.9) and (5.10) in Eq. (5.8) yields 

2 ;   2 ;NL NL

xx xx zz zz

u w
p p

x z
     

 
       

 
 

 
NL

xz xz

u w

z x
  

  
   

  
  (5.11) 

where the nonlinear parts are given by 

 

2

2

2 4 ;     ;

4

NL NL NL
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u w u w u
G

z x x z x

u w u w u w
G

z x x z z x

  



      
      

       

         
       

          

  (5.12) 

It is noted that only one nonlinear material constant, G , appears in Eqs. (5.12). 

5.4 Surface wave propagation 

The stress equations of motion for plane strain are given by 

 

2 2

2 2
;   xx xz xz zzu w

x z t x z t

   
 

    
   

     
  (5.13) 

Substitution of Eq. (5.11) into Eq. (5.13) yields 

 

2 2

2 2
;    u w

u wp p
u w

x z
F F

t t
  

 
       





 



  (5.14) 

where Laplace’s operator is defined by 2 2 2 2x z      , and the right-hand side 

nonlinear terms are defined by 
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wu F

x
F u w u w

z x z

      
   


 

  
  (5.15) 

The surface ( 0z  ) is free of tractions, hence the boundary conditions can be 

written as 

 

0 :    2 0,

             0 

NL

zz zz

NL

xz xz

w
z p

z

u w

z x
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  


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

  
    

  

  (5.16) 

Since the nonlinear terms appearing in the governing equations are assumed to 

be small, the material nonlinearity can be treated as a weak perturbation. The 

perturbation method is therefore adopted to solve the boundary-value problem for 

nonlinear material behavior, and the pressure and the displacement components are 

expanded as 

 

(0) (1)

(0) (1

(0) (1

;

;

p p p

u u u

w w w

  

  
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）

）

  (5.17) 

where 
(1)

is sufficiently smaller than 
(0)

. Substituting Eq. (5.17) into the 

governing equations, Eqs. (5.10) and (5.14), and the boundary condition, Eq. (5.16), 

yields the zero-order governing equations as: 

 

(0) (0)

0
u w

x z

 
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 
  (5.18) 
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x
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p

z t
w

w
 




 


      (5.20) 

and the zero-order boundary condition as: 

 

(0)
(0)0 :  2     0zzz

w
p

z
 


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  (5.21) 
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  (5.22) 

The first-order governing equations are obtained as: 
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where 
(1) (0) (0)( , )u uF F u w  and 

(0(1) ) (0)( , )uw F u wF  . The first-order boundary 

conditions are 
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(1) (0) (0)

(1) (1)0 :    2 8 0zz

w u w
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  (5.26) 
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u w

z x
 

  
   

  
  (5.27) 

It should be noted that Eqs. (5.26) and (5.27) have been simplified by the use of Eq. 

(5.22). 

We first solve the zero-order equations which govern linear surface wave 

propagation. Taking the derivative with respect to x of Eq. (5.19) and the derivative 

with respect to z of Eq. (5.20), and summing the resulting two equations yields the 

following uncoupled equation for 
(0)p . 

 

2 (0) 2 (0)

2 2
0,

p p

x z

 
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 
  (5.28) 

where the incompressibility condition, Eq. (5.18), has been used.  

The displacement and pressure variables for the linear surface wave 

propagation are taken as 
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(0) (0)
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p P z kx t u U z kx t

w W z kx t

  



   

 

（ ）

  (5.29) 

Substituting Eq. (5.291) into Eq. (5.28) yields 

 

2 (0)
2 (0)

2
0

d P
k P

dz
    (5.30) 

The solution to Eq. (5.30) is 

 
(0) kzP Ae   (5.31) 

where A  is a constant. Substituting Eqs. (5.29) and (5.31) into Eqs. (5.19) and 

(5.20), we obtain 

 
(0) 1

( ) bz kzU z Be Ae
k

     (5.32) 

and 

 
(0) 1

( ) ,bz kzW z Ce Ae
k

     (5.33) 

where B  and C  are unknown constants, and 

  
1/2 2 2 21 ,    ,    ,    T Tb k c c c c

k

 
 


       (5.34) 

Substituting Eqs. (5.292) and (5.293) together with Eqs. (5.32) and (5.33) into the 

incompressibility condition, Eq. (5.18), yields 

 
b

B C
k

   (5.35) 

By virtue of Eqs. (5.29), (5.31)-(5.33) and (5.35), the boundary conditions, given by 

Eqs. (5.21) and (5.22), can be written as 

  
1/22

1 2 1 0A k C


 
    

 
  (5.36) 
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  
2

2 0A k C


     (5.37) 

The secular equation is obtained by setting the determinant of the coefficient matrix 

of Eqs. (5.36) and (5.37) equal to zero, which yields 

    
2 1/2

2 4 1 0       (5.38) 

Equation (5.38) was obtained by Rayleigh by considering the limit of 

incompressibility (  ) of the classic equation for the velocity of surface waves 

for an isotropic linear elastic material. Using Eqs. (5.35)-(5.37), the zero-order 

pressure and displacement solutions (the primary wave) can be represented by  

 
0 cos( )kzp Ae kx t  （ ）

  (5.39) 

 (0)

1

1 1
sin( )bz kzu e e A kx t

k
 



  
   

 
  (5.40) 

 (0)

1

1 1
cos( )bz kzk

w e e A kx t
k b

 


  
   

 
  (5.41) 

where 

 1

2 2

2 (2 )

b

k




  


 


  (5.42) 

By virtue of Eqs. (5.12), (5.15), (5.40) and (5.41), the nonlinear terms in Eqs. (5.24) 

and (5.25) can be represented by 

 

      

   

2 2(1) 3 3

2 4 5

2 23 3 3

7 8 9 3

6 4 sin 3

16
         2 sin( )

b k z b k zbz

u

b k z b k zbz kz

F k e k e e GA kx t

e e e e A kx tk G

   

   


   

    

    
 

 
     

 

 (5.43) 

 

      

   

2 2(1) 3 3

3 6 5

2 23 3 3

10 11 12 3

6 4 cos3

16
         2 cos( )

b k z k b zbz

w

b k z k b zbz kz

F k e k e e GA kx t

k e e e e GA kx t

   

   


   

    

     
 

 
     

 

 (5.44) 



118 浙江大学博士学位论文  

where 

 2 2

2 1 1 3 1 12 2

1 1 1 1
,    

b b

k k
     

   

     
          
     

  (5.45) 

Since the dimensionless coefficients 4 12   will not be used in the sequel, their 

expressions are omitted here. Only the terms containing 
3bze

, which in combination 

with the trigonometric functions generate the resonant harmonic wave with 

frequency 3 , are retained in Eqs. (5.43) and (5.44). Resonant waves increase in 

amplitude when they propagate and they become dominant at a sufficiently long 

distance. Since they have a different frequency from the primary wave, the resonant 

waves can be effectively isolated. It should be pointed out that the term containing 

3kze
, can be left out because it does not generate of a resonant wave in combination 

with a trigonometric function of frequency  .  

Thus, the following nonlinear terms are taken into account  

  (1) (0) (0) 3 3

2( , ) 6 sin 3bz

uF u w k GA e kx t    (5.46) 

  (1) (0) (0) 3 3

3( , ) 6 cos3bz

wF u w k GA e kx t     (5.47) 

By differentiating Eqs. (5.24) and (5.25) with respect to x and z, respectively, we 

obtain 

 

2 (1)
(1)

2

2 (1)
(

2 (1)
(1)

2

2 (1)
(1)

2

1)

2

,u

w

p
u

x x x x

p
w

u
F

t

w

tz z
F

z z









   
   

   









   
   

   

  (5.48) 

In view of Eqs. (5.23), (5.46) and (5.47), the summation of the above two equations 

yields 

  3 3

2 3

2 (1) 2 (1)
2

2 2
18 cos3bzb

GA e kx t
k

p p
k

x z
   


 

 


 





  (5.49) 

The full solution to the inhomogeneous differential equation Eq. (5.49) is in the 

form of 
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 (1) (1) (1)

g sp p p    (5.50) 

where (1)

gp  represents a solution of the homogenous equation and 
(1)

sp  represents the 

solution of the inhomogeneous equation. The special solution 
(1)

sp  of Eq. (5.49) is 

obtained as 

  3 3

2 3

(1) 2
cos3z

s

bb
GA e kxp t

k
  



 
  

 
   (5.51) 

For the homogenous version of Eq. (5.49), we consider a solution of the 

following form 

  (1) (1) 3( ) sin 3kz

g gp P x e kx t     (5.52) 

where (1) ( )gP x  is a function of x . Inserting Eq. (5.52) into the homogenous form of 

Eq. (5.49), it follows that the expression given by Eq. (5.52) can be considered as an 

approximate solution, provided 

 

2 (1) (1)

2 3

2 2

1 6
sin 3( ) cos3( ) 0

g gkz
d P dP

k e kx t kx t
k dx k dx

  
 

    
  

  (5.53) 

Hence (1) ( )gP x  must be assumed to be a function which varies slowly with x , which 

means that 

 

2 (1) (1)

2 2

1 6
1 0,   1 0

g gd P dP

k dx k dx
     (5.54) 

The physical meaning of Eq. (5.54) is that the variation of the amplitude is very 

small within a wavelength. Using Eqs. (5.51) and (5.52), Eq. (5.50) can be written 

as 

    (1) 3 3 3

2

(1)

3

2
sin 3 cos3kz bz

g

b
P e kx t GA e kx t

k
p     



  
   


  


  (5.55) 

In view of Eqs. (5.46), (5.47) and (5.55), Eqs. (5.24) and (5.25) can now be 

rewritten as 
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   

(2

2

(

1)

1) 3

(

3 3

2

)

3

1

1
   3 cos3 6 sin 3kz bz

g

t

b G
kP e kx t b A

u

x
k

u

e k t





   
 

 





 
     

 

 

  (5.56) 

 

   

2 (1)

2

(1) 3 3 3

(1)

2 3

1
   sin 3 6 cos33 kz bz

g

w

t

G
P e kx

w

t k A e k
b

k
k

x t





   
 

 





 
     




 



  (5.57) 

The right-hand sides of Eqs. (5.56) and (5.57) give rise to a resonant surface 

harmonic wave due to the combination of the decay term 
3bze

and the harmonic 

terms  sin 3 kx t  and  cos3 kx t . The amplitudes of the resonant surface 

harmonics increase with the propagation distance x . So the solutions to Eqs. (5.56) 

and (5.57) are considered to be in the form  

    (1) (1) 3 (1) 3( ) cos3kz bzu U x e U xe kx t      (5.58) 

    (1) (1) 3 (1) 3( ) sin 3kz bzw W x e W xe kx t      (5.59) 

where (1) ( )U x  and (1) ( )W x  are functions of x , and 
(1)U  and 

(1)W  are constants. 

Inserting Eq. (5.58) and (5.59) into Eqs. (5.56) and (5.57) and equating the terms on 

both sides results in 

 

(1) (1) (1) 3

2 3

(1) (1) (1) 3

2 3

1 1
( ),        ,   

3

1 1
( ),      

3

g

g

b b G
U P x U A

k k k

G
W P x W

b

k
A

k

 
  

 
  

 
   

 

 
     

 

  (5.60) 

Here the assumption defined by Eq. (5.54) has been used. In terms of Eq. (5.60), 

Eqs. (5.58) and (5.59) can be rewritten as 

 

 

 

(1) 3 3

2 3

(1) 3

1
cos3

1
        ( ) cos3

3

bz

kz

g

b b G
u A xe kx t

k k

P x e kx t
k

  
 








 
   

 

 

  (5.61) 
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 

 

(1) 3 3

2 3

(1) 3

1
sin 3

1
          ( ) sin 3

3

bz

kz

g

G
w A xe kx t

P x e

b

k

kx t
k

  
 








 
    

 

 

  (5.62) 

The unknown quantity (1)

gP  can be determined from the first-order boundary 

conditions, Eqs. (5.26) and (5.27). 

Substitution of the pressure, Eq. (5.55), and the displacement expressions, Eqs. 

(5.61) and (5.62), into the expressions for the stresses defined by Eqs. (5.26) and 

(5.27), and leaving out the terms whose amplitudes are independent of x , yields  

  (1) (1) 3 3 3

2 31
2 1

sin 36kz bz

gzz P e b GA xe kx t
b

k
  

 

    
   

  
   

 
  (5.63) 

     (1) (1) 3 3 3

2 3

2 1
3 2 cos3kz b

x

z

gz P e k GA xe kx tb    
 

  
  
 
      (5.64) 

Equations (5.63) and (5.64) are valid approximately when the surface waves have 

propagated a sufficiently large distance. The stress free conditions on the surface 

0z   imply that 

 (1) 3

2 3

2 1
1 6g

G
P b A

b

k
x 

  

   
  

 


 
    (5.65) 

 (1) 3

2 3

2 2
3g

b

k

G
P k A x


 

  

  
   

 
  (5.66) 

Equations (5.65) and (5.66) both give solutions for the unknown quantity (1)

gP . The 

solution to Eq. (5.65) is 

 
(1) 3

2 3
2

6
g

b G
P A

k
x

b
 



 
 

 



  (5.67) 

while the solution to Eq. (5.66) is 

  (1) 3

2 3

3
2

2
g

G
P k

b

k
A x  



 
    

 
  (5.68) 
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Since these two solutions should be the same, we have 

  3 3

2 3 2 3

6 3
2

22

b G Gb
A

b

k
x k

k
A x


    

 

   
       




  
  (5.69) 

After some simple manipulation, Eq. (5.69) can be rewritten as 

  
2

2 4 1 0       (5.70) 

Equation (5.70) is the same as the secular equation (5.38), which implies that the 

resonant third harmonic propagates with the classic Rayleigh wave velocity, which 

can be obtained from Eq. (5.38) or (5.70) as 

 0.9126    (5.71) 

Based on Eqs. (5.67) and (5.71), we check that the assumption defined by Eq. 

(5.54) is reasonable for the far-field solution. The first equation is obviously 

satisfied in that 

 

2 (1)

2
0

gP

x





  (5.72) 

The second equation can be rewritten as 

 

(1)

36
0 12.7794 1

gdP G
A

k dx 
     (5.73) 

It may be assumed that the amplitude of the primary surface wave A  is a small 

quantity. Thus, 3A  is expected to be very small. It is known that the ratio of the 

nonlinear material constant to the linear material constant (i.e. G  ) will not be too 

large. So the assumption given by Eq. (5.54) is reasonable.  

Since we only consider terms that increase with x , the second term in Eq. 

(5.55) can be omitted, and using Eq. (5.67) in the first term, Eq. (5.55) can be 

rewritten as 

 (1) 3( ) sin[3 ( )]kz

N

x
p A x e t

c
    (5.74) 
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where  

 3

2 3

1

1 1
( ) 3N

b G
A x b A x

k
 

  

 
  

 
 (5.75) 

By combining the two terms in Eqs. (5.61) and (5.62) where (1)

gP  is given by Eq. 

(5.67) or (5.68), we obtain 

 (1) 3 3

1

1 1
( )cos[3 ( )]

3

bz kz

N

x
u e e A x t

k c
 



  
   

 
  (5.76) 

 (1) 3 3

1

1 1
( )sin[3 ( )]

3

bz kz

N

k x
w e e A x t

k b c
 



   



 



 (5.77) 

Equation (5.75) is the important term in the amplitude of the resonant third surface 

harmonic, since it increases with the propagation distance x , due to the effect of 

material nonlinearity. Such a harmonic surface wave may become measurable when 

the propagation distance is sufficiently large.  

5.5 Transmission through an interface with linear material 

 

Fig. 5.2 Half-space with interface at x L  

As an application, we investigate the transmission of the harmonic, which is 

 

 

 

 

Nonlinear material Linear material 
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defined by Eqs. (5.74), (5.76) and (5.77), through an interface with linear material, 

where the interface is located in the far-field at x L . Because of its location in the 

far-field the quantities which do not contain a multiplicative L  are neglected at the 

interface. The geometry is shown in Fig. 5.2. The incident wave, 
(0)

u , is not affected 

by the interface, since it propagates in both the linear and the nonlinear material. 

In general, the incidence of a wave on an interface will generate both a 

reflected and a transmitted wave. For the present case, however, only a transmitted 

wave is generated. The transmitted wave is a linear wave of the form 

 3 sin[3 ( )]kz L x L
p H e t

c c
    

     (5.78) 

 3 3

1

1 1
cos[3 ( )]

3

bz kz L x L
u e e H t

k c c
 



     
    

 
  (5.79) 

 3 3

1

1 1
sin[3 ( )]

3

bz kzk L x L
w e e H t

k b c c
 



     
    

 
  (5.80) 

The above expressions for the transmitted wave should satisfy the linear equations 

of motion and the boundary conditions at the free surface. By comparing Eqs. 

(5.78)-(5.80) with Eqs. (5.74), (5.76) and (5.77), it is evident that continuity of 

pressure and displacements at x L  is satisfied by 

 3

2 3

1

1 1
( ) 3N

b G
H A L b A L

k
 

  

  
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 
  (5.81) 

The stresses xx  and xz  corresponding to Eqs. (5.74), (5.76) and (5.77) at 

x L  are represented by 

 3 3 3

1

1
( )sin[ )2 3 ( ]kz bz kz

Nxx

L
e e e A L t

c
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  (5.82) 
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 
 (5.83) 

It should be noted that the terms that are independent of L  and have much smaller 
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values, have been ignored in Eqs. (5.82) and (5.83). The stresses xx  and xz  

corresponding to Eqs. (5.78)-(5.80) at x L  are 

 3 3 3
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1
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  (5.84) 
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Clearly, at x L , Eqs. (5.84) and (5.85) are the same as Eqs. (5.82) and (5.83), 

respectively. So the continuity of stresses is also satisfied.  

The system of the transmitted waves can then be written as 
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The exact analysis of the continuity of pressure, stresses and displacements located 

at an interface at arbitrary value of x  is quite complicated. However, for large x , 

the incident harmonic near the interface in the far field is simple, which simplifies 

the transmission problem significantly. The transmitted wave has the same form as 

the incident harmonic for t L c , x L  and the constant ( )NA L  is defined by Eq. 

(5.81). 

5.6 Concluding comments 

For a half-space of isotropic incompressible material of cubic material 

nonlinearity, a perturbation method has been used to determine the resonant third 

harmonic surface wave, which is generated by the propagation of a linear surface 
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wave. For a trigonometric primary surface wave of amplitude A  and frequency  , 

the frequency of the resonant third harmonic shows a frequency 3  , and an 

amplitude NA  which depends on 3A  and the nonlinear material constant G, and 

which increases linearly with the distance of propagation, x . It has been shown that 

the resonant surface wave harmonic propagates with the velocity of classic Rayleigh 

waves of the corresponding linear material. Measurement of the third harmonic can 

provide information on G .  

As an application, we have investigated the transmission of an incident 

resonant third harmonic surface wave by an interface located at x L  between 

regions of nonlinear and linear behavior. The required continuity of pressure, 

stresses and displacements shows that no reflected surface wave is generated, only a 

transmitted surface wave. The transmitted surface wave, which is of the same 

general form as the incident harmonic surface wave propagates with a constant 

amplitude defined by ( )NA x  at x L , and a phase which for t L c  is centered at 

x L . The linear dependence of the amplitude on both L  and G  suggest that 

measurement of the transmitted surface wave can be used to determine these 

quantities. 

 



Chapter 6 Analysis of Harmonics Propagating in Pipes of 

Quadratic Material Nonlinearity using Shell 

Theory 

6.1 Introduction 

Higher harmonics in non-dispersive media have attracted wide attention, 

including experimental, numerical and analytical investigations (Gol’dberg, 1961; 

Bender et al., 2013; Matlack et al. 2015; Chen et al.; 2014), which have also been 

investigated in Chapters 4 and 5. However, there are few investigations of higher 

guided harmonics in dispersive structures like pipes and rods. Due to the dispersion 

of guided waves, which will lead to frequency dependent phase velocities and multi-

modes, the analysis of harmonics in wave guides becomes quite complex. Recent 

investigations about the generation of higher guided harmonics have been made by 

Deng (1998, 1999), Pau and Scalea (2015) and de Lima and Hamilton (2003) by 

using the method of normal mode expansion. De Lima and Hamilton (2005) adopted 

perturbation and modal analysis together with numerical simulation to calculate the 

second harmonics propagating in cylindrical rods and shells. Liu et al. (2014a, 

2014b) proposed a generalized method and used a numerical approach to analyze 

the cumulative nature and the physical interpretation of the generation of higher 

harmonics in hollow circular cylinders.  

Since rods and pipes are widely used in structures such as pipelines, it is highly 

desirable to increase our understanding of nonlinear waves propagating in 

cylindrical wave guides on the basis of a theory that allows relevant analytical 

solutions (Morsbøl and Sorokin, 2015). In this chapter, we present an analytical 

investigation of higher harmonics in pipes based on shell theory with quadratic 

nonlinear material behavior. An analytical approach based on shell theory provides 

physical insight in the deformation modes. Whereas exact three dimensional theory 

has to be dealt with numerically, shell theory yields analytical solutions.  
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The work presented in this chapter consists of three parts: the derivation of 

nonlinear equations of axisymmetric material behavior of a shell, the mixing of 

axisymmetric longitudinal and torsional waves, and the self-interaction of 

axisymmetric longitudinal waves. To verify the accuracy of the present linear 

version of the shell theory, the dispersion curves of longitudinal waves have been 

compared with the corresponding curves obtained from thick shell theory and three 

dimensional theory. For axisymmetric longitudinal wave propagation in pipes, the 

dispersion curves agree very well with the curves for the exact theory. For 

axisymmetric torsional waves, we only take the lowest torsional wave mode, 

derived directly from the three dimensional theory, into consideration. It is shown 

that for mixing of longitudinal and torsional waves, no resonant longitudinal waves 

with sum or difference frequency exist. Using the perturbation method, analytical 

expressions for the resonant torsional waves have next been obtained. The resonant 

torsional waves with difference frequencies propagate in the opposite direction of 

the primary waves, which may have potential application to the inspection of pipes.  

For the self-interaction of longitudinal waves in pipes, we have employed a 

more simplified shell theory for thin-walled pipes. A nonlinear displacement 

equation of motion with uncoupled linear part was obtained, which is used to obtain 

analytical expressions of cumulative second longitudinal harmonics. Since 

longitudinal waves according to this theory are dispersive, the phase velocities are 

frequency dependent. The phase-match conditions have been obtained, which, 

together with the dispersion relations, have been used to determine the phase-match 

points. At the phase-match points, the phase velocity of the second harmonic is the 

same as the corresponding phase velocity of the primary wave.  

6.2 Basic equations of axisymmetric motion in a pipe derived from 

nonlinear shell theory 

Consider a pipe of thickness h  and radius of the middle surface R , see Fig. 6.1, 

where r  is the distance from the middle surface, thus r R r   is the radial position 

of any particle in the pipe. In this paper, axisymmetric wave propagation in the pipe 

will be investigated. The displacements for the shell theory are taken in the form: 
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1

( , )   ( , ) ,   ( , ) ( , ),
2

u u x t v v x t r w w x t r x t   ，   (6.1) 

where u  and w  are the displacement components in the middle surface, in the radial 

and axial direction, respectively, and   is the slope of the axial displacement in the 

x r  plane. The forms of u  and w  in Eq. (6.1) can also be found in Herrmann and 

Mirsky (1956). The expression of the circumferential displacement v  in Eq. (6.1) is 

chosen to represent the lowest torsional mode, see Wang and Achenbach (2016). 

 
Fig. 6.1 An elastic pipe 

 

The simple form of the radial displacement given by Eq. (6.11) has advantages, 

but it also poses a problem in that it yields a zero radial strain, 0rr u r     . As 

proposed by Herrmann and Mirsky (1956), a much better assumption is that the 

linear radial stress is zero through the thickness of the shell, i.e. 

 0L

rr     (6.2) 

This equation yields 
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r r x





  
  

  
   (6.3) 

where   is Poison’s ratio. Here the linear stress-displacement relation (Achenbach, 

1999, page 74) has been used. In this paper, we use Eq. (6.3), except when the 

thickness behavior of the shell is irrelevant, when we use Eq. (6.11). Substituting Eq. 

(6.3) into the general linear axisymmetric stress-displacement relations, the resulting 

linear parts of stresses are 
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where [( ) (11 )]2   , and   and   are Lamé’s elastic constants. The 

superscripts “L” and “NL” denote the linear and nonlinear parts of the stresses, 

respectively. The nonlinear parts of stresses are caused by the nonlinear material 

behavior, which is given by Eqs. (A1)-(A6) in Appendix 6A. Employing Eq. (6.3) 

into the nonlinear stress-displacement relations, the nonlinear parts of the stresses 

can be written as  
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Here, A, B and C are the third-order elastic coefficients, and the relation 

, 0rv r v  , which follows from Eq. (6.12), has been used. 

Since we only take axisymmetric motion into consideration, the differential 

equations of motion are given by 
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where   is the material density. To obtain the equations of motion for the shell, we 

multiply the three equations in Eq. (6.11) by r  on each side, and then integrate the 

equations at both sides through the thickness of the shell. We obtain 
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We also multiply the third equation in Eq. (6.11) by rr , and integrate over the 

thickness of the shell to obtain 
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Equations (6.12)-(6.15) are the equations governing axisymmetric motion of the 

shell. The justification for these multiplications to obtain these equations stems from 

energy considerations (Herrmann and Mirsky, 1956). By the use of Eqs. (6.4)-(6.9), 

Eq. (6.16) can be written as  
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Here   is the shear coefficient, which is introduced to modify the shear stress of the 

shell or plate theory. The motivation is to make the velocity of very short waves in 

the lowest mode coincide with the corresponding velocity of the three dimensional 

theory. Here   is taken as 0.86 when the Poisson’s ratio   is 0.3 (Herrmann and 

Mirsky, 1956). The nonlinear parts of the resultant forces can be expressed as 
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where the nonlinear stresses are given by Eqs. (6.5)-(6.9). 

Substitution of Eqs. (6.17)-(6.22) into Eqs. (6.12)-(6.15) yields the following 

displacement equations of motion. 
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where  
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Equations (6.26)-(6.29) define the nonlinear parts of Eqs. (6.25). If they are omitted, 

Eqs. (6.25) reduce to the linear equations governing the propagation of 

axisymmetric waves in a pipe. 

Since Eqs. (6.25) are a set of nonlinear equations, the perturbation method is 

used to determine the effects of nonlinearity. Thus, we consider 
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   (6.31) 

Here, it has been assumed that terms of orders 
2 2 1h R   can be omitted. 

The solutions to the zero-order equations are taken in the forms:  
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  


  

   （ ）   (6.32) 

where 
Tc    is the shear wave velocity,   is the circular frequency and k  is 

the wave number. Equations (6.25) show that, for the axisymmetric case, linear 

longitudinal waves are uncoupled from linear torsional waves, as is evident from the 

left-side of Eq. (6.254), which is uncoupled from the linear parts of the other three 

equations. Substituting Eq. (6.324) into Eq. (6.314) and omitting the right side-term, 

the resulting equation governing torsional wave motion is satisfied by 

 
0 1

( ) cos ( )
2 T

x
v R r D t

c
  （ ）

  (6.33) 

where D is a constant. Equation (6.33) is the well-known representation of the 

lowest torsional mode in a pipe. 

The following relations are introduced.  
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    (6.34) 

where c k  is the phase velocity and   is the wavelength. After substituting the 

first three expressions of Eq. (6.32) into the first three zero-order equations, the 

equations governing the relation between ,  U W  and   become 
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 (6.35) 

where Tn c c  and h   are the dimensionless phase velocity and the reciprocal 

of dimensionless wavelength. For simplicity, the approximation has been made in 

the calculation that the terms containing 
3h R  in the zero-order equations are 

negligible. The validation will be shown by comparison with the exact solution, see 

Fig. 6.2. As a consequence, part of the rotary inertia and flexural stiffness are 

neglected. For non-dispersive structures, the value of n  equates to L Tc c , where 

 2Lc      is the longitudinal wave velocity. 
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The determinant of the coefficient matrix of Eq. (6.35) must vanish, which 

yields the dispersion relation (also called the characteristic equation), which relates 

the dimensionless phase velocity and the reciprocal of the dimensionless wavelength. 

The dispersion curves are shown in Figs. 6.2a and 6.2b for two values of h R . 

 

 

(a) 1 10h R   

 

(b) 1 4h R   

Fig. 6.2 Comparison of phase velocity versus the reciprocal of wavelength with 

the corresponding results obtained from thick shell theory (Mirsky and G. Herrmann, 

1958) and three dimensional theory (Herrmann and Mirsky, 1956) for 0.86   and 
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Figures 6.2a and 6.2b show the comparison of the dispersion curves obtained 

from Eq. (6.35) with the ones obtained from three dimensional theory (Herrmann 

and Mirsky, 1956) and thick shell theory (Mirsky and G. Herrmann, 1958). When 

the ratio of shell thickness to wavelength is small, 0.4h    in this case, which can 

be called a lower frequency region, the dispersion curves for the first and second 

mode agree very well with the curves obtained from the other two theories. As the 

wavelength becomes smaller, the difference becomes larger for the second mode, 

while the first mode still remains sufficiently accurate. The results confirm that shell 

theory is more suitable in the lower frequency region, where the wall thickness of a 

pipe is sufficiently smaller than the wavelength. As shown in Li and Rose (2006), at 

higher frequencies (i.e. shorter wavelengths), guided waves in pipes can be treated 

as Lamb waves. The separation line between higher and lower frequencies depends 

on the ratio of the wall thickness to the diameter. Pipes of the same wall thickness 

with larger diameter will have a lower frequency value as the separation line. As 

shown in Fig. 6.2b, the present shell theory is still valid for fairly thick pipes. The 

dispersion curves show that the curve obtained from the present theory is more 

accurate for the first mode than the curve from the thick shell theory. One possible 

explanation is that the assumption used in Eq. (6.2) releases the restriction due to the 

assumed form of the displacement given by Eq. (6.11), which increases the stiffness. 

However, the discrepancy between three theories is very small for a small ratio of 

the thickness to wavelength. 

We can express the radial displacement and the angle of rotation of the normal 

to the middle surface in terms of the axial displacement of the middle surface. The 

relations between the amplitudes can be obtained from Eqs. (6.352) and (6.353) as 

follows: 

 1 2,  U i W W     (6.36) 

where 
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It follows that the expressions of 
(0)u  and 

(0)  can be written as 
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 (0) (0) (0) (0) (0)

1
2,  u u i w w

R
 


     (6.37) 

We then obtain 

 (0) (0) (0) (0)

2(1 )
r

w w r w
R

       (6.38) 

6.3 The mixing of longitudinal and torsional waves 

Let us consider the case that a longitudinal wave and a torsional wave are 

excited at the same time. As mentioned in the previous section, these two waves will 

not interact with each other within the linear theory. However, when nonlinear 

material behavior is taken into consideration, resonant waves and higher harmonics 

will be generated. In this section, we are interested in investigating mixing primary 

longitudinal and torsional waves, to obtain a resonant wave with difference or sum 

frequency. 

We consider the axial displacement in the middle surface in the form 

 (0)

1 1cos( )w W t k x    (6.39) 

The primary longitudinal wave with frequency 1  and wave number 1k  can then be 

determined through Eqs. (6.371) and (6.38) as 
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  (6.40) 

where 1  and 2  are defined by: 
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Here 1 1h  , with 1 12 k   being the wavelength of the longitudinal wave, and 

1 1 1( )Tn k c . The primary torsional wave with frequency 2  and wave number 2k  

is given by 

  (0)

2 2

1
cos( )

2
v D R r t k x     (6.43) 
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where 2 2 Tk c   for the lowest torsional wave mode. 

It is noted that there are no terms in the expressions (6.26)-(6.28) of 1F , 2F  and 

3F  containing the coupling of v  with u  or w , which is evident by the absence of 

products of v  with u  or w  in the nonlinear stress-strain relation (6.5)-(6.7). Thus, 

we can conclude that the mixing of primary longitudinal waves and torsional waves 

will not give rise to nonlinear terms with sum or difference frequency for the first 

three equations in Eq. (6.31), which govern the generation of resonant longitudinal 

waves. Thus, resonant longitudinal waves with sum or difference frequencies cannot 

occur through the mixing of primary longitudinal waves and torsional waves in a 

pipe. A similar conclusion that the mixing of primary transverse waves and 

longitudinal waves in an unbounded nonlinear media cannot give rise to a resonant 

longitudinal wave with difference or sum frequency, was stated in Korneev and 

Demčenko (2014). However, a different condition exists for the expression of 4F . 

Substituting Eqs, (6.40) and (6.43) into Eqs. (6.8), (6.9) and (6.29), we have 
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  (6.45) 

where 
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and 2 2h  , and 2 22 k   is the wavelength of the torsional wave. It should be 

noted that the special condition 1 2 0   , for which the resonant wave with 

difference frequency does not exist, is not considered here. The quantities 

( 0,  1,  2)i i  , as defined by Eqs. (6.45) and (6.46), defines three coefficients for 

the specified primary waves. In view of Eqs. (6.314) and (6.44), we have 
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The resonant waves have to meet the phase-match conditions, which are given by 
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  (6.48) 

For case one: Tc k  , the longitudinal phase velocity can be expressed 

by 

 1
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Then, the first resonant condition in Eq. (6.48) becomes 
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For this case, we assume 1 1n  . Thus, the wave solution to Eq. (6.47) will have the 

following form 
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Substituting Eq. (6.51) into Eq. (6.47), we can get the following equality 
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The values of amplitudes in Eq. (6.52) can then be calculated as  
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In view of Eq. (6.50), the phase velocities of the generated waves are given by 
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The minus phase velocity in Eq. (6.542) means that the corresponding wave travels 

in the opposite direction of the primary waves. Finally, by virtue of Eqs. (6.51)-

(6.54), the generated torsional wave can be expressed by 
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   (6.55) 
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which shows that there is no cumulative behavior for the wave with sum frequency. 

For the wave with difference frequency the amplitude increases, however, linearly 

with the propagation distance. It should be noted that the waves with difference 

frequency propagates in the opposite direction of the primary waves. This back-

propagating resonant wave may be useful for nondestructive testing purposes. 

 

Table 6.1 Values of 1  and 2  calculated from Eq. (6.45) for several 

combinations of primary torsional wave modes with the first and second modes of 

longitudinal waves 

 

Group 
1 1h   1 1 1( )Tn k c  2 2h   1  2  

With the first mode of longitudinal waves 

1 0.025 1.000 0.05 1.191 1.188 

2 0.1 0.383 0.05 9.717 10.101 

3 0.2 0.511 0.10 44.355 48.808 

4 0.3 0.633 0.15 109.220 124.499 

With the second mode of longitudinal waves 

5 0.1 1.692 0.05 -4.086 -4.086 

6 0.2 1.691 0.10 -16.283 -16.283 

7 0.3 1.691 0.15 -36.669 -36.669 

 

For case two: Tc k  , the value of 1n  must be equal to 1, which is 

possible for longitudinal waves propagating in pipes, see Fig. 6.2. The wave solution 

has the following form 

 
(1) cos( ) cos( )v a x t k x a x t k x            (6.56) 

Substituting Eq. (6.56) into Eq. (6.47) and following the analysis procedure (i.e. Eqs. 

(6.52)-(6.54)) used in case one, the expression of the generated torsional wave for 

case two is obtained as 
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  (6.57) 
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To obtain this kind of resonant waves, the phase velocity of the primary longitudinal 

wave 1c  has to be equal to Tc , which implies that the primary longitudinal wave has 

to propagate at a frequency where its velocity equals to the shear wave velocity. 

The analytical expressions of resonant waves with sum and difference 

frequencies are shown in Eqs. (6.55) and (6.57). The coefficients 1  and 2  can be 

calculated through Eq. (6.45) for the specific primary longitudinal and torsional 

waves.  

As examples, we determine the numerical values of 1  and 2  for several 

combinations of primary longitudinal and torsional waves, see Table I. The ratio of 

thickness to mean radius h R  is taken as 1 10 . The material constants are the same 

as used in Liu et al. (2013b), i.e. 

116.2 GPa, 82.7 GPa, 325 GPa, 310 GPa, 800 GPaA B C          (6.58) 

The Poison’s ratio   is 0.3 and the shear coefficient   is 0.86. 

It is noted that the combination of primary waves in group 1 applies to case two 

(i.e. 1 1n  ). The analytical expressions presented in this section are not limited to 

the combinations in Table 6.1. They are applicable to any combination of primary 

longitudinal and torsional waves, except the case that 1 2=  . It can be noted from 

Fig. 6.2 and Table 6.1 that the change of phase velocity is very small for points 

lying on the dispersion curve of the second longitudinal mode. This means that the 

dispersion effect of the longitudinal wave is weak in these regions. So the group 

velocity is very close to the phase velocity and the longitudinal wave is undistorted 

in these regions. 

6.4 The self-interaction of longitudinal waves in a pipe 

In this section, we analyze the self-interaction of axisymmetric longitudinal 

waves propagating in a thin-walled pipe. Compared with the equations of motion of 

plates in rectangular coordinates, the equations of motion of pipes in cylindrical 

coordinates become quite complex and require a numerical approach. Here, we will, 

however, investigate the second longitudinal harmonics propagating in thin-walled 

pipes using shell theory with nonlinear material behavior. For thin-walled pipes, we 
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further simplify the nonlinear governing equations (6.12)-(6.14) by neglecting 

rotatory inertia (the terms containing 
3 12h ). We then have  
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Substituting Eq. (6.61) into Eq. (6.59), we obtain 
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  (6.62) 

For thin-walled pipes, we also assume that the shear deformation is very small and 

may be neglected, which implies 
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Using Eq. (6.63), the nonlinear stresses for longitudinal waves given by Eqs. 

(6.5)-(6.7) are further simplified to 
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  (6.64) 

In this section, the definitions of NLN
, NL

xxN  and NL

xM are the same as stated by 

Eq. (6.24), while the expressions of the nonlinear stresses (6.5)-(6.7) should be 

replaced by the corresponding stresses in Eq. (6.64). Substituting Eqs. (6.17)-(6.19) 

into Eqs. (6.60) and (6.62), with consideration of zero shear deformation (i.e. Eq. 

(6.63)), we obtain the displacement equations of motion as 
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Here, the terms containing 
22h R  have been neglected. The corresponding linear 

homogenous equations of Eqs. (6.65) and (6.66) are the Donnell’s equation for 

axially symmetric motion of a thin shell given by Junger and Feit (1986, page 217). 
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After some simple manipulations, Eqs. (6.65) and (6.66) can be written as two 

equations with uncoupled linear parts. 

 
22 3 4
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( 2 ) 2
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NL NL

xM Nw u h u u
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and 
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where 
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  (6.69) 

Note that for a thin shell (i.e. 1h  ), we have 

 h     (6.70) 

To solve Eq. (6.68), we consider in the usual manner.  

 
(0) (1) (0) (1),   u u u w w w      (6.71) 

Substituting Eq. (6.71) into Eq. (6.68), we get a zero-order and a first-order equation. 

The zero-order equation is the same as Eq. (6.68) when the right-hand side term F  

is omitted.  

The first-order equation is obtained as 
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  (6.72) 

The solution to the zero-order equation is taken in the following form. 

 
(0) ( )cos( ) Re i t kxu U t kx Ue          (6.73) 

where “Re” denotes the real part of the quantity in the bracket. Substituting Eq. 

(6.73) into the zero-order equation, we obtain the following dispersion relation for a 

thin pipe. 
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  (6.74) 

where n  and   are defined in Eq. (6.35). 

 

Fig. 6.3 Dispersion curves and phase-match points for 0.3   

Figure 6.3 shows the comparison between the dispersion curves obtained from 

the Donnell equation and thick shell theory (Mirsky and Herrmann, 1958). When the 

ratio of wall thickness to wavelength is small, these two results agree very well with 

each other. The thick shell theory fits well with the exact theory for small values of 

 , as shown in Fig. 6.2. Therefore, on the basis of dispersive behavior, the 

governing equation (6.68) is acceptable for waves with long wavelengths in a thin-

walled pipe. 

By the use of Eqs. (6.13) and (6.63), the following relations can be obtained. 
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  (6.75) 

In view of Eqs. (6.67) and (6.73), the relation between 
(0)w  and 

(0)u  can be written 

as 
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We can then express the axial displacement by 

  (0) (0) (0) (0)

1 1Rew iC u ikru i C kr u        (6.78) 

Using Eqs. (6.73) and (6.78), together with Eqs. (6.24) and (6.64), the nonlinear 

resultant forces become 
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These expressions define three coefficients for the longitudinal primary wave. 

Substituting Eqs. (6.79)-(6.81) into Eq. (6.69), we obtain 
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Let us consider a solution to Eq. (6.72) in the form 

 
(1) sin 2( )u Ux t kx    (6.84) 

Substituting Eqs. (6.83) and (6.84) into Eq. (6.72), we get the following equation: 

 

 
 

 

 

3

2 2 2

2
2

1 2 3 4

2 2

2 2 4 4 4 4

2

2 2 2 2

2

sin 2
1

16 64
8

1 3

1
8

32

64
1 cos 2( )

16 cos1
2

2( )

Ux t kx

U

h

n n h t kx

U
h h t

h

n kx
h

 



     

  











  



   

 




 
   

 
         

  

 (6.85) 
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where 
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Equation (6.85) has a solution which does not depend on time when 0  , which 

implies 
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Since 0  , we can obtain the amplitude of the second longitudinal harmonic, Eq. 

(6.84), from Eq. (6.85) as 
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  (6.89) 

Basically, Eq. (6.87), which gives the relation between 2  and 2k , is the 

dispersion relation for second harmonics. For a non-dispersive structure like an 

unbounded medium, the dispersion relation for the primary wave is the same as the 

corresponding relation for the second harmonics, and the phase velocities keep 

unchanged when the frequencies vary. For waves in dispersive structures, there exist 

only limited phase-match points where the phase velocities of primary waves are the 

same as the corresponding phase velocities of second harmonics. If we plot the two 

dispersion relations (6.74) and (6.87) in the same figure, the intersections of the two 

curves are phase-match points. In this paper, we obtain a relation between   and n  

by subtracting Eq. (6.74) from Eq. (6.87). The resulting equation can be reduced to 
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which gives rise to the following relations 

 
10

3(1 )
n  





  (6.91) 

and 

 
2

1
n





  (6.92) 

Equations (6.91) and (6.92) are phase-match conditions, which are independent of 

the ratio of the thickness to radius of a pipe. Equation (6.91) defines a straight line in 

the n   plane, shown in Fig. 6.3. The intersections of the line with the dispersion 

curves yield the phase-match points. The numerical values of the phase-match 

points have been verified by substitution in Eqs. (6.74) and (6.87). Another two 

phase-match points can be obtained by substitution of Eq. (6.92) into Eq. (6.74) or 

Eq. (6.87) for the two different ratios of wall thickness to mean radius considered 

here. For the pipes with the ratio of thickness to mean radius of 1/10 and 1/30, the 

phase-match point lying on the dispersion curve of the first mode is in the region of 

accuracy of the Donnell theory, see Fig. 6.3. The dispersion curves of the second 

harmonics are neglected in Fig. 6.3. Since the ratio of thickness to wavelength of the 

second harmonic is 2 , the region of accuracy of the second harmonic is smaller. 

The phase-match points lying on the dispersion curve of the second mode are out of 

the accuracy region shown in Fig. 6.3. Considering the second longitudinal 

harmonics in the pipe with ratio of thickness to mean radius of 1/10 and 1/30, we 

can determine the phase-match points by using the present theory, which lie on the 

dispersion curves of the first mode in Fig. 6.3. Once the phase-match points have 

been calculated, the amplitudes of the second harmonics can be obtained through 

Eqs. (6.89) and (6.94). The phase-match points and the corresponding amplitude 

coefficients of the second harmonics in Eqs. (6.89) and (6.94) are given in Table 6.2. 

The material constants used here are given by Eq. (6.58).  

Substitution of Eqs. (6.80), (6.81), (6.84) and (6.88) into Eq. (6.67) yields the 

expression for the axial strain as 
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where the amplitude coefficients in Eq. (6.93) are given by 
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As the propagation distance increases, the cumulative second harmonic with the 

amplitude coefficient 4  will be dominant in Eq. (6.93).  

 

Table 6.2 The phase-match points and the corresponding coefficients of the 

amplitudes of second harmonics 

 

h R  h   Tn c c  3  4  5  6  

1/10 0.065 0.445 1.80×10
-2

 -5.11×10
-4

 -2.80×10
-3

 -8.77×10
-2

 

1/30 0.037 0.252 2.45×10
-3

 -3.67×10
-5

 -1.53×10
-4

 -9.34×10
-3

 

 

From Table 6.2, we observe that the amplitudes of second harmonics in the 

thinner-walled pipe are smaller than the amplitudes of second harmonics in the 

thicker-walled pipe. That means a lower power flux from the primary wave to the 

second harmonic occurs in the thinner pipe. 

To validate the analysis in this section, the phase-match point lying on the 

dispersion curve of first mode is compared with the corresponding point given by 

Liu et al. (2013b). The ratio of thickness to mean radius is 150/975. Our result is 

( 0.080,  0.546)n    compared with the result of Liu et al. ( 0.086,  0.536)n   . 

The discrepancy between the two results is small. 
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6.5 Conclusions 

In this chapter, guided waves propagating in pipes with quadratic material 

nonlinearity have been investigated. This chapter is composed of three main parts: 

the derivation of the shell equations, the mixing of longitudinal and torsional waves, 

and the self-interaction of longitudinal waves. Analytical expressions of cumulative 

second harmonics have been obtained based on shell theory.  

The derivation of governing equations of axisymmetric motion of a pipe with 

nonlinear material behavior has been given in the first part. By use of the 

perturbation method, the zero and first order equations have been derived. The 

dispersion curves obtained from the linear version of the present theory, the linear 

thick shell theory and the linear three dimensional theory show excellent agreement. 

It was shown that no resonant longitudinal harmonic with sum or difference 

frequency exists. Analytical expressions of the resonant torsional harmonics with 

difference and sum frequencies were obtained. The resonant torsional harmonics 

generated by the mixing of longitudinal and torsional waves propagate in the 

opposite direction of the primary wave. 

For thin-walled shells, the shell theory has been further simplified to yield 

uncoupled linear and nonlinear parts of the governing equations. The simplified 

shell theory has been used to analytically investigate the self-interaction of 

longitudinal waves in thin-walled pipes. To validate the thin shell theory, the 

dispersion curves for longitudinal waves were compared with the corresponding 

curves obtained from thick shell theory. It was shown that the dispersion curves 

agree very well with each other when the ratio of thickness to wavelength is small. 

For second longitudinal harmonics in pipes, analytical expressions for the phase-

match conditions are presented, which together with the corresponding dispersion 

relation, have been used to determine the phase-match points. The analytical 

solutions presented in this paper may provide a benchmark to numerical and 

experimental investigations. 

Appendix 6A: The nonlinear parts of the Cauchy stress 

In cylindrical coordinates, the nonlinear parts of the Cauchy stress components 

only including quadratic material nonlinearity for axisymmetric wave fields are 

given by  
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Equations. (A1)-(A6) can also be reduced from the corresponding equations in 

Liu et al. (2013a) if we only consider axisymmetric motion with small deformations 

(but considering material nonlinearities). The subscript letter following the comma 

denotes the corresponding differential derivative. 



Chapter 7 Reflection of ultrasound from a region of cubic 

material nonlinearity due to harmonic 

generation 

7.1 Introduction 

In recent years, the researches about elastic waves propagating in solids of 

nonlinear material behavior occupying unbounded bodies have attracted intensive 

attentions. From the practical point of view, the reflection, transmission and 

scattering of incident waves from an inclusion of nonlinear material is of obvious 

interest. The reflection of second harmonics from a stress-free boundary was studied 

by Bender et al. (2013). An experimental investigation was presented by Donskoy et 

al. (2001) to observe the modulation effect of highly nonlinear material behavior 

caused by weakly or incompletely bounded interfaces. Achenbach et al. (1989) 

represented the failure of an adhesive bond by a cubically nonlinear elastic model. 

For that case the strength of the adhesive bond can be directly measured from the 

reflected waves. For simplicity, the interfaces or adhesive bonds studied above were 

frequently modeled by nonlinear springs. Using a Green’s function, the analytical 

solution to the scattering of elastic waves from an inclusion of quadratic nonlinearity 

was obtained by Tang et al. (2012).  

The main purpose of this work is to investigate the reflection and 

backscattering of plane elastic waves by a region of cubically nonlinear material 

behavior. The constitutive relation is obtained from the expansion of the elastic 

energy function by only retaining the second and fourth order elastic constants, for 

which the condition of symmetric tension and compression material response is 

satisfied. The analytical solutions to cumulative first and third harmonic generation 

have been derived by using the perturbation method. Two simple models of practical 

interest are proposed to obtain the nonlinear elastic constants (i.e. the fourth order 

elastic constants) of the region by making use of reflection and back-scattered waves. 

In the case where the region is large, incidence of ultrasound on the interface 
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between the regions of linear and nonlinear material behaviors, which are perfectly 

joined, yields very useful information. Making use of the continuity condition of 

stress and displacement at the interface, expressions for the compensatory waves 

have been obtained, whose amplitudes contain the nonlinear material constants near 

the interface. When the nonlinear region is an inclusion, the nonlinear body force 

induced by the material nonlinearity generates a backscattered wave. The reciprocity 

theorem is employed to obtain an analytical solution for the backscattered wave. The 

nonlinear material constants and the size of the inclusion can be obtained from the 

amplitude of the backscattered wave. For a small nonlinear region, the superposition 

of back-propagated compensatory waves generated from the two interfaces gives an 

expression for the backscattered wave, which is of the same form as the one 

obtained by the reciprocity theorem. 

7.2 Governing Equations 

In this section, the equations governing the propagation of plane elastic waves 

in an unbounded elastic solid are presented. The material displays material 

nonlinearity which has a strong correlation with material degradation. For small-

amplitude waves propagating in solids with high material nonlinearity, the 

geometrical nonlinearity is negligible. For most materials, their tension-compression 

material response is symmetric (Rauch and Leslie, 1972). However, the even order 

material nonlinearities, due to quadratic nonlinearity appearing in the stress-strain 

relation, lead to asymmetry of tension and compression. In this paper, we consider 

cubic material nonlinearity of the stress-strain relation, which leads to a symmetric 

stress-stain relation.  

For plane elastic waves propagating in the x -direction, the displacement fields 

can be represented by 

 ( , ),  ( , )u u x t v v x t    (7.1) 

for longitudinal and transverse waves, respectively. Considering only cubic material 

nonlinearity, the one-dimensional stress-strain relation can be derived from Eq. (2) 

in (Liu et al., 2013)  
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  
3 2

3
2 4( ) 2

2
xx

u u u v
F H E G E F G

x x x x
  

        
             

        
  (7.2) 

and 

 

2 3
3

2
2

xy

v u v v
E F G G

x x x x
 

       
        

       
  (7.3) 

where E, F, G and H are fourth order elastic constants. Equations (7.2) and (7.3) 

indicate that the third order elastic constants in the stress-strain relation which are 

related to quadratic nonlinearity have all been set equal to zero. The constitutive 

relations given by Eqs. (7.2) and (7.3) agree with the Taylor expansion of stress 

presented in (Chillara and Lissenden, 2016) when the deformation is small. 

7.2.1 Primary longitudinal wave 

 

Fig. 7.1 Linear stress-strain relation and stress-strain curve for cubic nonlinearity 

under tension and compression 

The stress-strain relation for pure longitudinal deformation follows from Eq. 

(7.2) as 

  
3

2 4( )xx

u u
F H E G

x x
  

  
       

  
  (7.4) 

where the fourth order elastic constants E , F , G  and H  are defined as negative 

quantities, which indicates a softening effect. A symmetric stress-strain relation has 
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been obtained by neglecting the quadratic material nonlinearity, see Fig. 7.1. The 

second harmonics caused by the quadratic material nonlinearity have disappeared. 

For the problem at hand, the equation of motion is 

 
2

2

xx u

x t




 


 
  (7.5) 

Substituting Eq. (7.4) into Eq. (7.5), we obtain 

  
2 2

2 2
2 L

u u
F

t x
  
 

  
 

  (7.6) 

where the nonlinear term LF  is given by 

 

2 2

2
12( )L

u u
F F H E G

x x

  
     

  
  (7.7) 

Making use of the perturbation method, the displacement can be expanded as 

 0 (1)u u u  （ ）   (7.8) 

where we assume 
3

(0) (0)u u . Substitution of Eqs. (7.8) into Eqs. (7.6) gives rise 

to the following equations 

  
2 (0) 2 (0)

2 2
2 0

u u

t x
  
 

  
 

  (7.9) 

  
2 (1) 2 (1)

(1)

2 2
2 L

u u
F

t x
  
 

  
 

  (7.10) 

where 

 

2
(0) 2 (0)

(1)

2
12( )L

u u
F F H E G

x x

  
     

  
  (7.11) 

For the homogeneous equation (7.9), we have the longitudinal wave solution, 

which is given in the following form: 
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(0) cos[ ( )]

L

x
u U t

c
    (7.12) 

where U  is a constant and ( 2 )Lc      is the longitudinal wave velocity. 

Substituting Eq. (7.12) into Eqs. (7.11), we obtain 

 
4

(1) 3

4
3(F H E G) cos[3 ( )] cos[ ( )]L

L L L

x x
F U t t

c c c


 

 
       

 
  (7.13) 

In view of Eq. (7.13), evaluation of Eq. (7.10) yields the resonant harmonic 

 
3

(1) 3

3

1
sin[3 ( )] 3sin[ ( )]

2
L

L L L

x x
u U x t t

c c c


  

 
    

 
  (7.14) 

where the nonlinear tensile coefficient is defined by 

 
F H E G

2
L

 

  



  (7.15) 

7.2.2 Primary transverse wave 

The stress-strain relation for transverse deformation can be obtained from Eq. 

(7.3) as 

 

3

xy

v v
G

x x
 

  
   

  
  (7.16) 

Equation (7.16) indicates that the nonlinear shear stress is symmetric with respect to 

the origin. The equation of motion for the transverse wave is given by 

 
2

2

xy v

x t




 


 
  (7.17) 

Substitution of Eq. (7.16) into Eq. (7.17) yields 

 
2 2

2 2 T

v v
F

t x
 
 

 
 

  (7.18) 

where 
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2 2

2
3T

v v
F G

x x

  
  

  
  (7.19) 

By taking the perturbation method, the displacement is expanded as 

 0 (1)v v v  （ ）   (7.20) 

where 
3

(0) (0)v v  is satisfied. Substituting Eq. (7.20) into Eq. (7.18), we get 

 
2 (0) 2 (0)

2 2
0

v v

t x
 
 

 
 

  (7.21) 

 
2 (1) 2 (1)

(1)

2 2 T

v v
F

t x
 
 

 
 

  (7.22) 

where 

 

2
(0) 2 (0)

(1)

2
3T

v v
F G

x x

  
  

  
  (7.23) 

The primary transverse wave solution to Eq. (7.21) can be taken as 

 
(0) cos[ ( )]

T

x
v V t

c
    (7.24) 

where V  is a constant and Tc    is the shear wave velocity. Substitution of Eq. 

(7.24) into Eq. (7.23) gives rise to 

 
4

(1) 3

4

3
cos[3 ( )] cos[ ( )]

2
T

T T T

x x
F G V t t

c c c


 

 
    

 
  (7.25) 

By virtue of Eq. (7.25), evaluation of Eq. (7.22) yields the resonant harmonic 

 
3 3

(1) 3 3

3 3

1 3
sin[3 ( )] sin[ ( )]

4 2
T T

T T T T

x x
v V x t V x t

c c c c

 
         (7.26) 

where the nonlinear shear coefficient is defined by 
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 T

G



    (7.27) 

Equations (7.14) and (7.26) show that the first and third longitudinal and transverse 

harmonics depend on the nonlinear tensile coefficient L  and the nonlinear shear 

coefficient T , respectively. The nonlinear tensile coefficient is the sum of all four 

fourth order elastic constants, while the nonlinear shear coefficient only depends on 

one fourth order elastic constant, G. The amplitudes of the higher harmonics, Eqs. 

(7.14) and (7.26), increase linearly with the propagation distance. 

7.3 Generation of compensatory waves at the interface 

 

Fig. 7.2 Compensatory wave generation at an interface between a linear and a 

nonlinear material 

Due to the strong correlation of microstructural damage with material 

nonlinearity, the generation of a higher harmonic has a potential applicability to the 

nondestructive evaluation of structures and materials. It is, however, desirable to 

develop a simple model, which can be easily used for practical purposes. If the 

region of nonlinear material is large, the model presented in Fig. 7.2 can be used to 

obtain the nonlinear material properties from a wave reflected by the interface. This 

model is suitable for the structures where the nonlinear region is not accessible. In 

this section, it is shown that the back-propagated wave is a compensatory wave 

which is introduced to meet the conditions of continuity of stress and strain at the 
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interface. The linear material properties (i.e.   and  ) are assumed to be same 

across the whole body. The nonlinear material behavior only exists in the region for 

0x   where the micro damage has developed. 

7.3.1 Incidence of a longitudinal wave 

It can be checked that due to the generation of a higher harmonic for 0x   the 

displacement and the stress are not automatically continuous when the incident wave 

reaches the interface connecting the regions of linear and nonlinear material. To 

obtain the required continuity, compensatory waves are proposed to compensate the 

continuity conditions at the interface.  

For the incident longitudinal waves, the displacement fields on both sides of 

the interface at 0x   are 

 
(0) cu u u     (7.28) 

 
(0) (1) cu u u u      (7.29) 

where the incident and harmonic waves were defined by Eqs. (7.12) and (7.14), 

respectively. The compensatory waves propagating in opposite directions are 

assumed to have the following forms 

 
1 3cos[ ( )] cos[3 ( )]c c c

L L

x x
u U t U t

c c
         (7.30) 

 
1 3cos[ ( )] cos[3 ( )]c c c

L L

x x
u U t U t

c c
         (7.31) 

Since the linear waves can pass the interface without interference. The displacement 

field at 0x   should meet the following continuity condition 

 
(1)c cu u u     (7.32) 

In view of Eqs. (7.14), (7.30) and (7.31), we obtain 

 
1 1 3 3,   c c c cU U U U       (7.33) 
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For the continuity of stress at 0x  , we have 

 

3
(1) 0

4
c c

L

u uu u

x x x x
 

   
   
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（ ）

  (7.34) 

Substitution of Eqs. (7.12), (7.14), (7.30) and (7.31) into Eq. (7.34) yields 
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1 3

1 3
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sin( ) sin(3 )
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 
 

 

 

   

  

  (7.35) 

The stresses with smaller amplitudes in Eq. (7.35) are omitted. The following 

decomposition relation has been used for the calculation in Eq. (7.35). 

 3 1
sin ( ) [3sin( ) sin(3 )]

4
t t t      (7.36) 

In view of Eqs. (7.33) and (7.35), we obtain 
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3 3 1 3
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1 3
,  

12 4

c c

L L

L L

U U U U
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 
       (7.37) 

Using Eq. (7.37), the expressions of the compensatory waves can be given by 
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c
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x x
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c
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x x
u U t U t

c c c c

 
           (7.39) 

7.3.2 Incidence of a transverse wave 

For an incident transverse wave, the total displacement fields in the negative 

and positive regions can be separately given by 

 
(0) cv v v     (7.40) 

 
(0) (1) cv v v v      (7.41) 
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where the incident transverse wave and the generated harmonic wave were defined 

by Eqs. (7.24) and (7.26), respectively. The displacements of the compensatory 

waves are taken to have the following forms 

 
1 3cos[ ( )] cos[3 ( )]c c c

T T

x x
v V t V t

c c
         (7.42) 

 
1 3cos[ ( )] cos[3 ( )]c c c

T T

x x
v V t V t

c c
         (7.43) 

In view of Eqs. (7.26), (7.40) and (7.41), the continuity of the displacement at 0x   

yields 

 
c cv v  `  (7.44) 

Substituting Eqs. (7.42) and (7.43) into Eq. (7.44), we obtain 

 
1 1 3 3,   c c c cV V V V       (7.45) 

The continuity of stress at the interface 0x   gives rise to 

 

3
(1) 0c c
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v vv v

x x x x
 

   
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（ ）

  (7.46) 

Substitution of Eqs. (7.24), (7.26), (7.42) and (7.43) into Eq. (7.46) yields 

3 3
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3 3

1 3

1 3 3
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  (7.47) 

In view of Eqs. (7.45) and (7.47), we obtain 
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1 3 3 3
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3 1
,   

8 24

c c

T T

T T

V V V V
c c

 
       (7.48) 

In view of Eqs. (7.48), (7.42) and (7.43), the expressions of the compensatory waves 

can be expressed by 
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It is of interest to note that the amplitudes of the back-propagated compensatory 

waves given by Eqs. (7.38) and (7.49) contain the nonlinear material constants, L  

and T , respectively. 

7.4 Backscattering from a small zone of cubic material 

nonlinearity 

 

Fig. 7.3 Scattering of an incident wave from a small zone of cubic material 

nonlinearity 

In this section, we assume the region of nonlinear material is small enough 

compared with the wavelength, which is defined by 0 x a  , see Fig. 7.3. For this 

case, the problem can be converted into a scattering problem, whereby the nonlinear 

term in the equations of motion is regarded as a body force. In the following, we 

will investigate the backscattering from a small zone of cubic material nonlinearity 

using the reciprocity theorem of elastodynamics. 

7.4.1 Incidence of a longitudinal wave 
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A longitudinal wave, defined by Eq. (7.12), is incident on the region of 

nonlinear material behavior depicted in Fig. 7.3, and gives rise to a backscattered 

wave. The total displacement is represented by the superposition of the incident 

wave (0)u  and the scattered wave su  

 (0) su u u    (7.51) 

where it is assumed that (0)su u . Using the perturbation method, we can obtain 

the equations governing scattering problem as 

  
2 2

2 2
2 0,     or  0

s su u
x a x

t x
  
 

    
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  (7.52) 

  
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2 2
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L

u u
F x a

t x
  
 

    
 

  (7.53) 

where the nonlinear term 
(1)

LF  on the right-hand of Eq. (7.53) is defined by Eq. 

(7.11), which is in terms of the known incident wave. The inhomogeneous equation 

(7.53) remains a linear equation governing the scattered wave. The problem 

described by Eqs. (7.52) and (7.53) is suitable to be solved by the reciprocity 

theorem (Achenbach, 2003), where the nonlinear term in Eq. (7.53) is regarded as a 

body force. For the use of the reciprocity theorem, we rewrite the body force as a 

sum of exponential terms 

 
(1)

1 2 3 4LF f f f f      (7.54) 

where 
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The body forces listed in Eq. (7.54) should be separated into two groups, namely, 

1 3,  f f  and 2 4,  f f  in conjunction with the harmonic time terms i te   and i te  . The 

harmonic-time terms are omitted in the following calculation.  

 

Fig. 7.4 Scattered and virtual waves for State A and State B 

The reciprocity theorem is given by 

 
1 2

( ) ( ) ( )A B B A A B B A A B B A

i i i i i ij i ij j i ij i ij j
V S S

f u f u dV u u n dS u u n dS            (7.59) 

where jn  is the component of the outward normal of the region. Equation (7.59) is 

an integration over a region V  with boundary S  which relates two waves labeled 

state A and state B, respectively. For the problem under consideration, we label the 

scattered wave as state A. For the configuration shown in Fig. 7.4, Eq. (7.59) can be 

simplified to 

 
1 2

( ) ( )A B A B B A A B B A

s xx xx x x s xx xx x x
l

f u dl u u u u           (7.60) 

where the integral domain is defined by 1 2x x x  . Next we apply Eq. (7.60) to 

investigate backscattering from the body forces, defined by Eqs. (7.55)-(7.58).  

For the body force 1f , state A can be defined as: 

 

 

0 

State A 

Linear material Linear material 

 

State A 

State B 
  

  

S1 S2 
V Incident wave 

Nonlinear material 
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Body force: 

  
4

3

1 4

3
2 ,   0

2
L

i x
cA

L

L

f f U e x a
c




          (7.61) 

The forward scattered wave is defined by 

  :  ,  2L L

i x i x
c cA A

s s xx s

L

x a u A e iA e
c

 


       (7.62) 

where sA  is the amplitude of the scattered wave. 

Backscattered wave: 

  0 :  ,  2L L

i x i x
c cA A

s s xx s

L

x u A e iA e
c

 


  
 

      (7.63) 

To use the reciprocity theorem, we have to select a virtual wave for state B, which is 

a longitudinal wave propagating along x-direction. This wave is a free wave which 

is independent of the problem under consideration. That is to say there’s no body 

force for the virtual wave. State B can be defined as: 

Body force: 

 0Bf     (7.64) 

Virtual wave: 

  ,  2
v v

L L

i x i x
c cB B v

v xx v

L

u A e iA e
c

 


       (7.65) 

Substituting Eqs. (7.61)-(7.65) into Eq. (7.60) yields 
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 
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 
 

 
    
 
 

 
    
 
 



  (7.66) 

The frequency of the virtual wave is selected as  

 v    (7.67) 

Then, Eq. (7.66) reduces to 

    
24

3

40

3
2 2 2

2
L

i xa
c

v L v s

L L

A U e dx iA A
c c


 

          (7.68) 

It is evident from Eqs. (7.66) and (7.68) that the third set of terms vanishes and that 

the interaction of the virtual wave and the scattered wave only yield a contribution 

when they propagate in opposite directions, as shown by the second set of terms in 

Eq. (7.66). Evaluation of Eq. (7.68) then yields the amplitude of the backscattered 

wave as follows 

 

224
3

4 2

3
1

8
L

i a
cL

s L

L

c
A U e

c







 
  

 
 

  (7.69) 

Substituting Eq. (7.69) into Eq. (7.63) and adding the time term i te  , the full 

expression of the backscattered wave can be rewritten as 

 
24 ( )

3

4 2

3
sin( )

4
L

x a
i t

cA L
s L

L L

c
u i U a e

c c

 





 

  (7.70) 

For the body force 3f , we have 

  
34

3

3 4

3
2 ,     0

2
L

i x
cA

L

L

f f U e x a
c




           (7.71) 

The same procedure is used to obtain the backscattered wave as 
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2 3 ( )

3

2

1 3
sin( )

12
L

x a
i t

cA

s L

L L

u i U a e
c c

 



 

    (7.72) 

For the body force 2f , state A can be defined as: 

Body force: 

  
4

3

2 4

3
2 ,   0

2
L

i x
cA

L

L

f f U e x a
c




  


        (7.73) 

Forward scattered wave: 

  :  ,  2L L

i x i x
c cA A

s s xx s

L

x a u A e iA e
c

 


  
 

      (7.74) 

Backscattered wave: 

  0 :  ,  2L L

i x i x
c cA A

s s xx s

L

x u A e iA e
c

 


       (7.75) 

State B can be defined as: 

Body force: 

 0Bf     (7.76) 

Virtual wave: 

  ,  2L L

i x i x
c cB B

v xx v

L

u A e iA e
c

 


  
 

      (7.77) 

Substitution of Eqs. (7.73)-(7.77) into Eq. (7.60) yields 

    
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40
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i xa
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L v v s
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U A e dx iA A
c c


 
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     (7.78) 

Evaluation of Eq. (7.78) yields 
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 (7.79) 
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Substituting Eq. (7.79) into Eq. (7.75) and adding the time term i te  , the full 

expression of the backscattered wave is given by 
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4
L

x a
i t

cA L
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L L

c
u i U a e

c c
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    (7.80) 

For the body force 4f , we have 

  
34

3

4 4

3
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f f U e x a
c




  


         (7.81) 

Making use of Eq. (7.81), the backscattered wave is obtained as 
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u i U a e
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


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   (7.82) 

Summation of Eqs. (7.70), (7.72), (7.80) and (7.82) yields the total displacement of 

the backscattered wave as 
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  (7.83) 

Equation (7.83) can be further simplified to 
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2

3
sin( )sin[ ( )]

2

1 3
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s L

L L L

L

L L L

x a
u U a t
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 

 
 
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   (7.84) 

7.4.2 Incidence of a transverse wave 

In this section, the scattering of a transverse wave by the inclusion of nonlinear 

material is investigated. In the usual manner, the total displacement field is  



168 浙江大学博士学位论文  

 (0) sv v v    (7.85) 

where (0)v  represents the incident wave, which was defined by Eq. (7.24), and sv  

represents the scattered transverse wave. Here it is assumed that (0)sv v . 

Substituting Eq. (7.85) into the displacement equation of motion Eq. (7.18), the 

equations governing the scattering problem are obtained as 

 
2 2

2 2
0,      or 0

s sv v
x a x

t x
 
 

   
 

  (7.86) 

 
2 2

(1)

2 2
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s s

T

v v
F x a

t x
 
 

   
 

  (7.87) 

where the nonlinear term 
(1)

TF  in Eq. (7.87) is defined by Eq. (7.25), which can be 

rewritten as 

 
(1)

1 2 3 4TF f f f f      (7.88) 

where 
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T

f V e e
c




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    (7.92) 

The reciprocity theorem can be used to calculate the backscattered wave. The 

procedure is analogous to the one used in Section 7.4.1. The detailed derivation is 

not given here. The total scattered displacement is obtained as: 
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    (7.93) 

The advantage of the scattering model of this section is that the amplitudes of the 

backscattered waves not only depend on the nonlinear material constants but also on 

the length of the nonlinear region.  

7.5 Determination of the backscattered wave based on the 

compensatory wave model 

 

Fig. 7.5 Compensatory waves generated by the two interfaces of a strip of nonlinear 

material between regions of linear material 

In an alternative approach, the compensatory waves generated by a first and 

second interface are determined. In this approach, the back-propagated wave is the 

superposition of two compensatory waves generated by the interfaces at 0x   and 

x a  shown in Fig. 7.5. The solution to the compensatory waves generation at the 

first interface ( 0x  ) has been given in Section 7.3. 

When the incident longitudinal wave and the higher harmonic reach the second 

interface ( x a ), see Fig. 7.5, the total displacements for x a  and x a  of the 

interface are  
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(0) (1) 0 1c cu u u u u        (7.94) 

 
(0) 0 1c cu u u u       (7.95) 

where the incident wave and the higher harmonic are defined by Eqs. (7.12) and 

(7.14), respectively. The compensatory waves propagating in opposite directions are 

taken to have the following form 
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  (7.97) 

The last two terms in Eq. (7.97) are introduced to cancel the displacements of the 

harmonic waves, which is a different condition from the first interface at 0x   

where the displacements of the harmonic waves is zero, see the expression of Eq. 

(7.14). In view of Eqs. (7.94) and (7.95), the displacement field on both sides of the 

interface at x a  should meet the following continuity condition  

 
(1) 1 1( ) ( ) ( )c cu a u a u a     (7.98) 

Substitution of Eqs. (7.14), (7.96) and (7.97) into Eq. (7.98) gives  

 

3 3
3 3

3 3

1 3

1 3

1 3

sin[3 ( )] 3sin[ ( )]
2 2

    cos[ ( )] cos[3 ( )]

  cos[ ( )] cos[3 ( )]

     sin[ ( )] sin[3 ( )]

L L

L L L L

c c

L L

c c

L L

c c

L L

a a a a
U t U t

c c c c

a a
U t U t

c c

a a
U t U t

c c

a a
U t U t

c c

 
   

 

 

 

 

 

 

  

   

   

   

 (7.99) 

Equation (7.99) is satisfied by 
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For the equality of stress at x a , we obtain 
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  (7.101) 

In view of Eqs. (7.12), (7.14), (7.96) and (7.97), Eq. (7.101) can be rewritten as 
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  (7.102) 

where Eq. (7.36) has been used. Using Eq. (7.100), evaluation of Eq. (7.102) yields 
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Substituting Eq. (7.103) into Eq. (7.96), the expression of the back-propagated 

longitudinal compensatory wave is obtained as 
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   (7.104) 

The summation of Eqs. (7.38) and (7.104) gives the full expression of the 

displacement of the back-propagated longitudinal waves as follows 
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(7.105) 

The expressions for the back-propagated waves given by Eqs. (7.84) and (7.105) are 

of the same form, which shows the validity of obtaining the back-propagated wave 

using the two approaches. In comparing the two methods presented in Sections 7.4 

and 7.5, the reciprocity theorem has an advantage over the method used in Section 

7.5. When the geometry of the inclusion of nonlinear material becomes more 

complicated, the reciprocity theorem has greater utility.  

7.6 Conclusions 

Based on the generation of higher harmonics by cubically nonlinear material 

behavior, the results of this paper may have utility for the detection of micro damage 

in materials, which is often caused by fatigue and plasticity. The constitutive model 

of cubic nonlinearity is symmetric with respect to the tension and compression, 

which is an advantage over the quadratic model. In an unbounded solid, the 

analytical solutions to the cumulative first and third harmonics generated by plane 

elastic waves have been obtained in this paper. Two simple models have been 

proposed to determine the nonlinear elastic constants (i.e. the fourth order elastic 

constants). When the region of nonlinear material behavior is large, the interface 

between the perfectly joined regions of linear and nonlinear material behavior yields 

very useful information. Compensatory waves are introduced to meet the continuity 

of stress and displacement at the interface in conjunction with higher harmonics. 

The amplitudes of back-propagated compensatory waves depend on the fourth order 

elastic constants. For a nonlinear inclusion, the nonlinear body force induced by the 

material nonlinearity generates a backscattered wave. The reciprocity theorem of 

elastodynamics was used to obtain the analytical solution to the backscattered wave. 

The amplitude of the backscattered wave depends on the nonlinear material 
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constants and the size of the inclusion. In addition, compensatory waves which are 

generated when the incident waves and higher harmonics have multiple interactions 

with the two interfaces have been investigated. The total back-propagated waves can 

be represented by the superposition of all back-propagated compensatory waves. 

Agreement of the expression of backscattered waves with the back-propagated 

compensatory waves shows that both methods are of equal utility. It should, 

however, be noted that the use of the reciprocity theorem has greater utility for more 

complicated configurations of the inclusion. 

  



174 浙江大学博士学位论文  

 



Chapter 8 The effect of cubic material nonlinearity on the 

propagation of torsional wave modes in a pipe 

8.1 Introduction 

Due to their efficiency and sensitivity, ultrasonic guided waves are widely used 

in nondestructive testing to detect defects in pipes. They can be used to inspect the 

whole cross sectional area for long distances, including inaccessible zones. There 

are three kinds of wave mode in pipes, torsional modes, longitudinal modes and 

flexural modes. The lowest axially symmetric torsional mode is most frequently 

selected as an incident wave for many tests due to its simple wave structure and low 

interference with the surroundings. Ratassepp et al. (2010) investigated the 

scattering of the lowest axially symmetric torsional wave mode by an axial crack in 

a pipe using a finite element simulation and experimental results. A study of the 

reflection of the lowest torsional wave from two or three small holes in pipes was 

presented by Løvstad and Cawley (2011). For a practical application, Rose et al. 

(1994) explored the use of guided waves to increase the efficiency and sensitivity of 

nuclear steam generator tubing evaluation. They also introduced a guided ultrasonic 

nondestructive system to rapidly detect and quantify the reduction of wall thickness 

caused by corrosion (Rose et al., 1996). 

The references mentioned above are concerned with the interaction of guided 

waves with macroscopic defects, such as holes, cracks and thickness reduction. It is, 

however, also desirable to develop a technique to detect the deterioration of material 

properties, which can provide an early warning of possible structural failure. In this 

context, the use of higher harmonics was proven to be efficient for sensing 

microstructural changes of material properties (Hikata et al., 1965; Hikata et al., 

1966).  

This work provides new results for the propagation of guided waves in a pipe 

of cubic material nonlinearity, which may be caused by material deterioration. This 

chapter is split into two parts. The first part deals with the propagation of the lowest 
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axially symmetric torsional wave mode in a pipe, where the material of the whole 

pipe is of cubic nonlinearity. It is shown that such a material generates a third 

harmonic, but also a first harmonic. Using a perturbation method, analytical 

expressions of the first and third cumulative harmonics have been obtained. It is 

perhaps surprising that cubic nonlinearity gives rise to a harmonic whose frequency 

is the same as for the primary wave but whose amplitude increases linearly with 

propagation distance.  

The different condition for the second part is that only a small region of the 

pipe is nonlinear, which leads to a scattering problem. The nonlinear term in the 

governing equation of motion is regarded as a distribution of body forces. We 

employ the elastodynamic reciprocity theorem to obtain an analytical expression for 

the backscattered wave. The amplitude of the scattered wave is determined by the 

nonlinearity coefficient, the size of the nonlinear domain and the geometry of the 

pipe. Due to the weakness of the scattered waves, we use another wave of higher 

frequency in combination with the primary wave to increase the overall amplitude. 

An example whereby the originally scattered wave is amplified by a factor of 50 is 

presented. 

8.2 Governing equations 

 

Fig. 8.1 The geometry of a pipe and corresponding coordinate system 

In this paper, we consider the propagation of torsional waves in a pipe. The 

geometry and corresponding coordinate system {r, , z} are shown in Fig. 8.1, 

where r1 and r2 are the outer and inner radii of the pipe, respectively. 
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For time harmonic axially symmetric purely torsional waves propagating in the 

z-direction, the single displacement component is 

 
( )( , , ) ( ) ik z ctv r z t v r e    (8.1) 

where c  is the phase velocity and kc  . The corresponding stress components are 

 ( )ik z ct

r r e      (8.2) 

where  

 
r

dv v

dr r
 

 
  

 
  (8.3) 

and  

 (z )ik ct

z z e      (8.4) 

where 

 z ik v    (8.5) 

The stress equation of motion is 

 
2

2

2r z
r

v

r z r t

 


 
 

  
  

  
  (8.6) 

Substitution of Eqs. (8.1), (8.2) and (8.4) into Eq. (8.6) yields the displacement 

equation of motion 

 
2

2 2 2

2 2

1d v dv v
k v k c v

dr r dr r




       (8.7) 

The general solution of this equation is 

  1 1

1
( ) ( )J Yv C J qr C Y qr

q
    (8.8) 

where 1J  and 1Y  are Bessel functions of the first and second kind, respectively, CJ 

and CY are constants, and 
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2
2 2 2

2
,   T

T

q k c
c

 


     (8.9) 

By a careful limiting process, it can be shown that for 0q  , Eq. (8.8) reduces 

to 

 
1 1

,   0  and  
2 2

r zv = Ar ik Ar       (8.10) 

where A is a constant. Equation (8.101) defines the lowest axially symmetric 

torsional mode. It can be checked that Eq. (8.101) satisfies the displacement equation 

of motion (8.7), provided that  

 

2 2
2

2
,   i.e.,  T

T

k c
k v v c c

c
    (8.11) 

The set of governing equations can now be extended to the case of nonlinearity 

in the constitutive relation. In this paper, we select the displacement as 

 0,  ,  0vU  for pure shear deformation of a pipe. For the case of axial symmetry, 

small deformations and nonlinear material behavior and omitting quadratic terms, 

the expressions for r  and z  follow from the relations presented in the Appendix 

4A in Chapter 4 as 

 

2 2

r G
r r r r r r z

v v v v v v v
 

           
             

            

  (8.12) 

 

2 3

z

v v v
G

z z r r

v

z

v
 

       
      

      


 

  (8.13) 

where G is the fourth order elastic coefficient. In view of Eqs. (8.1) and (8.101), we 

have 0v r v r     for the lowest axially symmetric torsional mode. Thus, Eqs. 

(8.12) and (8.13) can be further simplified to 

 0r     (8.14) 
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3

,    0z

v v
G G

z z
 

  
   

  
  (8.15) 

A stress-strain relation of the type Eq. (8.15) is shown in Fig. 1.7, together with a 

stress-strain relation of the quadratic type. This figure shows that, for both quadratic 

and cubic nonlinear behavior, a positive strain requires a smaller stress than for the 

linear stress-strain relation. On the other hand, for quadratic behavior, a negative 

strain requires a negative stress whose absolute value is larger than for the linear 

stress-strain relation. This behavior which happens for some materials is referred to 

as the strength differential effect, see Hirth and Cohen (1970), Gil et al. (1999) and 

Rauch and Leslie (1972) for the corresponding curves for tensile and compressive 

strain. 

8.3 Higher harmonics 

In this section, we study the lowest torsional wave mode propagating in a pipe 

considering cubic material nonlinearity, see Fig. 1. Substituting Eqs. (8.14) and 

(8.15) into the equation of motion (8.6), we obtain 

 
2 2

2 2

v v
f

z t
 
 

 
 

  (8.16) 

where 

 

2 2

2
3

v v
G

z z
f

  
 
  

    (8.17) 

Equation (8.16) is the displacement equation governing axially symmetric torsional 

waves propagating in a pipe. A solution of Eq. (8.16) can be obtained in the form 

 (0) (1)v v v   (8.18) 

Substitution of Eq. (8.18) into Eq. (8.16) yields in the usual manner by assuming 

(0) (1)v v  and 
2

(0) (1)v v  

 
2 (0) 2 (0)

2 2
0

v v

z t
 
 

 
 

  (8.19) 
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and 

 
2 (1) 2 (1)

(0)

2 2
[ ]

v v
f v

z t
 
 

 
 

  (8.20) 

where the right-hand side of Eq. (8.20) is 

 

2
(0) 2 (0

(0)
)

2
[ ] 3G

z

v
f v

z

v  


 
  


  (8.21) 

The primary solution of Eq. (8.19) is now taken in the form 

  (0)

0

1
cos

2
v A r kz t    (8.22) 

Substitution of Eq. (8.22) into Eq. (8.21) yields 

    
3

(0) 4 3 2

0

1
[ ] 3 cos sin

2
f v Gk A r kz t kz t 

 
   

 
  (8.23) 

After some simple manipulations, the above expression can be rewritten as  

 
4

(0) 3 3

04

3
[ ] cos[ ( )] cos[3 ( )]

32 T T T

z z
f v G A r t t

c c c


 

 
    

 
  (8.24) 

A solution of Eq. (8.20) in the form of propagating waves can be taken in the form 

 

(1) (1) (1)

1 2

(1) (1)

3 4

sin[ ( )] cos[ ( )]

         sin[3 ( )] cos[3 ( )]

T T

T T

z z
v V z t V z t

c c

z z
V z t V z t

c c

 

 

   

   

 (8.25) 

Substituting Eq. (8.25) into Eq. (8.20) yields 

 

3 3
(1) 3 3 (1) (1) 3 3 (1)

1 0 2 3 0 43 3

3 1
,   0,   ,   0

64 64T T

G G
V A r V V A r V

c c

 

 
       (8.26) 

It follows that the cubic nonlinearity of the material gives rise to the harmonics of 

the forms 
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3 3
(1) 3 3 3 3

0 03 3

3 1
sin[ ( )] sin[3 ( )]

64 64T T T T

G z G z
v A r z t A r z t

c c c c

 
 

 
       (8.27) 

It was to be expected that the cubic nonlinearity would give rise to a higher 

harmonic of frequency 3 , but it is perhaps surprising that it also gives rise to a 

harmonic of frequency  . 

Attenuation may have a large influence on the amplitude of a wave as the 

frequency increases. However, the governing equations considering attenuation 

become quite complicated. For illustrative purposes, we give a simple analysis here 

to discuss the effects of attenuation on harmonics. The primary wave is supposed to 

have the following form 

  1(0)

0

1
cos

2

z
v A re kz t

 
    (8.28) 

where 1  is the attenuation coefficient corresponding to frequency  .  

Adopting the method used in (Ju et al., 2017), we can get the expressions for 

the harmonics which include the effect of attenuation. 
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3 1
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(1) 3 3
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1 3
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G e e z
v A r t
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G e e z
A r t
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
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 




  

 

 


  


 



 (8.29) 

where 3  is the attenuation coefficient corresponding to frequency 3 . Actually, the 

attenuation term in the expression for the third harmonic in Eq. (8.29) agrees with 

the corresponding one in (Hikata and Elbaum, 1966), which has been proven to 

satisfy the equation of motion in an attenuative medium. The analysis of attenuation 

presented here can be considered a reasonable approximation. Even though the 

harmonics grow initially with propagation distance, they may subsequently attenuate 

faster due to the exponential attenuation terms, see Eq. (8.29). These harmonics may 

therefore be difficult to measure. Each of the two harmonics in Eq. (8.29) has a 

maximum amplitude at a distance maxz , which is given by 
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 max

1

ln 3
 for first harmonic with frequency 

2
z 


   (8.30) 

 1 3
max

1 3

ln(3 )
 for third harmonic with frequency 3

3
z

 


 



  (8.31) 

8.4 Backscattering from a zone of nonlinearity 

 

Fig. 8.2 A pipe with a small zone of material nonlinearity 

In this section, we consider the case that the pipe is perfectly elastic, except for 

a small zone defined by z a , see Fig. 8.2, where the behavior in shear is defined 

by Eq. (8.15). This nonlinear behavior might be due to dislocations (Hikata et al., 

1966; Liu et al., 2013), or some other effects of material deterioration. An axially 

symmetric torsional wave, defined by Eq. (8.22), is launched into the pipe, and 

when it reaches the zone of nonlinearity, this wave is backscattered. Scattering of an 

incident wave by an inclusion of nonlinear material in an unbounded linearly elastic 

solid has been investigated by Tang et al. (2012).  

For the problem at hand, the incident and scattered torsional waves are defined 

by (0)v  and sv , respectively. In the usual manner, we write the total displacement as 

 (0)

t sv v v   (8.32) 

where (0)v is given by Eq. (8.22). Since 
(0)

sv v , substitution of Eq. (8.32) into 

Eq. (8.16) yields by the usual perturbation procedure, which was discussed in 

Section 8.3, 

  

Incident Wave 

 Region of nonlinear material 

behavior 

z  
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2 2

2 2
0,   s sv v

z a
z t

 
 

  
 

 (8.33) 

 

2 2
(0)

2 2
      [ ],   s sv v

f v z a
z t

 
 

  
 

  (8.34) 

Equation (8.34) shows that the incident wave generates an inhomogeneous term 

equivalent to a body force. Since the region of nonlinearity and the adjoining region 

have the same linearly elastic properties, the incident wave will not be reflected by 

the region of nonlinearity. 

It follows from Eq. (8.24) that the body force can be written as  

 1 2f f f    (8.35) 

where 

 3 3 4

1 0

3
Re[ e ]

32

ikz i tf A r Gk e     (8.36) 

 3 3 4 3 3

2 0

3
     Re[ e ]

32

ikz i tf A r Gk e      (8.37) 

Even though f  is a nonlinear term in the known quantity (0)v , the 

backscattering problem for sv  is clearly linear. Thus, the reciprocity theorem is still 

valid. Hence we will consider the backscattering from 1f  and 2f  separately. For 1f , 

we will consider the backscattering in some detail. Leaving out the term  exp i t , 

and for future reference labeling the backscattering problem as state A, see Fig. 8.3, 

we define: 

Body force: 

 3 3 4

1 0

3
:   

32

A ikzz a f f A r Gk e       (8.38) 

Incident wave: 

 
0 0

1 1
,  

2 2

A ikz A ikz

zv A re A rike     (8.39) 
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Forward scattered wave: 

 
1 1

:   ,   
2 2

A ikz A ikz

s s z sz a v A re A rike     (8.40) 

Backscattered wave: 

 
1 1

     :   ,   
2 2

A ikz A ikz

s s z sz a v A re A rike        (8.41) 

The problem at hand is the determination of the amplitude sA . This will be done by 

the use of the elastodynamic reciprocity theorem. 

 

Fig. 8.3 Scattered and virtual waves for state A and state B 

8.5 Use of the elastodynamic reciprocity theorem 

For a linearly elastic isotropic body, the reciprocity theorem has been derived 

elsewhere (Achenbach, 2003). The reciprocity theorem is an integral relation over 

the interior of a region V and its boundary S, of the displacements, the surface 

tractions, and the body forces of two elastodynamic states, State A and State B. We 

will use the elastodynamic reciprocity theorem for time-harmonic fields, but the 

time factor exp( )i t  will be omitted.  

The elastodynamic reciprocity theorem for a region V with boundary S may then 

be written as (Achenbach, 2003) 

 ( ) ( ) = ( )A B B A A B B A A B B A

i i i i i ij i ij j i i i i
V S S

f u f u dV u u n dS u t u t dS         (8.42) 
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where A

it  and B

it  are surface tractions. 

For the present problem, we select for state B a torsional wave propagating in 

the positive z-direction. We call this wave a virtual wave since it is not directly 

related to the backscattering problem that is being considered. State B is defined by 

Body force: 

 0Bf    (8.43) 

Virtual wave: 

 
1 1

,   
2 2

B ikz B ikz

zv Are Arike     (8.44) 

The geometry for state A and B is shown in Fig. 8.4. 

The elastodynamic reciprocity theorem now reduces to  

 ( ) ( )A B B A A B

z s z z
V S

f v dV v v n dS  


     (8.45) 

The volume V  is the region defined by 2 1,  r r r z a   . The cylindrical surfaces 

defined by 1r r  and 2r r  are free of tractions. The remaining surfaces S   are the 

end-surfaces 2 1r r r   for 1z z  and 2z z , respectively. We have 

    1 1 1

2 2 2
1 2

( ) ( )
a r r r
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z s z z s z
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z z z z

f v rdrdz v v rdr v v rdr      


 

         (8.46) 

Because of the axisymmetry of the problem, we have omitted the integrations of   

over the range 0 2   . Equation (8.46) can be written in detail as 
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 
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  (8.47) 
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Equation (8.47) shows that the integration that is to be determined at 2z z  vanishes, 

which implies that the waves of state A and state B do not yield a contribution to the 

reciprocity relation when they propagate in the same direction. Equation (8.47) then 

simplifies to 

 
1 1

2 2
1

3 5 4 2 3

0

3 1
( ) ( )
64 2

a r r
ikz

s
a r r

z z

A Ar Gk e drdz AA ikr dr




 
  
 

     (8.48) 

Evaluation of both sides of Eq. (8.48) yields the amplitude of the backscattered 

wave as 

 

2 6 6 3

1 2 0
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( )1
sin(2 )

16 ( )
s
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
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  (8.49) 

The corresponding displacement is 
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( )1
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
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
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
  (8.50) 

The wave backscattered due to 2f  can be obtained in the same manner. The 

backscattering problem is defined as 

Body force: 

 3 3 4 3

2 0

3

32

A ikzf f A r Gk e     (8.51) 

Forward scattered wave: 

 3 31 3
:   ,   

2 2

A ikz A ikz

s s z sz a v A re A rike     (8.52) 

Backscattered wave: 

 3 31 3
    :   ,   

2 2

A ikz A ikz

s s z sz a v A re A rike        (8.53) 

The virtual wave is again defined by Eqs. (8.43) and (8.44) with k  being replaced 

by 3k . 
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Application of the reciprocity theorem yields 
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1 2 0

4 4

1 2

( )1
sin(6 )

144 ( )
s
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A ka
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

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  (8.54) 

It follows that the total backscattered wave is given by 
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  (8.55) 

It is noted that the backscattered wave is 
3

0O A . Hence it is very small as 

compared to the incident wave. In the next section we propose a way to increase the 

magnitude of the backscattered wave. 

8.6 Increase of the amplitude of the backscattered wave 

The most suitable term to detect the region of material nonlinearity is the first 

term of Eq. (8.55), because it has a lower frequency and it is therefore less 

susceptible to attenuation, and it is also larger in magnitude than the second term 

due to the factor 1/9. The significant quantities in the first term are the frequency 1  

and the amplitude in 3

0A . Neither quantity can be increased without increasing the 

attenuation of the wave term sin ( )Tk z c t . In this section, we will, however, show 

that it is possible to increase the amplitude of the scattered displacement by 

combining the incident wave of frequency 1  given by Eq. (8.39) with a second 

incident wave of frequency 2 , where 

 2 1    (8.56) 

in such a way that we still have a scattered wave of the type 1sin ( )Tk z c t . 

Combining two waves to obtain better results is similar to the mixing of waves, 

which is, however, generally achieved with two waves of different polarization 

(Chen et al., 2014; Liu et al., 2013). 
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The total incident wave field which consists of two torsional waves has the 

following form. 

 1 1 2 2cos[ ( )] cos[ ( )]
T T

z z
v V t V t

c c
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where 1 11 2V A r  and 2 21 2V A r . The body force can then be calculated from Eq. 

(21) as 
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The cosine which appears in the first term has the right argument. All the other 

terms have the cosine terms with higher frequency. Thus, we select 
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Using this expression for f  as the body force term, we obtain 
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In comparison with the first term in Eq. (8.55) 1  , we note that the ratio of 

amplitudes of Eq. (8.60) and Eq. (8.55) is  
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where it follows from Eqs. (8.50) and (8.60) that 
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Equation (8.62) can be rewritten in the form 
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where 1 1 12 2 Tk c      is the wavelength for frequency 1 . Since it may be 

assumed that the amplitudes are such that 
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and using 
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Eq. (8.63) can also be expressed as 
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Thus, in view of Eqs. (8.64) and (8.67), we have 
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Fig. 8.4 Phase velocity c  versus frequency 2   for three lowest modes, for 

3200 Tc m s  

To prevent interference with higher order torsional modes, the frequency 2  

cannot be too large. Figure 8.4 shows the dispersion curves for the three lowest 

axisymmetric torsional wave modes. If we select 1 2 40 kHz    and 

2 2 200 kHz   , we may assume that higher modes are not generated.  

Figure 8.5 shows the amplification of the normalized amplitude of the scattered 

wave with frequency 1 80  kHz     as it is combined with an incident wave of 

frequency 2 400  kHz   versus the dimensionless length of the nonlinear domain, 

1
2a  . Since 2 1 5   , the amplitude after amplification of the scattered wave (i.e. 

Eq. (8.67)) becomes 
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  (8.69) 

For the specific example of Fig. 8.5, the fourth order elastic constant G  is set as -

2.4 , and the ratio of the inside and outside radius, r2/r1, is taken as 0.9. For the 

combination of the two waves, the amplitude of the scattered wave is amplified by 

almost 50 times. It is noted that, in principle, we can obtain the length of the 
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nonlinear domain by measuring the amplitude of the scattered wave. 

 

 

Fig. 8.5. Amplification of the normalized amplitude of the scattered wave with 

frequency 1   by a combination of incident waves of frequency 1  and 2  

versus the dimensionless length of the nonlinear domain, 1
2a  , (a) Eq. (8.64), (b) 

Eq. (8.69) 

 

Amplification 

r1/a = 12.5 

r1/a = 10 

(a) 

(b) 
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Fig. 8.6. Variation of the normalized amplitude, 3

2 0sA A , Eq. (8.69), of the scattered 

wave versus the fourth order elastic constant  

Figure 8.6 shows the variation of the normalized amplitude, 3

2 0sA A , versus the 

change of the fourth order elastic constant after amplification. The parameter r1/a is 

12.5 and 
1

2a   is 0.8, which corresponds to 3.2 cma  . The fourth order elastic 

constant may be changed by material loss, which can be sensed by the detection of 

the amplitude of the scatted wave. 

8.7 Conclusions 

Torsional wave propagating in a pipe was investigated for cubic material 

nonlinearity. The generation of cumulative harmonics and the backscattering of a 

torsional wave from a small zone of material nonlinearity were considered. For the 

first problem, we not only obtained an analytical expression for the third harmonic, 

but also one for a harmonic whose frequency is the same as the frequency of the 

incident wave. The amplitudes of the two harmonics grow linearly with propagation 

distance. For the scattering problem, the analytical expression of the backscattered 

wave was obtained by using the elastodynamic reciprocity theorem. The amplitude 

is determined by the nonlinearity coefficient, G , the size of the nonlinear region, 

2a , and the geometry of the pipe, 1r , 2r . Combining the primary wave with a higher 

r2/r1 = 0.9 

r2/r1 = 0.5 



 Chapter 8 The effect of cubic material nonlinearity on torsional wave 193 

frequency wave was proposed to increase the magnitude of the backscattered wave. 

An example that the original scattered wave is amplified by a factor 50 was 

presented.  
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Chapter 9 Intersection of two elastic waves at the region of 

material nonlinearity in an elastic layer 

9.1 Introduction 

Several methods have been proposed by using elastic waves to measure 

material nonlinearity. The harmonic generation technique is the most widely 

reported method. The drawback of the harmonic generation technique is that it is 

hard to separate the underlying system nonlinearity from the material nonlinearity. 

To avoid such interferences, the mixing wave technique has been proposed, which 

includes collinear and non-collinear mixing wave technique. The outstanding 

character of this technique is that the frequency of the mixing wave is selectable, 

which can be the sum or difference frequencies of the incident waves. Another 

important advantage of the mixing wave technique over the harmonic generation 

technique is the spatial selectivity that the nonlinear interaction is only limited to the 

region where the incident beams intersect (Croxford et al., 2009). For the collinear 

mixing wave, the position of the intersection region is figured out by making use of 

the wave velocity and the propagation time. While the intersection region can be 

determined directly through a geometrical means for the non-collinear mixing wave 

technique in an easier way. The investigations on collinear mixing wave have been 

conducted in Chapters 7 and 8. In this chapter, we consider the intersection of two 

non-collinear waves at a region of material nonlinearity.  

On the other hand, from the practical point of view, the reflection, transmission 

and scattering of incident waves from an inclusion of nonlinear material behavior 

are of obvious interest. Recently, the interactions of elastic waves with a local region 

of nonlinear material behavior have some interesting studies. Tang et al. (2012) 

investigated the scattering of an incident longitudinal wave from a region of 

spatially-dependent quadratic nonlinearity. The scattering of elastic waves from a 

heterogeneous inclusion of nonlinearity contained in a linear host material was 

investigated by Kube (2017). 

However, little attention has been paid to the investigation on scattering of 
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incident waves from a local region of material nonlinearity in structures like plates, 

which motivates the present work. In this chapter, the scattering of two orthogonal 

SH waves of lowest mode from a cylindrical region of nonlinear material behavior 

in an elastic layer is investigated. For this end, the perturbation method is taken to 

reduce the nonlinear governing equations and the boundary conditions to a set of 

linear equations at different orders. The two incident SH waves are viewed as the 

solutions of the zero-order equations. Taking a substitution of the expressions of the 

two SH waves into the nonlinear terms in the first-order equations, the 

inhomogeneous equations can be obtained, which have the same form as the 

equations used to describe the forced wave motion induced by the local body forces 

and the local surface tractions in an elastic layer. The inhomogeneous terms which 

collect the contribution from the material nonlinearity can be equivalent to the 

corresponding body forces and the surface tractions. Then, the scattering problem is 

transferred to the problem of forced wave motion in a three-dimensional elastic 

layer. In general, such problems can be solved through wave mode expansions 

(Achenbach and Xu, 1999; Diligent et al., 2002) or integral transforms (Weaver and 

Pao, 1982; Santosa and Pao, 1989). In the present chapter, the reciprocity relation in 

elastodynamics (Achenbach, 2003) is adopted to obtain the expressions of wave 

amplitudes based on the superposition of wave modes. It is of interest to note that 

only the coefficient of the lowest wave mode is found nonzero for the scattered SH 

wave. The amplitudes of the scattered waves are affected by the size of the nonlinear 

region, the nonlinear material constants, the detection angle, the wavelength, and the 

ratio between the two frequencies of the incident waves. These effects are shown 

graphically by numerical examples for the scattered Lamb wave of zero-order mode 

and SH wave. 

9.2 Basic equations 

9.2.1 Wave motion in an elastic layer with quadratic material nonlinearity 

The displacements in the ix  (i=1, 2, 3) directions in Cartesian coordinates are 

represented by iu . The displacement equations of motion of an isotropic solid are 

given by (Tang et al., 2012) 
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where   and   are the Lamé’s constants,   is the mass density, and 
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  (9.2) 

where A, B and C are the third-order elastic constants and if  collects all the 

contribution from the material nonlinearity. Repeated subscripts denote summation. 

It should be pointed out that only the material nonlinearity is considered in this 

paper. Thus, the coefficients of the nonlinear terms in Eq. (9.2) only depend on the 

third-order elastic constants. 

 

Fig. 9.1. An elastic layer with a cylindrical region of quadratic material nonlinearity 

across the thickness and the corresponding rectangular coordinates 

The upper and bottom surfaces are free of tractions, which can be described by 

 13 23 33 3 30,   at  or  x h x h          (9.3) 

where the expressions of stresses are represented by 
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with the nonlinear parts being  

 

3 3
3

3 3

3
3 3

3

3

4

        2 2
2

        

NL l l i l i l
i

i l l l l i

l l l k i l l
i i

k k k l l i l

l m
i

l m

u u u u u u u uA

x x x x x x x x

u u u u u u u uB

x x x x x x x x

u u
C

x x



 



        
    

        

        
    

        

 


 

  (9.5) 

9.2.2 Scattering of two lowest SH waves from a local zone of material 

nonlinearity 

 

Fig. 9.2. Incidence of two SH waves intersecting vertically at the cylindrical region 

of nonlinear material 

In this section, two SH waves of lowest modes are considered as the incident 

waves. The propagation directions of these two waves are perpendicular to each 

other, which intersect at the nonlinear cylindrical region, see Fig. 9.2. Thus, the total 

wave field can be represented by the summation of the incident waves and the 

scattered waves as follows: 
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where 
0

1 2( , )u x t  and 
0

2 1( , )u x t  are the displacement components of wave a (u
a
) and 

wave b (u
b
), respectively. The SH wave of lowest mode only has a single 

Nonlinear region 
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u
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u
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displacement component, which is independent of the coordinate variable in the 

thickness direction.
 

Since the scattered waves are generated by the interaction of SH waves with the 

region of weak material nonlinearity, we assume  
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where   is a small quantity. Substituting Eq. (9.6) into Eq. (9.1), the governing 

equations can be separated into two sets of equations at two different orders. At 
0 , 

the displacement equations of motion are obtained as 
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for wave a, and 

 
2 0 2 0

2 2

2 2

1

0
u u

t x
 
 

 
 

  (9.9) 

for wave b. By virtue of Eqs. (9.8) and (9.9), the expressions of the SH waves of 

lowest modes can be represented by 
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for wave b, where Aa and Ab are the amplitudes of wave a and wave b, respectively, 

and a  and b  are the corresponding frequencies. 

The boundary conditions, Eq. (9.3), at 
0 , then become  
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The free boundary conditions on the bottom and top surfaces are satisfied 

automatically. 

At 
1 , the displacement equations of motion can be represented by 
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where if  ( 1,  2,  3i  ) can be obtained through Eq. (9.2) by replacing iu ( 1,  2i  ) 

with 0

iu , and ignoring the terms containing 3u  and 3x , and are represented by 
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In this chapter, only the scattered waves of sum frequency, i.e. a b    , is 

taken into account. The scattered waves of difference frequency can be obtained in a 

similar way. Substituting Eqs. (9.10) and (9.11) into Eqs. (9.15) and (9.16) and only 

retaining the cross terms with sum frequency, we obtain 
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where 
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By considering Eqs. (9.10) and (9.11), the boundary conditions of free tractions on 

bottom and top surfaces (i.e. x3=h and x3=-h) at 
1  can be satisfied when 

 

1 1 1
2 23

3 1 2

3

,   l i
i i

l i

u u u
t x x a

x x x
  

   
      

   
  (9.21) 

 

1 1 1
2 23

3 1 2

3

0 ,   l i
i i

l i

u u u
x x a

x x x
  

   
     

   
  (9.22) 

where 

 1 2 0,t t   (9.23) 
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Fig. 9.3. The transformation of the nonlinear scattering problem into an equivalent 

linear problem of forced wave motion excited by the body forces and the surface 

tractions 

 

z 

r 

 

z 

Incident wave a 

  

f
1
 

t
3
 

 
r 

 

Incident wave b 

 

t
3
 

Nonlinear region 



202 浙江大学博士学位论文  

In Eq. (9.13), the inhomogeneous terms specified in Eqs (9.18) and (9.19) can be 

viewed as local body forces distributed within the nonlinear region. Similarly, it  in 

Eq. (9.21) can be viewed as local surface tractions in the thickness direction on the 

bottom and top surfaces. Mathematically, the displacement equations of motion at 

the first-order (i.e. Eqs. (9.13) and (9.14)) together with the equations of boundary 

conditions (i.e. Eqs. (9.21) and (9.22)) can be used to describe the waves 

propagating in a linearly elastic layer excited by the distributed body force and the 

distributed surface tractions. Thus, the nonlinear scattering problem has been 

transformed into an equivalent linear problem of forced wave motion in an elastic 

layer. The above analysis can be understood via the flow diagram in Fig. 9.3. 

9.3 Use of elastodynamic reciprocity relation 

9.3.1 Wave motion excited by a point force in x1-direction 

The waves excited by the distributed body forces and the surface tractions can 

be equivalent to the superposition of the waves excited by the point forces. Thus, the 

solutions of these two problems should be in the same form. Since the waves 

generated by a point force will propagate in the radial direction, it is convenient to 

use cylindrical coordinates instead of rectangular coordinates. The following 

transform relation between the two coordinate systems will be used: 

 1 2 3cos ,  sin ,  x r x r x z     (9.25) 

The displacement solution in the cylindrical coordinates can be obtained from 

Eqs. (9A.1)-(9A.3) in Appendix 9A by using the above transformation, which can 

be given by 
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for the Lamb waves. Equations (9A.4), (9A.5) and (9A.7) can be rewritten as 
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for the SH waves. 

From the reference Achenbach and Xu (1999), we know that the solution to Eq. 

(9.29) for the point load applied in the 1x -direction should take the following form 

for the Lamb wave: 

 ( , ) ( )cosr r      (9.33) 

The solutions for an outgoing wave and an incoming wave are, separately, given by 

 (2)

1( ) ( )n nk r H k r   (9.34) 

and 

 (1)

1( ) ( )n nk r H k r    (9.35) 

where   is, separately, written as   and   for clarity, and 
(1)

1H  and 
(2)

1H  are 

Hankel functions. Hereafter, the notation of ( )  denotes ( )d d  . According 

to the property of Hankel function, the approximate representations of Eqs. (9.34) 

and (9.35) for large values of nk r  can be given by 
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It is noted that   represents an outgoing wave compatible with the time factor 

i te 
 or an incoming wave compatible with the time factor 

i te 
. The opposite rule is 

applicable to  . The solution to Eq. (9.32) for SH waves takes the following form  

 ( , ) ( )sinr r      (9.37) 

where ( )r  has the same definition as ( )nk r  in Eqs. (9.34) and (9.35), which is 

denoted as ( )nl r  and ( )nl r , respectively, instead of ( )nk r  and ( )nk r . 

Equations (9.33) and (9.37) are the solutions of carrier waves for Lamb waves and 

SH waves, respectively. The displacement fields of Lamb wave and SH wave can be 

determined through the superposition of the carrier wave and the thickness vibration. 

For the symmetric problem, the total wave field can be written as the summation of 

the symmetric Lamb wave and the symmetric SH wave.  

9.3.2 The body force in x1-direction 

In this section, the wave generated by the body force in the x1-direction is 

investigated. By virtue of Eq. (9.25), the body force defined by Eq. (9.18) can be 

written in the cylindrical coordinate system as  
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  (9.38) 
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  (9.39) 

The body forces only exist within the region r a . To use the reciprocity relation in 

the following part, we rewrite Eqs. (9.38) and (9.39) in the form of exponential 

function instead of trigonometric function. The following transformation between 

exponential function and trigonometric function is used. 

 sin
2

i ie e

i

 


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  (9.40) 

Then, Eqs. (9.38) and (9.39) can be rewritten as 
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It is noted from Eqs. (9.41) and (9.42) that the body forces induced by the 

interaction of the lowest SH wave with the region of quadratic material nonlinearity 

are independent of z, which means that the body forces are symmetric with respect 

to the middle plane of the elastic layer (i.e. 0z  ). It is expected that the scattered 

wave field is also symmetric with respect to the middle plane. 

9.3.3 The generation of Lamb wave 

 

Fig. 9.4. Scattered waves and virtual waves in the annular domain (top view) 

The reciprocity relation is utilized to obtain the amplitudes of the generated 

waves. For two different time-harmonic states, denoted by state A and state B, the 

reciprocity relation can be represented by (Achenbach, 2003) 
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where V is the selected annular domain ( ,  h z h r b    ) with the boundary 

surfaces S1 (lateral surface), S2 and S3 (top and bottom surfaces), and nj is the 

outward normal of the lateral surface 
jS  (see Fig. 4), b  is the radius of the domain. 

For the problem at hand, Eq. (9.43) can be specified as  
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where the boundary conditions of free tractions on the top and bottom surfaces have 

been used.  

We firstly consider the following body forces with the time factor 
( )a bi t

e
 

, 

which is a part of the body forces defined by Eqs. (9.41) and (9.42): 
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  (9.46) 

Hereafter the time factor 
( )a bi t

e
 

 is omitted for simplicity. For an elastic layer, the 

outgoing symmetric scattered waves are represented by the summation of the 

outgoing symmetric Lamb wave and SH wave, which is labeled by state A: 
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Equations (9.47)-(9.49) can be directly obtained through mode expansion and e

SV  

and e

SW  have the same definitions as the corresponding ones in Eqs. (9A.8) and 

(9A.9) in Appendix 9A with the replacement of n by e. ek  and el  are the solutions 

of the dispersion relations for a specific frequency a b     for Lamb wave and 

SH wave, respectively. The superscript “1” of iu  representing the first-order is 

neglected for simplicity here and after. 

For state B, we choose a summation of single outgoing and incoming 

symmetric Lamb waves as a virtual wave in this section, which is represented by 
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where m

SV  and m

SW  have been defined by Eqs. (9A.8) and (9A.9) in Appendix 9A 

with the replacement of n  with m , respectively. mk  is the wave number of the m-th 

order Lamb wave mode for a specific frequency a b    . In addition, it is also 

assumed that there is no body force for state B (i.e., 0B

if  ). 

Next, the terms on the left- and right-hand sides of Eq. (9.44) will be 

manipulated separately. The left-hand terms of Eq. (9.44), which represents the 

contribution from the body force, then results in 
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The following identities have been used: 
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To simplify the evaluation of the terms on the right-hand side of Eq. (9.44), we 

only consider the far-field wave that the terms containing 1/r can be neglected. It is 

reasonable when the propagation distance or the radius of the selected domain (i.e. b) 

in Fig. 9.4 is large enough. Substitution of Eqs. (9.47)-(9.52) into the integral on the 

right-hand side of Eq. (9.44) gives rise to 
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It should be pointed out that the nonzero result is only available for e m  due to the 

orthogonality of wave modes (Achenbach, 2003). The detailed derivation of Eq. 

(9.56) and the definition of mmI  are both given in Appendix 9B. 

Substituting Eqs. (9.53) and (9.56) into Eq. (9.44) yields 
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Evaluation of Eq. (9.57) yields the amplitude of the scattered Lamb waves as 

follows 
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and (9.42) as 
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For this case, the outgoing symmetric scattered waves can be represented by Eqs. 

(9.47)-(9.49) by replacing   with  . Proceeding in the same way, we can rewrite 

Eq. (9.44) as 
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Evaluation of Eq. (9.61) yields 
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In view of Eqs. (9.36), (9.47)-(9.49), (9.58) and (9.63), the displacement 

components of the far-field Lamb wave can be represented by the superposition of 

above the two results as 
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where 

( ) ,   
4 2

r z r

e e a b e ek r t
 

           

and 

2

0 0

2

0 0

cos sin
cos ,

cos sin
sin

a
e b a

Le L

T

a
e b a

Le L

T

C r d dr
c

S r d dr
c





   


   


  
    

  

  
    

  

 

 

 

From Eq. (9.48), it is known that the displacement component in the 

circumferential direction is very small for the far field Lamb wave due to the factor 

1 r . So it is omitted here. The selected virtual wave defined in Eqs. (9.50)-(9.52) 

only has a contribution to the solution of generated Lamb waves. 

9.3.4 The generation of SH wave 

To obtain the solution of the generated SH wave, the symmetric SH wave is 

then selected as a virtual wave for state B, which contains both outgoing and 

incoming symmetric SH waves as follows 
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The form of the scattered wave keeps unchanged (i.e. Eqs. (9.47)-(9.52)) for state A. 

The reciprocity relation, Eq. (9.44), is again used. Making use of the body forces 

defined by Eqs. (9.45) and (9.46) and the virtual wave defined by Eqs. (9.66), the 

evaluation of the integral on the left-hand side of Eq. (9.44) can be given by 
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Making use of Eqs. (9.47)-(9.49) and (9.66), the evaluation of the surface 

integral on the right-hand side of Eq. (9.44) yields 

 2 s

mm m mmQ H J i   (9.70) 

where mmJ h  for 0m   or 2mmJ h  for 0m  . It should be pointed out that Eq. 

(9.70) only has nonzero values for e m  due to the orthogonality of wave modes. 

The detailed derivation of Eq. (9.70) is presented in Appendix 9C. By virtue of Eqs. 

(9.67) and (9.70), Eq. (9.44) can be rewritten as 

 
1

2
2

m m s

b T m mmiF S B H J i     (9.71) 

From the expression of 
mS  in Eq. (9.68), we find that only the amplitude of the SH 

wave of lowest mode (i.e. 0m  ) is nonzero, which can be represented by 

 
0

0

1
=

4

s

b T

F
H B




 (9.72) 

The virtual wave defined by Eqs. (9.66) only contributes to the scattered SH wave.  

For the body forces defined by Eqs. (9.59) and (9.60), together with the virtual 

wave defined by Eqs. (9.66), Eq. (9.44) can be specified through the same procedure 

as 
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2
2

m m s

b T m mmiF S B H J i      (9.73) 

where 
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Equation (9.73) gives rise to 
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   (9.75) 

By virtue of Eqs. (9.36), (9.48), (9.72) and (9.75), the summation of the above 

two results yields the far-field symmetric SH wave, as follows 
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where 
0

TR  is defined in Eq. (9.69) by setting 0m  . 

Here 0 ( )m a b Tl c     has been used for the SH wave of lowest mode. It can 

be noted from Eq. (9.47) that the displacement component in the radial direction is 

small in the far field due to the factor of 1 r . It is of interest to note that only the 

lowest SH wave has been excited for the incidence of two lowest SH waves. 

9.4 Total displacement field of scattered wave 

9.4.1 Wave generation by the force in x2-direction 

The waves excited by the body force in the x2-direction can be obtained directly 

from the solution to the waves excited by the body force in the x1-direction. 
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Intuitively, whether the external force is applied in the x1- or x2-direction, both 

generated waves should have the same expression when the elastic layer is rotated 

by an angle 2 . In this case, the solution to the waves excited by the body force 

defined in Eq. (9.19) can be obtained based on the solution to the waves excited by 

the body force defined by Eq. (9.18) by making use of the ratio of 2f  and 1f  as well 

as the rotation of the coordinate system. By virtue of Eq. (9.18) and (9.19), the ratio 

of 2f  and 1f  is given by 

 2

1

a

b

f

f




   (9.78) 

When the coordinate system is rotated by 2  clockwise, the transformation 

between these two coordinate systems can be given by 

 ,   2,   r r z z          (9.79) 

For the coordinate system ( r ,   , z ), we can obtain the solution in the same 

form as the ones given in Eqs. (9.64), (9.65) and (9.76) by replacing   with   . And 

making use of Eq. (9.78), the solution to the wave excited by the force 2f  can be 

obtained in the new coordinate system. When we use the transformation between   

and    given in Eq. (9.79), the expression of the outgoing Lamb wave excited by 

the body force in the x2-direction can be obtained, which is represented in the old 

coordinates ( r ,  , z ) as 
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Proceeding with the same procedure, the expression of the outgoing SH wave 

can be represented by 
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9.4.2 Wave generation by the surface traction 3t   

In this section, we consider the waves induced by the normal tractions 3t  on the 

bottom and top surfaces shown in Fig. 9.3. In view of Eq. (9.25), the traction 3t  

defined in Eq. (9.24) can be rewritten in the cylindrical coordinate system as 
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  (9.83) 

The reciprocity relation is also utilized to obtain the solutions for the wave 

excited by the surface tractions. The integrals on the upper and bottom surfaces are 

nonzero, while the body force is considered to be zero for this case. Thus, Eq. (9.44) 

can be specified to 
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where 3t  is the surface traction, which is defined by Eq. (9.83). When the free Lamb 

wave is selected as the virtual wave, which is represented by Eqs. (9.50)-(9.52), the 

expression of the Lamb wave excited by the surface tractions can be obtained. The 

first integral in Eq. (9.84) has been given in Eqs. (9.56) and in Eq. (9.61) (the right-

hand side), respectively, for different time factors. For the tractions with the time 

factor 
 b ai t

e
 

 or 
 b ai t

e
  

, the evaluations of Eq. (9.84) for different time factors 

can be rewritten separately by  
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which successively result in 
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and 
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Substitution of the expressions of the amplitudes into Eqs.(9.47)-(9.49) gives 

rise to the expression of Lamb wave. It should be noted that   should be replaced 

by   for the waves induced by the tractions of the time factor 
 b ai t

e
  

. In view of 

Eq. (9.36), the expressions of the displacement components for the far-field Lamb 

wave can be represented by 
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Intuitively, the normal tractions have no contribution to the generation of SH 

wave. It can be easily proved by changing the virtual wave from Lamb wave to SH 
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wave. 

9.4.3 The total expressions of the scattered waves 

The superposition of the wave fields excited separately by the body forces and 

the surface tractions is equivalent to the waves scattered by the nonlinear region. 

The displacement components of the far-filed Lamb wave can be given by 
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where the amplitude of the eth-order Lamb wave mode is 
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where F  is defined by Eq. (9.20), 
e

LB , 
e

sV  and eeI  are defined in Eqs. (9.54) and 

(9B.10) in Appendix B, respectively, by the replacement of m  with e ; the 

expressions of 
e

SV  and 
e

SW  are given in Eqs. (9A.8) and (9A.9) in Appendix 9A, 

respectively, with the replacement of n  with e ; and ek  is the eth-order wave 

number corresponding to the wave frequency a b    . The displacement 

component in the circumferential direction is neglected due to its’ small magnitude 

in the far field. 

The total expression of the SH wave can be given by 

  0coss SH T

eu A 
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where 
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where 0

TB  has been defined in Eq. (9.77). The displacement component in the radial 

direction is omitted due to its’ small magnitude in the far field. The scattered SH 

wave is remarkably advantageous over the Lamb wave due to its’ simple 

mathematical structure. Using the measurement of the amplitude of SH wave or 

Lamb wave, the values of the nonlinear material constants, A  and B, can be figured 

out. The method utilized this chapter can’t give rise to the evaluation of the 

nonlinear material constant C. 

9.5 Numerical results and discussions 

The analytical solutions for the scattering of two lowest SH waves from a 

cylindrical region of nonlinear material have been obtained. In this section, the 

results will be shown graphically based on the expressions given by Eqs. (9.91)-

(9.95). The effects of the radius of the nonlinear region, the magnitudes of the 

nonlinear material constants, the detection angles and the wavelengths of the 

incident waves on the amplitudes of the scattered waves will be investigated.  

For the incident waves, we assume 

 ,   a b a bA A H       (9.96) 

where H  and   are the wave amplitude and the ratio of the frequencies of the two 

incident waves, respectively. For the sake of illustration, the following 

dimensionless quantities are introduced: 
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where  2w

T a bc      and  1b     should be noticed; b  is the 

wavelength of the incident wave of frequency b , and 2h is the thickness of the 

elastic layer. 

For the scattered Lamb wave, we take the zero-order mode as an example and 

the amplitude, i.e. 
0

LA  in Eq. (9.93), is considered. The assumption of long 

wavelength of the incident wave or thin thickness of the elastic layer, i.e. 1 0b   

or 1ba   is made in this section. Thus, the wavenumber of the Lamb wave of 

zero-order mode can be obtained approximately by a limiting process (Achenbach, 

2012) as 
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(a) Lamb wave 

 

(b) SH wave 

Fig. 9.5 Distribution of the amplitudes of the scattered waves along the 

circumferential direction 

Figures 9.5a and 9.5b show the distributions of the amplitudes of the scattered 

Lamb waves and SH waves along the circumferential direction. The wavelength of 

the incident wave b is fixed as 100b  , while the ratio of the frequencies of the two 

incident waves (wave a and wave b) is in three different cases, i.e. =0.5 , =1  and 
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=2 . Other parameters are fixed as 100NC  , 1/ 2  , 1000r  , 0.01H  , 

0.3   and 50a  . These two figures can be used to determine the best detection 

angles, where the amplitudes of the scattered waves are the largest, which 

correspond to the strongest signals. At the meantime, the dead angles where the 

amplitudes are zero can be avoided. From both figures, we can find that the ratio of 

frequencies of the incident waves has significant influence on the wave amplitudes 

of the scattered waves. However, for two special points, which are marked by circles 

in Fig. 9.5b, they almost keep unchanged even if the ratio of the frequencies varies. 

The selection of the ratio of the frequencies can be regarded as an effective manner 

to adjust the position of the best detection angle and the dead angle, see Figs. 9.5a 

and 9.5b. The largest amplitude also varies with the ratio of frequencies. For 

example, the amplitude for =1  is the largest for the scattered Lamb waves, see Fig. 

9.5a, while the amplitude for =2 is the largest for the scattered SH waves, see Fig. 

9.5b. 

 

(a) Lamb wave 

 

(b) SH wave 

 

Fig. 9.6 Variations of the amplitudes of the scattered waves with the dimensionless 

nonlinear material constant NC  at the angle / 3   

Figure 9.6a and 9.6b show the variations of the amplitudes of the scattered 

waves with the dimensionless nonlinear material constant NC  at the angle / 3  . 

Another dimensionless nonlinear constant   is considered for three different cases 
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when it equals 1/4, 1/2 and 1, respectively. Other parameters are fixed as 1000r  , 

1  , 100b  , 0.01H  , 0.3   and 50a  . The nonlinear material constants 

have a strong correlation with material micro-damages. Thus, through Figs. 9.6a and 

9.6b, we can establish a direct relation of the level of material damage with the 

amplitudes of the scattered waves. The amplitudes of the scattered Lamb waves and 

SH waves both increase linearly with the increase of NC , see Figs. 9.6a and 9.6b. 

Comparing Fig. 9.6a with Fig. 9.6b, it is observed that the dimensionless material 

constant   only has an influence on the amplitudes of the Lamb waves, which 

comes from the contribution of the equivalent surface tractions, see Eq. (9.93). Since 

the normal surface tractions have no contribution to the generation of SH waves, the 

amplitudes of SH waves only depend on the nonlinear material constant NC . In this 

way, the scattered SH waves may be easier to be used to evaluate material damages. 

For the scattered Lamb waves, the material constant   has a small influence on the 

wave amplitudes when the material constant NC  is small, see the curves located 

around 50NC   in Fig. 9.6a. Thus, we may not have to consider the effects of   in 

this zone. With the increase of NC , the influence of   becomes more significant on 

the amplitudes of the Lamb waves.  

The relations between the amplitudes of the scattered waves and the radius of 

the nonlinear region are presented graphically in Figs. 9.7a and 9.7b for the incident 

waves of different ratios of frequencies, i.e., 0.5,  1,  2  . Other parameters are 

fixed as 1000r  , 100NC  , 1/ 2  , 100b  , 0.01H  , and 0.3  . 

Ultrasound is often viewed as a powerful tool to measure the size of the damage 

zone. However, for the curves in Figs. 9.7a and 9.7b, there exist many congestion 

areas where the amplitudes vary up and down quickly with the increase of the radius, 

see the zones marked by circles in Figs. 9.7a and 9.7b. In these zones, the radius of 

the nonlinear region is difficult to be determined by using the inverse computation. 

It’s better to measure the radius of the nonlinear region in the zones where the 

amplitudes of the scattered waves increase monotonously with the radius of the 

nonlinear region. 
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(a) Lamb wave 

 

(b) SH wave 

Fig. 9.7 Variations of the amplitudes of the scattered waves versus the 

dimensionless radius of the nonlinear region at the angle = 3   

From Fig. 9.7a, it is observed that the range of the monotone zones depends largely 

on the ratio of the frequencies of the two incident waves. For example, the curve 

corresponding to 0.5   in Fig. 9.7a is nearly monotonous, while the other two 

curves are not. Moreover, the ratio of the frequencies can also be used to adjust the 

positions of the monotone zones. For example, the zones around 60a   in Fig. 9.7a 

and 40a   in Fig. 9.7b are choppy for 2  , while these zones become 

monotonous for 0.5  . For the mixing of two incident waves, the adjustment of 

the ratio of the frequencies is an important manner to optimize the measurement. 

In Figs. 9.8a and 9.8b, the relations between the amplitudes of the scattered 

waves and the wavelengths of the incident waves are presented for different ratios of 

frequencies at the angle = 3  . The other parameters are fixed as 1000r  , 

100NC  , 1/ 2  , 0.01H  , 0.3   and 50a  . For the wavelengths under 

consideration, the amplitudes of the Lamb waves corresponding to 0.5   and 1.0 

decrease as the wavelength increases, while the amplitudes corresponding to 2   

is not monotonous, see Fig. 9.8a. For the scattered SH waves, the variations of the 

amplitudes are not monotonous with the increase of the wavelength for all the three 

ratios of the frequencies, see Fig. 9.8b. 
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(a) Lamb wave 
 

(b) SH wave 

Fig. 9.8 Variations of the amplitudes of the scattered waves versus the wavelengths 

of the incident waves at the angle = 3   

Overall, the ratios of the frequencies have obvious influences on the relation 

between the amplitude and the wavelength. Thus, an appropriate wavelength of the 

incident waves can be determined by using the curves shown in Figs. 9.8a and 9.8b 

combining with the consideration of the ratios of the frequencies. 

9.6 Concluding remarks 

The materials with microstructural defects behave in a nonlinear manner, which 

are described by a quadratic constitutive relation in this paper. An elastic layer with 

a cylindrical region of quadratic material nonlinearity across the thickness is 

considered. Two SH waves of lowest modes are launched from two orthogonal 

directions, which intersect at the nonlinear region. A three-dimensional nonlinear 

scattering problem is thus studied. 

Using the perturbation method, the nonlinear governing equations and the 

boundary conditions are reduced to two sets of linear equations at different orders. 

The zero-order equations can be specified to the governing equations for the SH 

waves of lowest modes with free boundary conditions. Substitution of the 

expressions of the SH waves into the nonlinear terms in the first-order equations 

gives rise to a series of inhomogeneous equations. Mathematically, these equations 

are same as those that are used to describe the problem of forced wave motion 

100 150 200 250 300
0

1

2

3

4

5

b

 =0.5

 =1.0

 =2.0

A
L


1

0
6

100 150 200 250 300
0

1

2

3

4

5

b

 =0.5

 =1.0

 =2.0

A
S
H


1

0
6



 Chapter 9 Intersection of two elastic waves at the region of material nonlinearity in an elastic layer 223 

 
 

caused by the local body forces and the local surface tractions. By referring to the 

solutions for waves induced by the point force, the reciprocity relation in 

elastodynamics is used to obtain the amplitudes of the waves induced by the 

equivalent body forces and the equivalent surface tractions. The analytical solutions 

for the far-field Lamb wave and SH wave scattered from the nonlinear region are 

then readily obtained. It is of interest to find out that only the coefficient of the 

lowest mode is non-zero for the scattered SH wave. 

Numerical examples are presented for the scattered Lamb wave of zero-order 

mode and SH wave propagating in a thin elastic layer. The influences of the 

detection angle, the nonlinear material constants, the size of nonlinear region, the 

ratio of frequencies of two incident waves and the wavelengths of incident waves on 

the amplitudes of the scattered waves are investigated. The direct relations between 

the amplitudes of the scattered waves and the size of the nonlinear region and the 

nonlinear material constants, which have a strong correlation with the damage level, 

are presented graphically. Based on the theoretical analysis, some possible methods 

are proposed to optimize the measurements or detections for the nonlinear 

nondestructive evaluation and test. These methods include the adjustments of the 

detection angle and the change of the ratio of the frequencies and/or the wavelengths 

of the incident waves. 

 

  



224 浙江大学博士学位论文  

Appendix 9A: Free wave propagation in a linearly elastic layer 

The free wave propagation in an elastic layer is studied. The analytical solution 

to this problem has been shown in Achenbach and Xu (1999). The waves 

propagating in an elastic layer were decomposed into a superposition of thickness 

vibration and a membrane carrier wave. Since the thickness motion keeps 

unchanged, we only need to solve the membrane equations for different problems. 

For the Lamb wave mode, the displacement components can be written in the 

following forms:  

 1 2
3

( , )1
( ) ,  1,  2n n

i

n i

x x
u V x i

k x


 


  (9A.1) 

 
3 3 1 2( ) ( , )n nu W x x x   (9A.2) 

where the time harmonic factor i te   (or i te  ) is neglected for simplicity, nk  is a 

wave number of nth-order Lamb wave mode, and 1 2( , )x x  is a solution of the 

reduced membrane wave equation in the 1x - 2x  plane, which is given by 

 
2 2

21 2 1 2
1 22 2

1 2

( , ) ( , )
( , ) 0n

x x x x
k x x

x x
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  

 
  (9A.3) 

In addition to Lamb waves, SH waves should also be considered for an elastic 

layer. SH waves are equivoluminal waves, whose vibration plane is parallel to the 

1x - 2x  plane. Their wave modes can be represented by 

 1 2
1 3

2

( , )1
( )n n

n

x x
u U x

l x
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  (9A.4) 

 1 2
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( )n n
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x x
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l x


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  (9A.5) 

 
3 0nu    (9A.6) 

where nl  is a wave number of nth-order SH wave mode and   has to satisfy the 

following membrane equation as 
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The wave modes, nU , nV  and nW , of the thickness vibration are given in the 

following: 

a. Lamb wave 

nV  and nW  are the nth-order wave modes along the thickness direction for 

Lamb waves, which can be separated into symmetric and antisymmetric modes 

relative to the middle plane of an elastic layer. Considering the free boundary 

conditions, the symmetric mode can be represented by 

 1 3 2 3cos( ) cos( )n

S n nV s p x s q x    (9A.8) 
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Here we define 
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For the antisymmetric modes, we have 
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b. SH wave 

nU  is the SH wave mode distributed along the thickness direction, which is 

represented by 

 
3 3( ) cos( )  for  symmetric modes.n

nU x q x   (9A.15) 

 3 3     ( ) sin( )   for  antisymmetric modes.n

nU x q x   (9A.16) 

and 2 2 2 2 n T nq c l  . Using the free boundary condition, we have 

 
2

n

n
q

h


   (9A.17) 

where n =0, 2, 4, … for symmetric modes, and n =1, 3, 5, … for antisymmetric 

modes. 

 

Appendix 9B: The derivation of Eq. (9.56) 

Substitution of Eqs. (9.47)-(9.52) into the integral on the right-hand side of Eq. 

(9.44) gives rise to 
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where 
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rz z  are defined by 
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and 
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The orthogonality relation, which was derived in Section III in (Achenbach and Xu, 

1999), has been used, which reads 

 0,   for  em meI I e m     (9B.7) 

The following equality should also be noted: 
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By setting e m , Eq. (9.55) can be simplified to 
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where  
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and the constants are defined by 
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This result is the same as the corresponding one in (Achenbach and Xu, 1999) and 

the following identity for Hankel function has been used 
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Appendix 9C: The derivation of Eq. (9.70) 

The detailed derivation of Eq. (9.70) are presented below 
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where the following relation has been used, which is given in section III in 

(Achenbach and Xu, 1999). 
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The following orthogonality relation of trigonometric functions can be used. 
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and the identity of Hankel function, Eq. (9B.12), has also been used. 
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Chapter 10 Concluding remarks and future works 

10.1 Concluding remarks 

In this dissertation, several theoretical modellings of nonlinear wave 

propagation in materials and structures were investigated, which have the potential 

application to the design of novel acoustic devices and the development of nonlinear 

ultrasound techniques used for nondestructive evaluation. The whole dissertation 

contains two parts. In the first part, we mainly focused on the investigation of the 

tunability of solitary waves in soft bars by using the asymptotic expansions and the 

reductive perturbation method. In Chapter 2, the electric biasing field was used to 

modulate the solitary waves in soft electroactive bars. In Chapter 3, the pre-stretch is 

proven to be an effective means to adjust the kink and kink-like waves propagating 

in viscoelastic soft bars. In the second part, we developed several simplified theories 

and simple theoretical models to work out analytical solutions to higher harmonic 

generations by material nonlinearity, which can promote the application of nonlinear 

ultrasound technique for nondestructive evaluation. The reciprocity theorem in 

elastodynamics and the shell theory have been used to solve the related problems. In 

Chapter 4, we presented a general analysis on the higher harmonic generation by 

plane waves based on quadratic and cubic material nonlinearities. Then, the 

harmonics of surface waves on a half-space of cubic material nonlinearity were 

investigated in Chapter 5. In Chapter 6, we conducted an investigation of higher 

harmonics in pipes, and the shell theory was used to obtain the analytical solution. 

From the point of view of practical interest, we studied the reflection and scattering 

from the local region of material nonlinearity induced by local micro-damages in 

Chapter 7. As an extension, in Chapter 8, we studied the scattering of the incident 

torsional waves of the lowest mode from a small segment of material nonlinearity in 

a pipe. In Chapter 9, we investigated the scattering of two SH waves of the lowest 

mode from a nonlinear cylindrical region in a plate. Detailed contributions of this 

dissertation are summarized as follows. 

In Chapter 2, an asymptotic analysis of solitary waves propagating in an 
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incompressible isotropic electroactive circular rod subjected to a biasing 

longitudinal electric displacement was presented. Several asymptotic expansions 

were introduced to simplify the rod governing equations. The boundary conditions 

on the lateral surface of the rod were satisfied from the asymptotic point of view. In 

the limit of finite-small amplitude and long wavelength, a set of ten simplified one-

dimensional nonlinear governing equations was established. To validate our 

approach and the derivation, we compared the linear dispersion relation with the one 

directly derived from the three-dimensional linear theory in the limit of long 

wavelength. Then, by the reductive perturbation method, we deduced the far-field 

equation (i.e. the KdV equation). Finally, the leading order of the electroelastic 

solitary wave solution was presented. Numerical examples were provided to show 

the influences of the biasing electric displacement and material constants on the 

solitary waves. It was found that the biasing electric displacement can modulate the 

velocity of solitary waves with a prescribed amplitude in the electroactive rod, a 

very interesting result which may promote the particular application of solitary 

waves in solids with multi-field coupling. 

In Chapter 3, we theoretically investigated kink and kink-like waves 

propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive 

modeling, the Cauchy stress tensor was assumed to consist of an elastic part and a 

dissipative part. The asymptotic method was adopted to simplify the nonlinear 

dynamic equations in the limit of finite-small amplitude and long wavelength. Using 

the reductive perturbation method, we further derived the well-known far-field 

equation (i.e. the KdV-Burgers equation), to which two kinds of explicit traveling 

wave solutions were presented. Examples were given to show the influences of pre-

stretch and viscosity on the wave shape and wave velocity. It was shown that pre-

stretch could be an effective method for modulating the two types of waves. In 

addition, such waves may be utilized to measure the viscosity coefficient of the 

material. The competition between the effects of pre-stretch and viscosity on the 

kink and kink-like waves was also revealed. 

In Chapter 4, harmonics of plane longitudinal and transverse waves in 

nonlinear elastic solids with up to cubic nonlinearity were investigated in a one-

dimensional setting. It was shown that due to the quadratic nonlinearity a transverse 
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wave generates a second longitudinal harmonic, which, however, propagates with 

the velocity of transverse waves, as well as resonant transverse first and third 

harmonics due to the cubic and quadratic nonlinearities. A longitudinal wave 

generates a resonant longitudinal second harmonic as well as first and third 

harmonics whose amplitudes increase linearly and quadratically, respectively, with 

the distance propagated. In a second investigation incidence from the linear side of a 

primary wave on an interface between a linear and a nonlinear elastic solid was 

considered. The incident wave crosses the interface and generates a harmonic whose 

interface conditions are equilibrated by compensatory waves propagating away in 

both directions from the interface. The back-propagated compensatory wave 

provides information on the nonlinear elastic constants of the material behind the 

interface. It was shown that the amplitudes of the compensatory waves can be 

amplified by mixing two incident longitudinal waves with appropriate frequencies. 

In Chapter 5, the analytical far-field solution for the cumulative third harmonic 

surface wave propagating on a half-space of isotropic incompressible cubically 

nonlinear material was obtained in a relatively simple and systematic manner. Using 

the perturbation method for a weakly nonlinear material, the governing equations 

and the boundary conditions were separated into two sets of uncoupled equations at 

the zero-order and the first-order, respectively. For a primary linear wave of 

frequency   and amplitude A , the resonant third harmonic has frequency 3  and 

amplitude NA  which depends on 3A  and the propagation distance. It was shown that, 

in the far field, the resonant third harmonic propagates with the classic Rayleigh 

wave velocity. We also considered the transmission of the resonant third harmonic 

across an interface at x L  into a linear material. The transmitted wave has the 

same general form as the incident third harmonic except that the multiplying factor 

x  now is constant at L , t L c , x L , and the amplitude also depends on the 

nonlinear constant. Potential measurement of the transmitted wave can provide 

information on the location of the interface and the material nonlinearity. 

In Chapter 6, higher harmonics in pipes of quadratic nonlinear material 

behavior were analyzed. Using the shell theory, the mixing of axisymmetric 

longitudinal waves and torsional waves, and the self-interaction of axisymmetric 
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longitudinal waves, have been investigated. The dispersion curves of longitudinal 

waves derived from the linear version of the governing equations show excellent 

agreement with the corresponding curves obtained from the thick shell theory and 

three dimensional theory, presented elsewhere. For torsional waves, only the lowest 

mode was taken into consideration. Using the perturbation method, analytical 

expressions for the resonant torsional waves generated by the mixing of longitudinal 

and torsional waves were obtained. The resonant waves with difference frequencies 

propagate in the opposite direction of the corresponding primary wave. The back-

propagation effect has potential application for nondestructive evaluation. The 

nonlinear shell theory was further simplified for applicability to thin pipes, to obtain 

expressions for the cumulative second longitudinal harmonics generated by self-

interaction of longitudinal waves. For this case, the phase-match conditions, which 

were used to determine phase-match points, were also presented in an analytical 

form. 

In Chapter 7, two models were proposed to obtain information on the material 

nonlinearity of an inclusion in a solid body. Material nonlinearity is usually 

generated by the development of material micro-scale damage. When the region of 

nonlinear material is large, incidence of ultrasound on the interface between the 

perfectly joined regions of linear and nonlinear material behavior produces very 

useful information. Using the continuity condition of stress and displacement at the 

interface, the harmonics in the nonlinear region, together with the compensatory 

waves yield a reflected wave whose amplitude contains the defining constant of the 

material nonlinearity near the interface. The compensatory waves were introduced to 

ensure the continuity conditions at the interface. When the nonlinear region is an 

inclusion, the equivalent body force induced by the material nonlinearity generates a 

backscattered wave. The backscattered wave is determined in a simple manner by 

the use of the reciprocity theorem of elastodynamics. The backscattered wave 

obtained in this manner yields information on the nonlinear material properties and 

the size of the inclusion. In addition, a model based on the superposition of back-

propagated compensatory waves from the two interfaces of the nonlinear region 

reveals the physical mechanism of wave scattering from the nonlinear inclusion. 

In Chapter 8, the effect of cubic material nonlinearity on the propagation in a 
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pipe of the lowest axially symmetric torsional wave mode was investigated. Two 

cases, one that the material of the whole pipe is nonlinear, and the second that a 

small segment of the pipe is nonlinear, were considered. In the first case, a first and 

a third harmonic were obtained by the perturbation method. Analytical expressions 

for the two cumulative harmonics were derived. The second case leads to a 

scattering problem. The segment produces nonlinear terms in the equation of motion, 

which can be regarded as a distribution of body forces. The problem was then 

reduced to a linear scattering problem. An analytical expression for the 

backscattered wave was easily obtained by using the elastodynamic reciprocity 

theorem. Due to the low amplitude of the backscattered wave, we proposed to add 

another higher frequency wave to the primary wave, to increase the total magnitude 

of the scattered wave. An example that the originally scattered wave was amplified 

50 times by selecting proper frequencies was presented. Both cases considered here 

have potential application to determine the material properties in a region of 

nonlinear material behavior. 

In Chapter 9, the interaction of two SH waves of lowest modes with a local 

cylindrical region of quadratic material nonlinearity in an elastic layer was 

investigated. The nonlinear governing equations and the nonlinear boundary 

conditions were reduced to a set of linear equations at different orders by making 

use of the perturbation method. The incident waves were regarded as the solutions to 

the zero-order governing equations. The first-order equations are a series of 

inhomogeneous equations by substitution of the expressions of the incident waves, 

which beer the same form as the equations used to describe the forced wave motion 

in an elastic layer. Mathematically, the first-order equations can be solved in a 

similar way when the inhomogeneous terms are viewed as the equivalent body 

forces or surface tractions. Based on the mode expansions, the amplitudes of the 

Lamb wave and the SH wave generated by the body forces and surface tractions 

were obtained by using the reciprocity relation in elastodynamics. It is of interest to 

note that only the coefficient of the lowest mode is nonzero for the generated SH 

wave. The amplitudes of the scattered waves were determined by the size of the 

nonlinear region, the nonlinear material constants, the detection angle, the 

wavelength and the ratio between the two frequencies of the incident waves, which 
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were also graphically shown as the numerical examples. 

10.2  Future works 

As an extension of the works presented in this dissertation, the following 

interesting research topics will be investigated in the future: 

1. The investigation of nonlinear elastic waves propagating in metamaterial, such as 

periodic structures or phononics, can be conducted based on the methods and the 

theories used in this dissertation, such as the asymptotic expansions, the reductive 

perturbation methods, the shell and plate theory, the reciprocity theorem and so on. 

Due to the attractive characters of metamaterials, it is expected to find some fancy 

phenomena, which have not been uncovered within the linear theory. The first 

model is the solitary waves propagating in a soft bar composed of periodic 

structures. Using the thin rod assumption, the analytical solution is expected to be 

obtained. The second model is the higher harmonic generation of plane waves by the 

periodic material nonlinearity. The analytical or semi-analytical solution for the 

reflected and transmitted higher harmonics could be obtained in a simple and 

elegant manner by using the reciprocity relation.  

2. Experimental researches on higher harmonic generation by material nonlinearity 

induced by material micro-damages will be conducted. Based on the models and 

theories proposed in this dissertation, some efficient and useful nonlinear ultrasound 

techniques are expected to be developed, which may be exploited to detect and 

monitor the safety conditions of different structures and materials. 

3. It has been reported that the blood pulse behaves like a solitary wave. So it is 

meaningful to model the blood flow as a solitary wave propagating in a blood vessel. 

In addition, the coupling of electric field and elastic field in most tissues has been 

uncovered. Thus, it is reasonable to model the blood vessel wall as a pipe of soft 

electroactive material. Such a model has not yet been proposed in the reported 

literatures. For the non-ideal blood, the viscoelasticity effect should be taken into 

account. By using the mathematical and mechanical models, we hope to understand 

and explain some medical diagnostic measurements used in the traditional Chinese 

medicine in the sense of modern science.  
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4. Nonlinear waves propagating in composite materials, anisotropic materials and 

porous materials have attracted extensive academic interests due to their wide 

application in industries and engineering. Through the design of such materials and 

structures, we hope to develop some novel acoustical devices and some ultrasound 

techniques for nondestructive evaluation based on the application of nonlinear 

elastic waves. 

5. It was much desired to extend the application of the reciprocity theorem in 

elastodynamics to other fields of solid mechanics. For example, the forced wave 

propagation in materials with coupling physical fields and anisotropic materials, the 

non-axisymmetric scattering problem in pipes, and the reciprocity relation for wave 

propagation in metamaterials. 
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